冰淇淋机的制作方法

文档序号:10935997阅读:247来源:国知局
冰淇淋机的制作方法
【专利摘要】本实用新型提供一种冰淇淋机,包括:用于盛装冰淇淋制作原料的制冷桶、与制冷桶贴合设置且用于降低制冷桶温度的半导体制冷组件、用于对所述冰淇淋制作原料进行搅拌的搅拌装置、以及用于对搅拌装置和半导体制冷组件进行供电的供电装置;其中,半导体制冷组件包括:半导体电偶对、与半导体电偶对冷端相连的冷端基板、与半导体电偶对热端相连的热端基板、以及液体冷却器件;所述液体冷却器件包括:与热端基板相连的液体冷却基体,所述液体冷却基体与热端基板相连的安装面上开设置液槽,所述置液槽与热端基板之间设有流动的冷却液体。本实用新型提供的冰淇淋机采用半导体制冷组件,能够提高半导体电偶对热端的散热速率,能够实现大功率制冷。
【专利说明】
冰浜淋机
技术领域
[0001 ]本实用新型设及冰洪淋机制冷技术,尤其设及一种冰洪淋机。
【背景技术】
[0002] 半导体制冷忍片(TECJhermoelectric Cooler)是利用巧尔贴(Peltier)效应制 成的一种制冷器件,其主要的结构为半导体电偶对(也称为P-N电偶对),当向半导体电偶对 加设一定的电压之后,半导体电偶对的冷端和热端会产生一定的溫差。当其热端的热量被 散发出去后,其冷端会产生一定的冷量,实现制冷。由于半导体制冷忍片制成的制冷器件体 积小、制冷效率高,已经开始在冰洪淋机等小型家用电器中得到推广和应用。
[0003] 图1为现有的一种应用于冰洪淋机中的半导体制冷组件的结构示意图。如图1所 示,利用半导体制冷忍片制成的制冷组件包括冷端基板11、半导体电偶对12和热端基板13, 其中,半导体电偶对12的冷端通过冷端电极14与冷端基板11连接,半导体电偶对12的热端 通过热端电极15与热端基板13的一侧表面连接,具体通过焊接的方式进行连接。热端基板 13的另一侧表面焊接有散热结构,该散热结构包括散热基板16和翅片17,其中,散热基板16 焊接在热端基板13上。半导体电偶对12热端的热量经过焊料先传导至热端基板13,再通过 散热基板16传导至翅片17,通过翅片17与周围的空气进行热交换,降半导体电偶对12热端 的热量。
[0004] 上述制冷组件中,由于热端基板13与散热基板16是通过焊接的方式固定的,半导 体电偶对12热端的热量依次经过热端基板13、焊料和散热基板16进行传导,除去热端基板 13和散热基板16自身所具有的热阻之外,二者之间的焊料也存在较大的热阻,严重影响了 热量的传导速率。并且,翅片与周围空气进行热交换的速率也非常低,也在很大程度上影响 了半导体电偶对12热端热量的散发。因此,受焊料具有较大热阻和翅片与空气进行热交换 速度较慢的影响,现有的半导体制冷组件只适用于小功率制冷,而无法实现大功率制冷,不 利于提高冰洪淋机的制冷功率。 【实用新型内容】
[0005] 本实用新型提供一种冰洪淋机,采用半导体制冷组件,能够提高半导体电偶对热 端的散热速率,能够实现大功率制冷。
[0006] 本实用新型实施例提供一种冰洪淋机,包括:用于盛装冰洪淋制作原料的制冷桶、 与制冷桶贴合设置且用于降低制冷桶溫度的半导体制冷组件、用于对所述冰洪淋制作原料 进行揽拌的揽拌装置、W及用于对揽拌装置和半导体制冷组件进行供电的供电装置;其中,
[0007] 半导体制冷组件包括:半导体电偶对、与半导体电偶对冷端相连的冷端基板、与半 导体电偶对热端相连的热端基板、W及液体冷却器件;
[000引所述液体冷却器件包括:与热端基板相连的液体冷却基体,所述液体冷却基体与 热端基板相连的安装面上开设置液槽,所述置液槽与热端基板之间设有流动的冷却液体。
[0009]如上所述的冰洪淋机,所述液体冷却基体远离热端基板的底壁内表面设有抵顶在 所述底壁内表面和热端基板之间的至少一个隔板,至少一个隔板将置液槽划分为蛇形的液 体流道,所述冷却液体在所述液体流道内流动。
