电加热发烟系统及挥发性化合物的释放控制方法与流程

文档序号:18455253发布日期:2019-08-17 01:32阅读:162来源:国知局
电加热发烟系统及挥发性化合物的释放控制方法与流程

本发明实施例涉及电加热发烟系统领域,尤其涉及一种电加热发烟系统及挥发性化合物的释放控制方法。



背景技术:

电加热发烟系统是通过对挥发性化合物进行加热,生成可供吸食的气溶胶进行吸食的一类电子烟产品。电加热发烟系统使用中通常需要监测发热部件的实时温度,并根据温度控制发热部件的工作功率,从而保证发热部件的实时温度处于预设的范围。

而目前对于实时温度的监测,通常采用两种方法,一种是设置单独的温度传感器,通过温度传感器采集实时温度信息来实现恒温控制;另一种是菲莫于200980110074.8号专利所提出的电阻率方法,根据加热元件工作时的实时电阻率,从而推导获取实时温度信息,再进行控制。

以上两种实时方式中,利用温度传感器感测温度在结构上增加了产品的硬件成本和装配难度,因而较少被采用。通常采用利用加热元件自身的电阻率变化来获取实时温度,而这一方式实施中电阻率监测通过一标准分压电阻来进行检测;但检测的过程中,电池的输出电压、负载、电流等因素均是处于变化状态的,使得监测变得复杂,并且影响结果的准确性。



技术实现要素:

为了解决现有技术中的电加热发烟系统温度感测和控制的问题,本发明实施例提供一种能更加便捷和准确进行电加热发烟系统中挥发性化合物的释放控制的方法。

本发明提出一种电加热发烟系统中挥发性化合物的释放控制方法,所述电加热发烟系统包括电源、与该电源连接的至少一个用于加热气雾生成基质的加热元件;其中,所述气雾生成基质在加热时释放多种挥发性化合物;所述方法包括:

控制电源提供给所述至少一个加热元件的电能,以防止至少一种挥发性化合物从所述气雾生成基质中释放,所述控制步骤包括:

向所述至少一个加热元件提供一恒定检测电流;

测量所述至少一个加热元件在该检测电流下的电压值;

将所述测量的电压值与预设的电压阈值进行比较;以及,

调整给所述至少一个加热元件供应的电能,使所述至少一个加热元件在所述检测电流下的电压值保持在预设的电压阈值以下。

优选地,控制电源提供给所述至少一个加热元件的电能,防止至少一种挥发性化合物释放步骤之前,还包括:

预先确定所述至少一个加热元件在所述检测电流的电流值下对应的电压阈值。

优选地,预先确定所述至少一个加热元件在所述检测电流的电流值下对应的电压阈值包括:

根据所述至少一个加热元件的预定的最高操作温度值,计算所述至少一个加热元件对应最高操作温度值的电阻值;其中,所述预定的最高操作温度值在挥发性化合物中至少一种的最低释放温度之下;

根据所述至少一个加热元件对应最高操作温度值的电阻值和所述检测电流的电流值,计算在所述检测电流的电流值下对应的电压阈值。

优选地,调整给所述至少一个加热元件供应的电能,使所述至少一个加热元件在所述检测电流下的电压值保持在预设的电压阈值以下的步骤包括:

调整给所述至少一个加热元件供应电能的占空比,以使所述至少一个加热元件在所述检测电流下的电压值保持在预设的电压阈值以下。

优选地,当测量的电压值大于所述电压阈值时,控制电源中断对所述至少一个加热元件的电能供应;当测量的电压值小于或等于所述电压阈值时,控制电源保持对所述至少一个加热元件的电能供应。

优选地,调整给所述至少一个加热元件供应的电能,使所述至少一个加热元件在所述检测电流下的电压值保持在预设的电压阈值以下的步骤包括:

调整电源给所述至少一个加热元件供应电能的电压值大小,以使所述至少一个加热元件在所述检测电流下的电压值保持在预设的电压阈值以下。

优选地,调整电源给所述至少一个加热元件供应电能的电压值大小,使所述至少一个加热元件在所述检测电流下的电压值保持在预设的电压阈值以下的一个范围内,包括:

当所述测量的电压值大于所述范围的上限时,降低给所述至少一个加热元件供应电能的电压;

