体内组织分类方法

文档序号:1125631阅读:241来源:国知局
专利名称:体内组织分类方法
技术领域
本发明涉及体内组织分类方法,其中发射超声波和红外线到活的 组织、尤其是人体或动物体中,并且根据重新出射的光确定组织的局 部光学参数,尤其是吸收能力和反向散射能力,从而可以将组织分类。
背景技术
用于确定活的生物体中异常组织的超声波检查早已经是现有技 术了。通常的应用范围包括乳房诊断,即识别妇女的乳腺癌。恶性组 织、尤其是癌瘤组织与周围健康组织相比的特征在于不同的机械特 性,使得在超声波照射的情况下,界面处的阻抗对比导致声波的反射。 这被用于定位异常组织。但是,仅仅超声波检查还不能确定其是否是 在恶性肿瘤周围发现的组织异常。因此,通常提取肿瘤可能物的样品 来在实验室中进行明确性确定。借助于所提取的样品,不仅可以准确地对组织分类,而且还可以 准确地测量其光学特性。尤其表明,与健康细胞相比,癌细胞显著更强地吸收近红外(NIR)和中红外(MIR)光镨。 本发明人的10311408B3被作为现有技术。人体在大约600到1000nm的波长范围("生物窗,,)内由于亲水 性最小(Wasserbandenminima)而在很大程度上是透明的。也就是 说,光可以很深地渗透到组织中,穿透其或者还返回到被照射表面。 还存在其他MIR镨中的"透明窗",特征在于与其他组织组成部分相 比更小的吸水性,例如5000到7500nm之间,甚至在10到25微米之 间。在所谓的"透明窗,,内,可以为每个单独组织组成部分指定该组织 部分很好地吸收或散射的光波长。由对所提取的肿瘤组织的体外检查已知,某些波长对于癌细胞是特别独特的,例如因为其包含在健康组 织中不存在的某些物质。W094/28795公开了 一种通过组合照射聚焦的超声波和NIR光 来进行体内组织划分。其中,波长范围为600到1500nm的从组织出 射的发射的和/或反向散射的辐射用作测量信号,其在组织使超声波聚 焦偏移期间发生改变。例如通过适当地控制换能器阵列来实现聚焦偏 移,如US5322068中所述。W094/28795特别教导了-待检查组织应该在三维中连续移动聚焦,以便既经过正常组织 又经过异常组织,从而可以借助于与正常组织的"对比,,而对异常组织进行归类; 应该幅度调制地照射聚焦的超声波,以便借助于变化的幅度对 光信号的影响来在机械参数(例如反射时间)方面对组织进行判定;-聚焦位置应该保持在超声波幅度对光学信号的影响最显著的位 置,以便此后改变所照射的NIR光的i脊成分; 根据光学测量信号与语成分的关系确定组织病理学。所提到的所有措施对于对复杂细胞组织的全面生物物理学分析 必然是合适的并且可能是必需的。已知,活的细胞,例如其光写特性 在压力下并且根据温度变化。从而,详尽的变化分析一定是选择方式, 以便考虑所有影响所测量的光学信号的有意义的影响变量。但是,在医学实践中,感兴趣的提问首先非常简单在超声波检 查中所识别的被怀疑组织应该被提取并在实验室中检查、或者这可能 是可避免的。通常,活组织检查虽然对于病人是非常不舒服或者甚至痛苦的, 但是对于治疗医生而言具有很小的花费。根据W094/28795的全面测 量对于医学诊断而言是有缺陷的,因为'仅仅连续移动超声波聚焦(体积〈lmm3)通过至少IOOO倍大 小的3D测量区域就可能非常緩慢并因此很费时间;-相对于通常的超声波反射测量而言,观察细胞机械参数以找到恶性分布区似乎相当费劲,即使其可能允许更准确的映射,但是这对 于医生而言并不是肯定感兴趣的(至少在对癌的早期识别中不感兴趣);*测量光的镨成分的变化要求本身已经是昂贵部件的可调节的光 源和/或镨分析仪,使得所提出的设备可能导致可观的购置费用。