[0010] 如上所述的冰洪淋机,所述热端基板朝向所述液体冷却基体的表面上设有凹坑, 所述凹坑的数量为至少两个,至少两个凹坑与液体流道的位置对应。
[0011] 如上所述的冰洪淋机,所述液体冷却基体上与所述底壁相邻的一侧壁上设有进液 口和出液口,所述进液口和出液口分别与所述液体流道的始端和末端的位置对应;所述进 液口和出液口还与外部的冷却管路连通形成冷却回路,所述冷却回路上设有液体累。
[0012] 如上所述的冰洪淋机,所述冷却回路上还设有热交换器,所述热交换器内设有与 所述冷却管路连通的液体通道。
[0013] 如上所述的冰洪淋机,所述液体冷却器件还包括用于对所述热交换器进行散热的 冷却风扇。
[0014] 如上所述的冰洪淋机,所述热端基板为侣基板,所述侣基板的表面敷设有导热绝 缘层,所述半导体电偶对的热端与导热绝缘层连接。
[0015] 如上所述的冰洪淋机,所述热端基板朝向所述液体冷却基体的表面上设有相互隔 开的至少两个金属片,所述金属片与液体流道的位置对应,且每个金属片沿与其对应的液 体流道的长度方向延伸。
[0016] 如上所述的冰洪淋机,所述热端基板朝向所述液体冷却基体的表面上设有相互隔 开的凸出于该表面上的至少两个金属肋条,所述金属肋条与液体流道的位置对应。
[0017] 如上所述的冰洪淋机,所述液体冷却基体的安装面上还设有密封槽,所述密封槽 内设有密封圈,用于密封所述液体冷却基体与热端基板之间的间隙。
[0018] 本实用新型实施例提供的冰洪淋机中采用半导体制冷组件,通过采用液体冷却基 体与金属基板的热端表面相连,且在液体冷却基体与金属基板之间设有流动的冷却液体, 该流动的冷却液体直接与金属基板接触,能够迅速吸收金属基板的热量,降低金属基板的 溫度,也进一步迅速降低了半导体电偶对热端的溫度。
[0019] 与现有技术中热端基板与散热基板焊接的方式相比,本实用新型实施例所提供的 技术方案中流动的冷却液体直接与金属基板接触,可迅速对金属基板进行散热,一方面金 属基板的热端表面不存在任何如现有技术中焊料或散热基板自身所具有的热阻,另一方面 流动的冷却液体的热容量较大,可大量快速吸收热量,进而能够快速地降低半导体电偶对 热端的溫度,有利于实现大功率制冷。
【附图说明】
[0020] 图1为现有的一种应用于冰洪淋机中的半导体制冷组件的结构示意图;
[0021 ]图2为本实用新型实施例提供的一种冰洪淋机的爆炸视图;
[0022] 图3为本实用新型实施例提供的冰洪淋机中主体制冷部分的爆炸视图;
[0023] 图4为本实用新型实施例提供的半导体制冷组件的爆炸视图;
[0024] 图5为本实用新型实施例提供的半导体制冷组件的结构示意图;
[0025] 图6为图5中A-A截面的剖视图;
[0026] 图7为本实用新型实施例提供的半导体制冷组件的又一结构示意图;
[0027] 图8为本实用新型实施例提供的半导体制冷组件中金属基板的结构示意图;
[0028] 图9为图8中B-B截面的剖视图;
[0029] 图10为本实用新型实施例提供的半导体制冷组件中金属基板的又一结构示意图;
[0030] 图11为图10中C-C截面的剖视图;
[0031] 图12为本实用新型实施例提供的半导体制冷组件中金属基板的另一结构示意图;
[0032] 图13为图12中D-D截面的剖视图。
[0033] 附图标记:
[0034] 11-冷端基板; 12-半导体电偶对; 13-热端基板;
[00:35] 14-冷端电极; 15-热端电极; 16-散热基板;
[0036] 17-翅片; 18-金属基板; 21-液体冷却基体;
[0037] 22-置液槽; 23-隔板; 24-进液口;
[003引 25-出液口; 26-冷却管路; 27-液体累;
[0039] 28-热交换器; 29-冷却风扇; 210-密封槽;
[0040] 211-第二密封圈;31-凹坑; 32-凹槽;