当所述测量的电压值小于所述范围的下限时,升高给所述至少一个加热元件供应电能的电压。

优选地,控制电源向至少一个加热元件间歇性地提供一恒定检测电流并测量所述至少一个加热元件在该检测电流下的电压值,且该控制步骤以100~1000hz的频率执行。

本发明还提出又一种电加热发烟系统中挥发性化合物的释放控制方法,所述电加热发烟系统包括电源、与该电源连接的至少一个用于加热气雾生成基质的加热元件;其中,所述气雾生成基质在加热时释放多种挥发性化合物;所述方法包括:

保持所述至少一个加热元件的工作电流持续为恒流;

控制电源提供给所述至少一个加热元件的电压,以防止至少一种挥发性化合物从所述气雾生成基质中释放;所述控制步骤包括:

测量所述至少一个加热元件的工作电压值;

将所述测量的工作电压值与预设的电压阈值进行比较;以及,

调整给所述至少一个加热元件供应的电压,以使所述至少一个加热元件的工作电压保持在预设的电压阈值以下。

本发明还提出又一种电加热发烟系统中挥发性化合物的释放控制方法,所述电加热发烟系统包括电源、与该电源连接的至少一个用于加热气雾生成基质的加热元件;其中,所述气雾生成基质在加热时释放多种挥发性化合物;所述方法包括:

控制电源提供给所述至少一个加热元件的电能,以防止至少一种挥发性化合物从所述气雾生成基质中释放,所述控制步骤包括:

在第一时段内控制电源向所述至少一个加热元件提供一恒定电流,并测量所述至少一个加热元件在该检测电流下的电压值;将所述测量的电压值与预设的电压阈值进行比较;以及,

在第二时段内调整电源输出给所述至少一个加热元件的电能,使所述至少一个加热元件在所述检测电流下的电压值保持在预设的电压阈值以下;

所述第一时段内和第二时段内的控制步骤按照一定频率交替执行。

基于以上方法,本发明还提出一种电加热发烟系统,所述电加热发烟系统包括电源、与该电源连接的至少一个用于加热气雾生成基质的加热元件;其中,所述气雾生成基质在加热时释放多种挥发性化合物;所述电加热发烟系统还包括:

恒流检测模块,用于提供恒定电流输出给加热元件,并测量所述加热元件在该恒定电流下两端的电压值;

电能调整模块,用于调整所述电源输出给加热元件的电能;

控制模块,用于将所述测量的电压值与预设电压阈值进行比较,并根据比较结果控制所述电能调整模块调整所述电源输出给加热元件的电能,使所述至少一个加热元件在所述恒定电流下的电压值保持在预设的电压阈值以下。

本发明的以上电加热发烟系统及其控制方法,整个过程均不涉及对温度的检测和换算,而只检测恒流下的电压值、并对应调整输出给加热元件的电能,保持电压值处于阈值,即可实现电加热发烟系统工作状态的良好控制;简化了有限计算资源的控制器的温度求值,并减少了对电流因素的测量和计算,在简化了硬件结构的同时,提升了结果的准确性。

基于另一种控制方式,本发明还提出又一种电加热发烟系统,一种电加热发烟系统,其特征在于,所述电加热发烟系统包括电源、与该电源连接的至少一个用于加热气雾生成基质的加热元件;其中,所述气雾生成基质在加热时释放多种挥发性化合物;所述电加热发烟系统还包括:

检测模块,用于测量所述加热元件的工作状态;

电能调整模块,用于调整所述电源输出给加热元件的电能;

控制模块,用于控制所述检测模块测量所述加热元件的工作状态,并根据所述测量的工作状态控制所述电能调整模块调整电源输出给加热元件的电能;

所述检测模块和电能调节模块被配置为按照一定的频率交替运行。

优选地,所述加热元件的工作状态包括加热元件的工作电压值、工作电流值、实时电阻值、实时电阻率系数或操作温度中的至少一种。

优选地,所述检测模块包括电输入端、信号检测端、受控端和信号输出端;其中,所述电输入端与电源连接,所述信号检测端与发热元件连接,所述受控端和信号输出端均与控制模块连接;

所述电能调节模块包括电能输入端、电能输出端和受控端;其中,所述电能输入端与电源连接,电能输出端与加热元件连接,受控端与控制模块连接。

优选地,所述电加热发烟系统还包括:

第一开关,用于控制所述电源向检测模块供电;所述检测模块的电输入端通过该第一开关与电源连接。

优选地,所述电能调节模块包括第二开关,该第二开关一端与电源连接、另一端与发热元件连接,并通过该第二开关的通断调整所述电源输出给加热元件的电能;所述第二开关被配置为当所述测量的加热元件两端的电压值高于预设电压阈值时断开。

优选地,所述第一开关和第二开关被配置为按照一定的频率交替导通,从而使所述检测模块和电能调节模块按照一定的频率交替运行。

优选地,所述检测模块包括:

恒流转换单元,用于将所述电源的输出电压转换成恒流输出给加热元件;

电压检测单元,用于测量所述加热元件在所述恒流下两端的电压值。

优选地,所述恒流转换单元包括稳压器、第一电阻、第一电容和第二电容;

所述稳压器具有电压输入端、电压输出端和公共连接端,且电压输入端与电源连接;所述第一电阻一端与所述电压输出端连接、另一端与所述公共连接端连接;

所述第一电容一端与电压输入端连接、另一端与所述公共连接端连接;所述第二电容一端与电压输出端连接、另一端与所述公共连接端连接。

优选地,所述电压检测单元包括放大器,该放大器具有受控端、电压检测端和信号输出端;其中,

所述受控端与控制模块连接,所述电压检测端与所述加热元件连接,所述信号输出端与控制模块连接。

优选地,所述电能调整模块包括:

升压单元,用于当所述测量的加热元件两端的电压值低于预设电压阈值范围时,提升所述电源给加热元件的供电电压;

降压单元;用于当所述测量的加热元件两端的电压值高于预设电压阈值范围时,降低所述电源给加热元件的供电电压。

以上电加热发烟系统,采用将检测和电能供应调节的硬件模块分别按照一定的频率交替运行,一方面大大简化了硬件结构,另一方面消除和降低了相互的干扰。

附图说明

一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。

图1是一实施例电加热发烟系统的示意图;

图2是一镍铬合金的加热元件在电流4a时电压随温度变化的曲线图;

图3是一实施例电加热发烟系统中挥发性化合物的释放控制方法的流程示意图;

图4一实施例电加热发烟系统中挥发性化合物的释放控制装置的电路框图;

图5是图4中恒流检测模块的示意图;

图6是图4实施例中电加热发烟系统中挥发性化合物的释放控制装置的电器原理图;

图7是又一实施例电加热发烟系统中挥发性化合物的释放控制装置的电路框图。

具体实施方式

为了便于理解本发明,下面结合附图和具体实施方式,对本发明进行更详细的说明。

本发明提出一种电加热发烟系统中挥发性化合物的释放控制方法;其基于电加热发烟系统,系统结构在一个实施例中可以参见图1所示,包括电源装置10、与电源装置10连接的至少一个加热元件20、以及气雾生成基质30;加热元件20用于对气雾生成基质30进行加热,从而释放多种挥发性化合物,且这些挥发性化合物仅通过加热处理来形成。其中,多种挥发性化合物中每一种都具有最低释放温度,在该最低释放温度之上挥发性化合物被释放。为了便于产品使用,系统还包括有控制器40,用于控制电源装置10输出给加热元件20的电能。

根据本发明的方法,包括选择在一预设电流值下的电压阈值的步骤,在电流值下这种预设的操作电压下能保证加热元件20的操作温度高于多种挥发性化合物中的至少一种的最低释放温度,以便防止它从烟雾形成基质中释放;并且使操作温度处于比较合适的范围内,防止超过一定的高温造成气雾生成基质30糊化、以及挥发性化合物挥发不稳定等等。

本发明的以上预设电流值下的电压阈值的选择,是基于在该电流值下加热元件20的操作电压能体现操作温度。具体,加热元件20工作时两端的电压值v=r×i,r为加热元件20的实际电阻,而i是设定已知的电流值;因而在该电流值下加热元件20两端的电压值v取决于加热元件20的实际电阻r。而该实际电阻r取决于加热元件20的自身的材料和形状构造以及实时温度,并且由以下关系式表示:r=ρ(t)×l/s,以及ρ(t)=ρ0×(1+α1t+α2t2)。而对于已经按照结构形状制造的加热元件20,长度l和截面面积s是固定的并且可以被检测出,参考电阻率ρ0是固定的,而ρ(t)可根据参考电阻率ρ0和与温度t相关的多项式系数α1和α2推算。因而,推导之后即可得到在已知的电流值i时发热元件20两端的电压与温度的关系式为:

v=ρ0×(1+α1t+α2t2)×l×i/s,关系式中的变量只有电压v和温度t。这一关系式,对于选定的加热元件20可以进行测试得出,比如图2为一镍铬合金材质的常温阻值为0.8欧的加热元件20,其采用恒流电流为4a时其电压和温度曲线示例。