除了这些不足之外,W094/28795的设备主要被设计为检测所发 射的光,尽管明确提到了只测量反向散射的光的单侧测量设备。当然, 反向散射的光通常经过多次散射,即其经过从光源到设置在旁边的探 测器的很难预测的路径。因此,返回的光是否具有穿过超声波聚焦也 不是确定无疑的。换言之,对于纯反向散射而言,存在W094/28795 没有解决的问题,即对于光学测量信号的源定位。但是,上面提到的DE10311408B3介绍了这样一种可能性,即非 侵入式地根据特定IR波长的反向散射确定血组分的浓度,其中用于 标记反向散射区域的超声波聚焦被定位在血管内。这样设计分析方 法,即区别从聚焦返回的光与其余反向散射的光,并且只为聚焦区域 确定光学特性。DE10311408B3的设备使用波长一开始就被确定在任 务要求、尤其是测量血氧上的多个IR激光二极管。该设备根据不适 于一般的组织检查,因为其依赖于根据多普勒原理确定合适的聚焦位 置,其中其要求存在足够体积的定向流动的血液。发明内容因此,本发明的任务是如下地改进现有技术,以便提供用于非侵 入式体内组织分类的简化设备。通过具有权利要求1的特征的设备实现该目的。从属权利要求给 出有利实施方式。根据本发明的设备包括超声波装置,其被构造为具有电子控制装 置的换能器阵列,并且可以发射和接收超声波。源可以根据控制选择 性地发射具有基本上平面的、凹面的或凸面的波阵面的超声波,即其 可以尤其发散或聚焦地照射到待检查组织中。其中,聚焦位置是可选6择的,并且可以由控制装置在测量过程中根据外部规定值而改变。此 外,控制装置可以通过在组织内反射的超声波的渡越时间测量确定包 含组织异常的空间目标区域。根据本发明的设备还包括至少一个、但是优选为多个具有紧密镨 分布的光源,尤其优选为激光二极管。光源的数量以及各自主发射波 长的选择应该被设置为可变的,从而推荐模块化构造。但是,可选地 并且一定程度上根据这样的光源的未来价格变化,可以同时在设备上设置很大数量(例如10到20个不同的波长),它们当然必须是可开 关的。其中,基本上可以使用NIR和MIR镨范围内的所有波长,即具 体为波长至少为500nm的非离子化的辐射。当然,在选择用于体内测 量的波长时,可以或会非不加考虑地观察任意微波辐射,尤其是不是 对于每个感兴趣的波长都存在激光器。这里,主要的注意力应该放在 "生物窗"(500到1000nm)上,但是本发明不应该被限制在其上。借 助于生物窗外很远的波长来对特定组织类型分类可能是完全合乎目 的的。此外,根据本发明的设备还包括光探测器,这里尤其有利的是测 量反向散射的光强度的平面的光敏传感器阵列(例如CCD摄象机)。 光探测器被电子过程计算机定期地读取。其中,过程计算机还考虑超 声波控制装置所提供的超声波场的参数,尤其是声频、脉冲能量和重 复率。借助于DE10311408B3中已经公开的算法,隔离在超声波聚焦 区域中反向散射的光在总强度中的分量。在考虑聚焦在组织表面下的深度已知的情况下,可以在计算机中 补偿隔离的光分量在健康组织中典型的散射耗损。在补偿之后,例如 计算超声波聚焦内组织的吸收系数和/或反向散射能力的值,该值同样 可以涉及单个或多个波长。对于组织分类,要求将聚焦位置设置在可识别的组织异常中尽可 能有说服力的位置处。这并不必须以由超声波扫描所定位的区域的重 心与声学阻抗变化一起发生。相反,在存在不健康的变化后的细胞时尤其通过异常的细胞化学(Zellchemie)识别异常,并因此首先识别 光学参数。根据本发明,因此,聚焦位置基于所测量的聚焦中组织的吸收和 /或反向散射而完全自动地改变。其中,聚焦位置不必连续地移动,而 是可以被阶跃地切换。