[0041 ] 33-金属肋条; 4-主体制冷部分; 41-壳体;
[0042] 411-散热部; 412-分隔部; 413-封闭部;
[0043] 42-制冷桶; 43-导冷块; 44-紧固带;
[0044] 45-上盖板; 46-第一密封圈; 5-揽拌装置;
[0045] 51-揽拌叶片; 6-底座。
【具体实施方式】
[0046] 本实施例提供一种冰洪淋机,包括:用于盛装冰洪淋制作原料的制冷桶、与制冷桶 贴合设置且用于降低制冷桶溫度的半导体制冷组件、用于对冰洪淋制作原料进行揽拌的揽 拌装置、W及用于对揽拌装置和半导体制冷组件进行供电的供电装置。
[0047] 对于上述冰洪淋机的具体结构,可W采用多种方式来实现。其中,制冷桶和半导体 制冷组件构成冰洪淋机的主体制冷部分。本实施例提供一种冰洪淋机的具体结构,本领域 技术人员可W根据本实施例提供的结构得到其它形式的冰洪淋机。
[0048] 图2为本实用新型实施例提供的一种冰洪淋机的爆炸视图,图3为本实用新型实施 例提供的冰洪淋机中主体制冷部分的爆炸视图。如图2和图3所示,本实施例提供的冰洪淋 机包括:主体制冷部分4、揽拌装置5W及内部设置有供电装置的底座6。
[0049] 其中,主体制冷部分4包括:壳体41,W及设置在壳体41内的制冷桶42、导冷块43、 紧固带44、上盖板45W及半导体制冷组件。制冷桶42内可盛装冰洪淋制作原料。导冷块43的 一侧贴设在制冷桶42的外侧壁,并通过紧固带44固定在制冷桶42上,导冷块43与制冷桶42 接触的表面设置为弧面,且与制冷桶42的侧壁弧度一致,W使导冷块43与制冷桶42能够紧 密配合,提高热量的传导效率。半导体制冷组件的冷端与导冷块43的另一侧贴合设置,则半 导体制冷组件能够通过导冷块43吸收制冷桶42内的热量,促使制冷桶42内的溫度降低。上 盖板45盖设在壳体41的顶部,其上开设有与制冷桶42开口尺寸匹配的通孔。上盖板45上还 可W设置有操控面板和控制器,操控面板上可设置有机械按钮、机械旋钮、触摸按钮、显示 屏或触摸屏。上盖板45与制冷桶42之间还设置有第一密封圈46,用于密封二者之间的间隙, 一方面可避免制冷桶42内的制作原料泄露,另一方面对制冷桶42与上盖板45间可起到一定 的保溫隔热效果。
[0050] 揽拌装置5包括揽拌电机(图中未示出)和揽拌叶片51,揽拌叶片51与揽拌电机的 输出端连接,揽拌叶片51穿过上盖板45上的通孔,进入制冷桶42内,对冰洪淋制作原料进行 揽拌。
[0051] 底座6内设置有变压器,变压器可将交流220V市电转换为半导体制冷组件所需的 电压和揽拌电机所需的电压。底座6上还设置有插座,插座与变压器的输出端电连接。在上 述壳体41的底部对应设有插头,通过插头与插座的插接,一方面实现电连接,另一方面能够 将壳体41固定在底座6上。壳体41上的插头与半导体制冷组件电连接。另外,本实施例中,揽 拌装置设置为可拆卸的,因此,揽拌装置5的电连接方式也可采用插接的方式,即:在壳体41 的顶端设置插座,该插座与壳体41底部的插头为电连接。对应的,在揽拌装置的底部设置插 头,通过将揽拌装置插接在壳体41上,实现电连接。
[0052] 对于上述半导体制冷组件,本实施例提供一种实现方式。图4为本实用新型实施例 提供的半导体制冷组件的爆炸视图,图5为本实用新型实施例提供的半导体制冷组件的结 构示意图,图6为图5中A-A截面的剖视图。如图4至图6所示的半导体制冷组件,包括:半导体 电偶对12、与半导体电偶对12冷端相连的冷端基板11、与半导体电偶12对热端相连的热端 基板、W及液体冷却器件。
[0053] 其中,半导体电偶对(也称为P-N电偶对)12的冷端通过冷端电极14连接至冷端基 板11上,例如可焊接在冷端基板11上。冷端基板11可W为Al2〇3陶瓷基板或侣基板,其面积为 70mm X 50mm。半导体电偶对12的热端通过热端电极15连接至热端基板上,例如通过焊接的 方式连接至热端基板上。