进一步,本发明中基于对气雾生成基质在加热时释放挥发性化合物的控制,采用根据选定加热元件20的操作温度在最高操作温度之下来推算以上电压阈值,这里该最高操作温度在挥发性化合物中的至少一种的最低释放温度之下,以便防止其从所述气雾生成基质中释放;因此在吸烟的过程中防止超过该最高操作温度时有害挥发性化合物挥发。同时,需要说明的是对不同品牌或者基质含量的气雾生成基质,这里所需选定的最高操作温度则可能是不相同的,因为不同品牌和含量的气雾生成基质,挥发性化合物的成分可能是不相同的,因此在不同的场景下,预先确定加热元件20预设的电压阈值可以根据不同的最高操作温度对应计算获得。

当然,为使这种相关性的关系能更加准确,加热元件20采用电阻与温度之间具有强相关性的材料,比如、镍铬合金、镍铁合金、铁铬合金;利用强相关性通过恒流工作下加热元件20两端的电压来推导加热元件20的实际操作温度具有更高的准确性和稳定性。

进一步,以上图1所示电加热发烟系统的加热元件20采用的是贯穿气雾生成基质30中心的加热针/加热棒的形式,材质可以优选采用以上所描述的强电阻温度相关性材质制备。而在其他实施方中,材质采用将以上材料沉积于一刚性载体材料之上形成加热元件20,比如镍包覆于一陶瓷基材形成加热元件20。或者在其他的实施方式中,采用以上材质制备的具有纵长形容纳腔的管状加热部件也是同样合适的加热元件。

进一步本发明的控制方法还包括以下步骤:控制电源装置10给至少一个加热元件20供应电能使至少一个加热元件20产生热量,以加热气雾生成基质30,同时防止其中有害挥发性化合物中的至少一种被释放。该控制步骤可以参见图3所示,包括:

s10,向加热元件20的提供检测电流,该检测电流为恒流、且电流值为以上预设的电流值;

s20,测量该检测电流下至少一个加热元件20两端的电压值;

s30,将测量的电压值与预设的电压阈值进行比较;

s40,调整给至少一个加热元件20供应的电能,使至少一个加热元件20在检测电流下的电压值保持在预设的电压阈值以下。

本发明以上通过在加热元件20工作时,用一个恒流电流作为检测电流,提供给加热元件20后对其两端进行电压值检测,并且将该恒流下加热元件20两端的实时电压值与设定的预设电压阈值比对,并通过电能的控制使电压保持在预设电压阈值以下。基于以上预设的电压阈值的描述,其与保证使加热元件20处于所需的工作状态是关联的;因此然后通过调整给至少一个加热元件20供应的电能,使处于检测电流下的电压保持在预设的电压阈值范围内即可实现对加热元件20工作状态的良好控制。并且,从以上方法的步骤和内在机理可以看出,整个控制和检测过程,均不涉及对温度的检测和换算,而只检测恒流下的电压值、并对应调整输出给加热元件20的电能保持电压值处于阈值,即可实现电加热发烟系统工作状态的良好控制。

需要说明的是,本发明预先确定的加热元件的电压阈值,根据对加热元件工作状态的控制需要,在多数情形下该电压阈值可以是确定的点值,则能实现对加热元件20工作状态的更加精准的控制;而在更多的实施中,控制的过程允许有一定的误差或者波动,因此电压阈值可扩展替换为在低于该电压阈值的一个区间范围。

当然,以上基于预设的电压阈值是基于原始设定的一已知电流值而进行的,因此在检测过程中也需要将原始预设的电压阈值选择时的恒流电流相同,因此在步骤s10中使向加热元件20提供的一检测电流的电流值大小为以上设定电压阈值时的电流值。

进一步,为了使以上方法在实施时能够顺畅,本发明图1实施例所示的电加热发烟系统可以通过在控制器40的硬件部分添加一恒流模块41,用于在以上检测步骤s10~s20进行时将电源装置10输出的电压转换成恒流提供给加热元件20。在实施中,当电加热发烟系统中电路结构负载数量和阻值可控的情况下,进一步可以将以上恒流模块41集成于电源装置10上,将电源装置10采用恒流电源进行,使其保持输出给加热元件20的电流为恒流。