通过比较某聚焦位置处的吸收和/或散射系数与 所述一个或多个原型位置,通过算术地确定然后在下一次测量过程中 超声波控制装置设置的后续位置。算术地选择一 系列聚焦位置除了简单的优化问题之外没有其他 问题。在先前借助于超声波确定的组织异常内寻找一个或多个光波长 的由可测量的吸收和/或散射所推导的特征量的最佳值位置。观察哪些 特征量或者寻找那个最佳值取决于具体的测量任务。有利地,将聚焦中的吸收或散射系数相对于健康组织中的吸收或 散射系数(在测量开始时确定的基准)的偏差作为特征量,并且为其 寻找局部最大值。如果例如先前已经为病人应用了主要到达恶性组织的着色剂,则 首先观察吸收。在这样的情况下,有利地照射该着色剂良好吸收的光 波长。在使用这样的选择性着色剂时,甚至可以不需要确定用于健康 组织的基准。对于其他问题,例如检查脂肪组织,观察反向散射是有 效的。对于每个问题,对要观察的特征量的选择相对是显而易见的,并 且用户知道要寻找的最佳值(例如最大值)也存在于组织中的任意位 置处。此外,可以从要最大化的函数的稳定出发,并且还可以证明猜 想函数的可微分性,从而可以考虑例如梯度降低或任意用于计算一系 列聚焦位置(函数的样本)的其他已知优化算法。这里,用于计算优化的具体算法并不重要。相反,对于本发明重 要的是,基于先前单独被分配给聚焦区域的组织的反向散射的光强度 的相应分量移动超声波聚焦。自动地移动聚焦,直到其在組织中最佳 的有说服力的位置处静止。如果以超声波聚焦第一次确定该位置,则建议为所有可用的IR波长分别确定吸收系数(和/或反向散射系数)。过程计算机首先应该 具有被其用来与测量结构相比较的数据表。该表包含具有相应已知光 学参数的尽可能大量的组织类型,如例如在实验室中测量的那样。由 此,可以直接向测量装置的用户输出组织分类。其中,必须知道根据 当前现有技术提供的数据表基于病理学诊断结果,即测量被提取的在体内环境中在温度、压力、pH值或血组成成分方面可能非常不同的 组织样品。这部分地显著影响光学参数。但是,从以下事实出发因此细胞化学在很大程度上保持不变, 从而一定容限的范围内合理的分类是可能的。要确定的这样的容限的 范围是将来的、也是经验性的工作的目标。但是,现在已经清楚,根 据本发明所获得的光学参数与在病理学样品上所确定的之间的偏差 实际上是不可避免的,并且因此只能够得到关于组织分类的可能性陈 述。这种具体计算以及同样向用户输出的可能性是本发明的一个特别有利的实施方式。与10211403B3不同,尽管基于红外线分析和聚焦的超声波的进 行了对活组织的分类,现在根据确定的光学测量进行超声波聚焦的定 位。例如,测量值(A1, A2, R3, A4,…)数组也可以是这样的参 数,其中Al应该表示波长l的吸收系数,R3表示波长3的反向散射 系数。现在重要的是,首先测量一个固定聚焦位置的光学参数。然后, 过程计算机提出通过US换能器阵列控制的更好的聚焦位置用于优化 测量。第二聚焦位置的实际光学测量值被确定并进入过程计算机的新 的估计。因此,迭代地且自动地确定最有说服力的聚焦位置(不需要逐步 移动通过组织,这非常费时间),并将其应用到分类。根据本申请所描述的方法的根据超声波聚焦的优化定位来对组 织分类要求在光探测器上采集的光学信号允许直接推断当前聚焦位 置上的光学组织参数。尤其对于反向散射的光,基于活组织中光子的多次散射的准确源 定位是不平常的。光学测量信号虽然在那里也被应用于上面提到的用 于物质分析的文献中,但是聚焦定位信任在存在足够强流动的血液的 情况下使用声学多普勒效应。但是,那里没有描述大血管旁任意组织 中的应用。


以下借助于附图更详细地介绍本发明图1示意性地示出了在设备中执行的用于为组织分类确定有说 服力的聚焦位置的过程。
具体实施方式