[0054] 热端基板包括金属基板18W及连接在金属基板18与半导体电偶对12之间的导热 绝缘层(图中未示出)。具体的,将金属基板18中朝向半导体电偶对12的表面称为冷端表面, 背离半导体电偶对12的表面称为热端表面。导热绝缘层敷设在金属基板18的冷端表面。半 导体电偶对12的热端通过热端电极15连接至导热绝缘层上,另外,在热端电极15与导热绝 缘层之间还设置有导电层,例如采用铜制成。
[0055] 液体冷却器件包括:与金属基板18相连的液体冷却基体21,该液体冷却基体21朝 向金属基板18的表面称为安装面,该安装面与金属基板18相连,且该安装面上开设置液槽 22,置液槽22与金属基板18之间设有流动的冷却液体,则冷却液体可W与金属基板18直接 接触。冷却液体可W为现有技术中常用的冷却剂,例如水或流动性好的液态化合物等,本实 施例采用去离子水,其比热较大,且不具有任何金属离子,避免对金属基板18产生腐蚀。
[0056] 本实施例提供的冰洪淋机中采用半导体制冷组件,通过采用液体冷却基体与金属 基板的热端表面相连,且在液体冷却基体与金属基板之间设有流动的冷却液体,该流动的 冷却液体直接与金属基板接触,能够迅速吸收金属基板的热量,降低金属基板的溫度,也进 一步迅速降低了半导体电偶对热端的溫度。
[0057] 与现有技术中热端基板与散热基板焊接的方式相比,本实施例所提供的技术方案 中流动的冷却液体直接与金属基板接触,可迅速对金属基板进行散热,一方面金属基板的 热端表面不存在任何如现有技术中焊料或散热基板自身所具有的热阻,另一方面流动的冷 却液体的热容量较大,可大量快速吸收热量,进而能够快速地降低半导体电偶对热端的溫 度,有利于实现大功率制冷。
[0058] 并且,现有技术中,由于散热基板与热端基板的贴合方式属于面-面贴合,因此,当 散热基板或热端基板发生机械变形,即便是微小变形也会导致二者之间的接触热阻增大, 进而降低了热传导效率。而本实施例提供的上述方案中,冷却液体与金属基板的其中一个 表面接触进行换热,该表面为平面,则相当于液体与平面接触换热,则金属基板表面的微小 形变不会增大接触热阻,也就不会影响换热效率,有效克服了现有技术中面-面贴合而造成 接触热阻增大的问题,进一步具备了实现大功率制冷的能力。
[0059] 本领域技术人员可W理解的,在金属基板18与液体冷却基体21之间需采用一定的 密封手段,确保冷却液体不会从金属基板18与液体冷却基体21的连接缝隙中撒漏。例如采 用密封胶粘合、设置密封圈或密封垫等方式。本实施例中,如图2所示,在液体冷却基体21朝 向金属基板18的安装面上设置密封槽210,密封槽210位于置液槽22的边缘,密封槽210内设 置第二密封圈211,用于密封液体冷却基体21和金属基板18之间的间隙。
[0060] 对于上述液体冷却基体的结构,可W有多种实现方式,例如可采用如下的方式:
[0061] 如图4和图6所示,在液体冷却基体21远离金属基板18的底壁内表面设有抵顶在底 壁内表面和金属基板18之间的至少一个隔板23,至少一个隔板23将置液槽22划分为蛇形的 液体流道,冷却液体在液体流道内流动。
[0062] 具体的,冷却液体在蛇形的液体流道内流动可沿设定的方向流动,则冷却液体在 流动过程中,与金属基板18的各个部分均可W充分接触,W充分吸收金属基板18的热量,进 一步提高冷却液体的吸热量。
[0063] 进一步的,对于冷却液体在液体流道内流动的实现方式,也可W有多种实现方式, 本实施例提供一种具体的方式:
[0064] 图7为本实用新型实施例提供的半导体制冷组件的又一结构示意图。如图4、5和图 7所示,在液体冷却基体21上与底壁相邻的一侧壁上设有进液口 24和出液口 25,进液口 24和 出液口 25分别与液体流道的始端和末端的位置对应。并且,进液口 24和出液口 25还与外部 的冷却管路26连通形成冷却回路,冷却回路上设有液体累27,液体累27可采用直流供电或 交流供电。则在液体累27的作用下,冷却液体可W在冷却管路26和液体流道内循环流动。液 体累27可采用离屯、累或潜水累,其流量为(1-5化/min,其流量越大,冷却液体的流动速度越 快,散热效果越好。