或者在另一种优选的实施方式中,基于电加热发烟系统还含有其他与加热元件20串/并联的控制、监测等硬件结构,因此通常基于电子硬件结构的优化选择,在一种实施方式中恒流模块41可以采用一稳流器(ccr)实现,通过该稳流器来提供控制过程中输出检测电流,保证能始终维持电流恒定不变。

进一步,步骤s40中通过对加热元件20供应电能的调整,从而改变加热元件20在检测电流下的两端电压值;而这里电能的调整可以通过两个方式:

一种方式在于通过调整供应电能的占空比,当测量的加热元件20两端电压值低于预设的电压阈值范围时,则提升电能供应的占空比;而当测量的加热元件20两端电压值高于预设的电压阈值范围时,则减低电能供应的占空比。具体占空比的调整可以控制在当测量的电压值大于预设的电压阈值时,控制电源10中断对至少一个加热元件20的电能供应;当测量的电压值小于或等于电压阈值时,控制电源10保持对至少一个加热元件20的电能供应。

在另一种方式在于通过调整供应电能的电压大小,当测量的加热元件20两端电压值低于预设的电压阈值范围时,则采用升压电路等方式提升供应给加热元件20两端的电压;当测量的加热元件20两端电压值高于预设的电压阈值范围时,则降采用降压电路等方式降低供应给加热元件20两端的电压。

根据本发明进行抽吸期间的加热元件20的准确控制,以上控制步骤s10~s20在用户抽吸期间以100~1000hz的频率执行。

基于本发明以上相同的思路,在实施中还提出另一种控制方法步骤,包括:

s10a,保持加热元件20的工作电流为恒流电流;

s20a,测量至少一个加热元件20两端的工作电压值;

s30a,将测量的电压值与预设的电压阈值范围进行比较;

s40a,调整给至少一个加热元件20供应的电能,使至少一个加热元件20在检测电流下的电压值保持在预设的电压阈值范围以下。

在该变形实施方式中,相比以上实施方式,采用用户抽吸电子烟过程中,将加热元件20保持在恒流电流下工作,那么控制过程中不需要切换电路提供检测电流的步骤,而直接测量该工作电流下的电压值进行比对控制即可。实施中,则需要将通过恒流模块41将电源装置10输出的电流转换成恒流之后再输出,使整个控制过程更加便捷。并且,在该控制过程中同样将检测和控制的过程,按照100~1000hz的频率执行。

基于本发明以上电加热发烟系统中挥发性化合物的释放控制方法内容,本发明进一步还提出实现上述方法的电加热发烟系统,在一个实施例中其结构参见图4所示;包括:控制器100、与该控制器100连接的恒流检测模块200和电能调整模块300;其中,

恒流检测模块200,用于将电源装置10的输出电压转换成恒流输出给加热元件20,并测量加热元件20两端的工作电压值;

电能调整模块300,用于调整输出给加热元件20的电能;

控制器100,用于将恒流检测模块200测量的加热元件20两端的工作电压值与预设电压阈值范围进行比较运算,根据运算结果控制电能调整模块300的给加热元件20的输出电能。

基于以上功能的实现,恒流检测模块200和电能调整模块300的详细电路结构参见图5和图6所示;恒流检测模块200包括一恒流转换单元210、以及电压检测单元220;其中,

恒流转换单元210包括一稳压器u1和第一电阻r1,稳压器u1具有输入端、输出端和公共连接端;其中输入端与电源装置10连接、输出端与第一电阻r1的一端连接、公共连接端与第一电阻r1的另一端连接;功能上,电源装置10的输出电压经过稳压器u1调整为恒压之后,再由第一电阻r1转换为恒流输出给加热元件20。

进一步,为了提升恒流转换单元210稳流性能和精确性效果,恒流转换单元210还包括第一电容c1和第二电容c2。其中,

第一电容c1一端与稳压器u1的输入端连接、另一端与稳压器u1的公共连接端连接,从而用于对电源装置10的电压输入进行滤波;第二电容c2一端与稳压器u1的输出端连接、另一端与稳压器u1的公共连接端连接,用于对输出的恒流进行滤波。