[0065] 进一步的,还可W在冷却回路上设置热交换器28,热交换器28内设有与冷却管路 26连通的液体通道,热交换器28上设置有多个散热孔。当冷却液体流经液体冷却基体21内 的液体流道时,吸收金属基板18的热量;当冷却液体流经冷却管路26和热交换器28内的液 体通道时,与外部空气进行热交换,将热量传递给外部空气。热交换器28具体可采用现有技 术中常用的水排散热器,其散热面积可根据半导体电偶对12所需的换热量来设定。
[0066] 为了加强热交换,还可W在热交换器28的散热孔处设置用于对热交换器28进行散 热的冷却风扇29,冷却风扇29的出风方向可W朝向热交换器28,也可W背离热交换器28, W 加快热交换器28周围的空气流动为目的,提高冷却液体与周围空气进行热交换的速度。冷 却风扇29的大小可与散热器的水排面积相匹配,其风量、风压参数的选择可根据半导体电 偶对12所需的换热量和水排散热器的散热量来进行设定。
[0067] 上述液体累27、热交换器28和冷却风扇29均设置在壳体41内。壳体41可分为Ξ个 部分:散热部411、分隔部412和封闭部413,其中,分隔部412与封闭部413连接,将制冷桶42 围设在内部,散热部411与分隔部412或封闭部413连接,将上述液体累27、热交换器28和冷 却风扇29围设在内部,散热部411上还开设有散热孔。
[006引由于金属基板18与冷却液体之间的换热量Q满足Q = hAAT,其中,h为换热系数,A 为换热面积,ΔΤ为金属基板18与冷却液体之间的溫差。因此,若需要提高换热量Q,可W从 两方面着手,一是提高换热系数h,二是增大换热面积A。
[0069] 因此,在上述技术方案的基础上,为了增大冷却液体与金属基板18之间的换热面 积,W提高换热量,本实施例还对金属基板18的结构进行改进,如可采用下面的实现方式:
[0070] 其一,图8为本实用新型实施例提供的半导体制冷组件中金属基板的结构示意图, 图9为图8中B-B截面的剖视图。如图8和图9所示,在金属基板18朝向液体冷却基体21的表面 上(图9中金属基板18的右侧表面)设置凹坑31,凹坑31凹陷于金属基板18的表面,相当于增 大了金属基板18与冷却液体接触的换热面积。凹坑31的数量可W为至少两个,凹坑31布设 在与液体流道对应的位置处,W使冷却液体在液体流道内流动的过程中,能够进入凹坑31 内,与凹坑31的表面接触,与表面为平面的金属基板18相比,增大了冷却液体与金属基板18 的接触面积,相当于增大了换热面积,有利于提高换热量。而且,在金属基板18的上述表面 上设置凹坑31,相当于减小了金属基板18的厚度,减小了传导热阻,也能够提高换热效果。
[0071] 凹坑31的数量、尺寸、形状均可W根据液体流道的数量、宽度和长度进行设定。
[0072] 图10为本实用新型实施例提供的半导体制冷组件中金属基板的又一结构示意图, 图11为图10中C-C截面的剖视图。如图10和图11所示,或者,可W在金属基板18朝向液体冷 却基体21的表面上设置凹槽32,凹槽32的长度方向可W沿液体流道的方向延伸。凹槽32凹 陷于金属基板18的表面,相当于增大了金属基板18与冷却液体接触的换热面积,也能够达 到与上述凹坑31相似的散热效果。
[0073] 其二,在金属基板18朝向液体冷却基体21的表面上设置至少两个金属片,至少两 个金属片相互隔开,且金属片布设在与液体流道对应的位置处。则冷却液体不但能够与金 属基板18的表面接触,还能够与金属片接触。由于金属片的导热能力较强,因此,金属基板 18的热量能够通过金属片进一步快速地传递给冷却液体,提高了换热速度。金属片具体可 采用导热能力较强的金属制成,例如铜、侣。金属片可W采用焊接或嵌入等方式设置在金属 基板18的表面上。
[0074] 该方案与本实施例所提供的上述方案相比,虽然冷却液体与金属基板18接触的面 积减少了,但是由于金属片的导热能力非常好,金属片从金属基板18吸收热量的速度远远 大于冷却液体从金属基板18吸收热量的速度,然后冷却液体再从金属片吸收热量,相当于 提高了上述换热系数h,也就提高了换热量Q。
[0075] 金属片的数量、尺寸、形状均可W根据液体流道的数量、宽度和长度进行设定。金 属片可粘接、焊接或采用现有技术中常用的敷设金属的手段敷设于金属基板18与冷却液体 接触的表面上。
[0076] 其Ξ,图12为本实用新型实施例提供的半导体制冷组件中金属基板的另一结构示 意图,图13为图12中D-D截面的剖视图。如图12和图13所示,在金属基板18朝向液体冷却基 体21的表面上设置至少两个凸出于该表面上的金属肋条33(该金属肋条33的形状可参照现 有技术中翅片的形状),至少两个金属肋条33相互隔开,且金属肋条33布设在与液体流道对 应的位置处。则冷却液体不但能够与金属基板18的表面接触,还能够与金属肋条33接触,而 且金属肋条33高于金属基板18的表面的部分能够伸入液体流道内,增大与冷却液体的接触 面积,相当于增大了上述换热面积A,并且还提高了换热系数h,有利于提高换热量Q。
[0077] 由于金属肋条33的导热能力较强,因此,金属基板18的热量能够通过金属肋条33 进一步快速地传递给冷却液体,提高了换热速度。金属肋条33具体可采用导热能力较强的 金属制成,例如铜、侣。
[0078] 该方案与本实施例所提供的上述方案相比,虽然冷却液体与金属基板18接触的面 积减少了,但是由于金属肋条33的导热能力非常好,金属肋条33从金属基板18吸收热量的 速度远远大于冷却液体从金属基板18吸收热量的速度,然后冷却液体再从金属肋条33吸收 热量,相当于提高了冷却液体从金属基板18整体吸收热量的速度。
[0079] 金属肋条33的数量、尺寸、形状均可W根据液体流道的数量、宽度和长度进行设 定。金属肋条33可粘接、焊接或采用现有技术中常用的连接金属的手段设置于金属基板18 与冷却液体接触的表面上。
[0080] 除上述Ξ种方式之外,本领域技术人员还可W采用其他的方式对金属基板18进行 改进,W提高换热效率。
[0081] 在上述技术方案的基础上,本实施例还提供一种实现方式,能够进一步提高半导 体制冷组件的换热效率。
[0082] 将金属基板18设置为侣基板,侣基板的面积为80mmX 90mm,厚度为1.3mm至1.7mm, 优选为1.5mm。侣基板与液体冷却基体21之间可采用螺接的方式进行连接。在侣基板朝向半 导体电偶对12的冷端表面上敷设导热绝缘层,导热绝缘层可W采用化学及物理方法在侣基 板的表面涂覆而成或采用化学处理而得到的一层非常薄的金属导热且绝缘的材料。并且, 导热绝缘层通过化学等手段与热端电极15接合。因此,热端电极15与导热绝缘层之间的热 阻、W及侣基板自身的热阻相对较小,能够提高热传导效率。
[0083] 则半导体电偶对12在热端电极15上产生的热量可W经过较小热阻的导热绝缘层 直接传导至侣基板,利用侣基板良好的导热、均溫性能,使热量迅速传导至侣基板朝向液体 冷却基体21的热端表面,并被冷却液体吸收,能够成倍提高热量的扩散效率,有利于实现大 功率制冷。
[0084] 本实施例所提供的实现方式与现有技术相比,其各部分热阻的分布参见表一。
[0085] 表一本实施例提供的半导体制冷组件与现有技术中热阻的分布
[0086]
[0087] 其中,R11=R21,R12 = R22,R13 = R23,R14 = R24,R15 = R25。