电压检测单元220主要包括一放大器u2,该放大器u2具有受控端、检测端和输出端,其中检测端与加热元件20连接、输出端通过一第二电阻r2连接至控制器100,用于将获取的加热元件20的电压值反馈给控制器100进行比较运算。放大器u2的受控端通过第一三极管q1与控制器100的一个控制引脚连接,从而使控制器100通过控制第一三极管q1的通断控制整个电压检测单元220的工作。

电能调整模块300的结构参见图6所示,包括一个第二三极管q2,该第二三极管q2作为开关使用,连接方式为第二三极管q2的发射极与电源装置10连接、基极与控制器100的一个控制引脚连接、集电极与加热元件20连接;控制器100通过控制第二三极管q2的开关来控制给输出给加热元件20的电能。

基于以上各部分的描述,上述电加热发烟系统的整体原理如下:第二三极管q2被控制器100控制作为主电源装置10向加热元件20输出电能的控制开关稳压器u1、第一电阻r1以及放大器u2组成恒流检测模块200,第一三极管q1用作为恒流检测模块200的供电开关。

装置工作时,流程主要按照检测模式和输出模式两个工作过程进行控制,包括:

s1,控制器100关闭第二三极管q2,打开第一三极管q1启动恒流检测模块200,检测加热元件20的ab两端电压值;

s2,控制器100通过获取放大器u2输出端反馈的电压值(即图中io_ad信号),并与存储的预设电压阈值范围进行比较;如果小于电压阈值范围,则输出高电平信号使第二三极管q2导通,使主电源装置10输出给加热元件20供电提升发热温度,同时关闭第一三极管q1;如果大于电压阈值范围,输出低电平信号关闭第二三极管q2,而继续控制恒流检测模块200检测加热元件20的ab两端电压值,直到电压值小于电压阈值范围。

同时,根据本发明以上电路结构的设计,通过控制器100使检测过程与电能调整输出过程是分时复用而非同时进行的,即恒流检测模块200工作时使电源10输出检测电流的过程、以及电能调整模块300工作时调整电源10向加热元件20输出电能的过程,是交替执行而非同时执行;并且根据以上方法优选使检测频率或交替执行的频率按照100~1000hz进行。一方面可以促进简化硬件结构,另一方面可以避免这两个相关的功能模块同时执行时相互干扰。

以上实施方式中,采用是优选的恒流转换单元210即稳流器来使输出给加热元件20的电流为恒流;在其他的实施方式中,还可以在整个电路结构所具有的负载准确控制的情形下,可以将电源装置10采用恒流电源输出,则可以在电路结构上简化恒流转换单元210。

当然,基于以上第一三极管q1和第二三极管q2的开关功能,技术人员实施中可以简单地将其替换为n-mos管进行。

基于以上实施方式的第二三极管q2的开关体现的是最简化的电能调整模块300,通过第二三极管q2的导通或断开的状态来调整电源输出给加热元件20的时间,当测量的电压值高于预设阈值时断开第二三极管q2降低电源10输出给加热元件20的电能,当测量的电压值低于预设阈值时第二三极管q2导通增加电源10输出给加热元件20的电能,从而保证加热元件20的量的电压值保持在预设阈值,从而控制加热元件20的温度。在另一种更加准确的方式中,可以采用电能调整模块300包括升压器和降压器,在恒流下进一步通过提升或者降低加热元件20供电的电压,具体,当测量到的工作电压高于预设电压阈值时,通过降压器降低电源10给加热元件20的供电电压,从而降低其温度;当测量到的工作电压低于预设电压阈值时,通过升压器提升电源10给加热元件20的供电电压,从而升高其温度;从而可以改变加热元件20的加热功率,从而调整其实际操作温度满足在预设的温度阈值内。同时,以上升压器和降压器可以替换为具有相同功能的电路模块或者软件模块。

基于以上电加热发烟系统的硬件设计中,将对加热元件20检测过程和电能调节控制的过程交替执行的思路,本发明实施例还提出又一种控制方法步骤,包括:

s10b,在第一时段内控制电源10向加热元件20的提供检测电流,该检测电流为恒流、且电流值为以上预设的电流值;并测量该检测电流下至少一个加热元件20两端的电压值、以及将测量的电压值与预设的电压阈值进行比较;

s20b,在第二时段内调整电源10输出给至少一个加热元件20的电能,使至少一个加热元件20在检测电流下的电压值保持在预设的电压阈值;