[0088] 本实施例中采用侣基板作为金属基板18,且在金属基板18上设置导热绝缘层,导 热绝缘层与热端电极15相连,R26+R27远小于R16。并且R28远小于R17+R18,因此,本实施例 中,半导体电偶对12热端的全部热阻之和远远小于现有技术。降低了热阻,相当于提高了换 热效率,有利于实现大功率制冷。
[0089] 本实施例所提供的上述方案,在半导体电偶对12输入功率为120W时,其最大产冷 量可达到60W-70W,能够实现大功率制冷。另外,通过增加半导体电偶对12中P-N点偶的对数 和输入功率,匹配好液体冷却换热部分,还能够进一步增大制冷功率。
[0090] 最后应说明的是:W上各实施例仅用W说明本实用新型的技术方案,而非对其限 审IJ;尽管参照前述各实施例对本实用新型进行了详细的说明,本领域的普通技术人员应当 理解:其依然可W对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部 技术特征进行等同替换;而运些修改或者替换,并不使相应技术方案的本质脱离本实用新 型各实施例技术方案的范围。
【主权项】
1. 一种冰淇淋机,其特征在于,包括:用于盛装冰淇淋制作原料的制冷桶、与制冷桶贴 合设置且用于降低制冷桶温度的半导体制冷组件、用于对所述冰淇淋制作原料进行搅拌的 搅拌装置、以及用于对搅拌装置和半导体制冷组件进行供电的供电装置;其中, 半导体制冷组件包括:半导体电偶对、与半导体电偶对冷端相连的冷端基板、与半导体 电偶对热端相连的热端基板、以及液体冷却器件;所述热端基板包括金属基板、以及连接在 金属基板与半导体电偶对之间的导热绝缘层; 所述液体冷却器件包括:与金属基板相连的液体冷却基体,所述液体冷却基体与金属 基板相连的安装面上开设置液槽,所述置液槽与金属基板之间设有流动的冷却液体。2. 根据权利要求1所述的冰淇淋机,其特征在于,所述液体冷却基体远离金属基板的底 壁内表面设有抵顶在所述底壁内表面和金属基板之间的至少一个隔板,至少一个隔板将置 液槽划分为蛇形的液体流道,所述冷却液体在所述液体流道内流动。3. 根据权利要求2所述的冰淇淋机,其特征在于,所述金属基板朝向所述液体冷却基体 的表面上设有凹坑,所述凹坑的数量为至少两个,至少两个凹坑与液体流道的位置对应。4. 根据权利要求3所述的冰淇淋机,其特征在于,所述液体冷却基体上与所述底壁相邻 的一侧壁上设有进液口和出液口,所述进液口和出液口分别与所述液体流道的始端和末端 的位置对应;所述进液口和出液口还与外部的冷却管路连通形成冷却回路,所述冷却回路 上设有液体栗。5. 根据权利要求4所述的冰淇淋机,其特征在于,所述冷却回路上还设有热交换器,所 述热交换器内设有与所述冷却管路连通的液体通道。6. 根据权利要求5所述的冰淇淋机,其特征在于,所述液体冷却器件还包括用于对所述 热交换器进行散热的冷却风扇。7. 根据权利要求1-6任一项所述的冰淇淋机,其特征在于,所述金属基板为铝基板。8. 根据权利要求2所述的冰淇淋机,其特征在于,所述金属基板朝向所述液体冷却基体 的表面上设有相互隔开的至少两个金属片,所述金属片与液体流道的位置对应,且每个金 属片沿与其对应的液体流道的长度方向延伸。9. 根据权利要求2所述的冰淇淋机,其特征在于,所述金属基板朝向所述液体冷却基体 的表面上设有相互隔开的凸出于该表面上的至少两个金属肋条,所述金属肋条与液体流道 的位置对应。10. 根据权利要求1-6任一项所述的冰淇淋机,其特征在于,所述液体冷却基体的安装 面上还设有密封槽,所述密封槽内设有密封圈,用于密封所述液体冷却基体与金属基板之 间的间隙。
【文档编号】A23G9/04GK205624263SQ201620123040
【公开日】2016年10月12日
【申请日】2016年2月16日
【发明人】高俊岭, 黄翔, 关庆乐, 甘平, 刘康, 刘用生
【申请人】广东富信科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1