并且,其中以上步骤s10b和步骤s20b中电源10向加热元件20提供检测电流和输出电能的步骤交替执行。

同时,在该交替执行的方式下,本发明实施例还提出又一种控制方法步骤,包括:

s10c,保持加热元件20的工作电流为恒流电流;

s20c,在第一时段内测量至少一个加热元件20两端的工作电压值,并将测量的电压值与预设的电压阈值范围进行比较;

s30c,在第二时段内调整电源10给至少一个加热元件20供应的电压,以使至少一个加热元件20的工作电压保持在预设的电压阈值;

其中步骤s20c的第一时段内的检测过程和和步骤s30c的第二时段内电能调整过程按照以上所描述的频率交替执行。

基于以上电加热发烟系统的硬件的结构中加热元件20整体更多工作状态检测模块和电能供应调整,采用以上按照一定频率交替运行的方式,本发明实施例进一步还提出又一种电加热发烟系统。在硬件结构上与以上实施例不同在于,参见图7所示,包括:

检测模块200a,用于测量所述加热元件20的工作状态;

电能调整模块300a,用于调整电源输出给加热元件的电能;

控制器100a,用于控制检测模块200a测量加热元件20的工作状态,并根据测量的工作状态控制电能调整模块300a调整电源输出给加热元件20的电能;

当然,基于以上实施例的描述和常规的硬件连接方式,检测模块200a包括电输入端、电压检测端、受控端和信号输出端;其中,电输入端与电源连接,电压检测端与发热元件20连接,受控端和信号输出端均与控制模块100a连接;

电能调整模块300a同样也具有电能输入端、电能输出端和受控端;其中,电能输入端与电源连接,电能输出端与加热元件20连接,受控端与控制器100a连接;

其中,这检测模块200a与电能调整模块300a分别在控制器100a的控制下运行执行各自的功能,并且被配置为按照一定的频率交替运行。

并且在以上电压检测的更多的扩展实施中,该实施例中检测模块200a所检测的加热元件20的工作状态可以包括工作电压值、工作电流值、实时电阻值、实时电阻率系数或操作温度中的至少一种。

而同样按照相同的方式,分别对检测模块200a和电能调整模块300a用与第一三极管q1和第二三极管q2相同的开关,分别将第一三极管q1和第二三极管q2按照一定的频率交替导通,进而实现将检测模块200a和电能调整模块300a这两者按照一定的频率交替运行。一方面可以促进简化硬件结构,另一方面可以避免这两个相关的功能模块同时执行时相互干扰。

在本发明以上实施方式的基础上,本发明进一步提出电加热发烟系统。同时,结合产品通常的内容,所采用的气雾生成基质30优选采用加热时从基质中释放的挥发化合物的含烟草的材料;或者也可以是能够加热之后适合于电加热发烟系统的非烟草材料。气雾生成基质30优选采用固体基质,可以包括香草叶、烟叶、均质烟草、膨胀烟草中的一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,固体基质可以包含附加的烟草或非烟草的挥发性香味化合物,以在基质受热时被释放。

或者在其他的实施方式中,气雾生成基质30也可以采用液体基质,将液体基质盛装在一存储腔中,并被吸收到多孔材料中,多孔材料可以由任意适合吸收液体基质的泡沫金属、多孔陶瓷、纤维棉、玻纤、聚丙烯等,液体基质可以在使用之前保留于多孔材料之中。作为优选,采用液体基质时,电加热发烟系统还可以包括能适合于烟油基质的具有至少一个加热元件的雾化器,雾化器具有容纳液体基质的储油腔、以及吸取液体基质并进行加热雾化的雾化组件。

同时,电加热发烟系统的至少一个加热元件20的数量可以根据烟支的长度、出烟量等需求进行适应性采用,并进行适当地布置使得有效地加热气雾生成基质30形成良好的挥发性化合物的释放而加热元件20在图1实施中采用直接插入气雾生成基质30加热的方式,在其他的变化方式中可以通过热量传导的方式加热气雾生成基质30。具体是使加热元件20至少部分地接触气雾生成基质30,或者可以在其上沉积气雾生成基质30的载体;作为备选还可以通过导热元件来将加热元件20的热量传递给气雾生成基质30。

需要说明的是,本发明的说明书及其附图中给出了本发明的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1