在根据本发明的设备的优选实施方式中,超声波换能器阵列、多 个光源和一个光敏传感器阵列相邻地设置,并且被集成到可手持的工 具中。优选地,光源和传感器阵列同心地设置在换能器阵列周围。该 工具优选应该被固定在待检查组织(病人皮肤)的表面上,例如通过 按压或医用粘合材料。如图l所示,该工具以组织扫描开始检查,以便借助于阻抗对比 来定位感兴趣的区域。换能器阵列(US)首先发射发散的超声波,并 且由控制装置确定反射信号的渡越时间。该渡越时间被换算为待详细 检查的可能异常组织的坐标。根据该坐标以公知的方式确定各个换能 器单元的控制参数,通过这些参数可以在包含异常组织的目标区域中 生成并在可能的情况下移动超声波聚焦。目标区域的坐标也被传输到 过程处理器,其中过程处理器负责读取光学传感器阵列和计算光学参 数。在确定目标区域之后,镨宽度更小的光、尤其是激光被发射到组 织中,其中同时形成超声波聚焦。在图lb)中,光通过超声波源附近 的光波导(LWL)被引导,其从那里入射到组织中。光源自身并不是 必定要必须被集成在工具中,而是仅仅用于引导光的装置必定要必须被集成在工具中。图lb)还示出了,两个聚焦位置被设置在目标区域外的深度Fl和F2中,以便在那里获取健康组织的光学参数作为基准。 在分类过程开始时记录基准在大多数情况下是必需的,并且总是推荐 的,因为不同病人可能基本上不同,并且甚至对于同一病人也测量结 果也可能与时间有关(例如在不同日子的重复测量)。目标区域中的测量值与正常组织的测量值的偏差在这里限定算 术上要最大化的函数。为此,反向散射的光强度被传感器阵列测量, 被过程计算机划分为已经穿过超声波聚焦或没有穿过超声波聚焦的 分量,并且计算聚焦区域的光学参数。通过控制装置所传输的实际聚 焦位置的坐标,在过程处理器中存在可以被以样本方式扫描的数值函 数。因为这里只寻找函数的最大值,因此可以利用已知的优化算法进 行阶跃扫描。过程计算机将光学测量数据和上述算法直接用于指示控 制装置为下一样本重新定位聚焦。聚焦一到达最强异常的组织中,聚焦位置的迭代就自动结束。有 利的可以是,程序技术地规定另一强制收敛标准,例如在最筒单的情 况下,在确定数量的迭代循环后终端迭代。在图1的具体例子中,两个初始测量位置被设置在深度F1和F2。 测量值例如可以被平均,并且用作正常组织基准值。同样,现在可以 在目标区域的聚焦位置(深度F)确定第三测量值,将其分别与Fl 和F2相比较 初始聚焦位置的选择和数量可以取决于迭代算法,并 因此在这里不应该为认为是对本发明的限制。尤其地,对于某些优化 算法,随机地选择初始样本可能是有利的。图lc)中示意性地示出了可以找回其到光波导的路径的被发射的 IR光子的一些散射路径,其中该散射路径已经分别经过一个聚焦。基 本地,光子可以重新到达LWL,并被引导到探测器。已经由于小的 反向散射强度而偏向于将平面传感器阵列作为光探测器直接防止在 待检查组织上(没有示出),并且记录在所有阵列元素上集合的强度。 传感器阵列应该包括符合以下情况的横向扩展,即返回的光倾向于其 在组织中被散射得越深就越侧向偏移地出射。此外,该经验性已知的关系也可以支持地被用于隔离在超声波聚焦中反向散射的光,因为聚 焦的深度始终是已知的。根据本发明的设备总共完成了两个任务其借助于所实现的优化算法利用超声波和反向散射的IR光来完 全自动地确定对于借助于光学参数的组织分类最有说服力的超声波 聚焦位置。其对事先最优定位的超声波聚焦中的、并且仅仅那里的组织检查 其对于确定的多个IR波长的光学参数,并且通过将其测量值与表格 式的药理学研究发现相比较来对观察的组织进行分类。理想地,已经由于上面所提到的体内组织与提取的组织样品之间 的偏差,除了分类之外,过程计算机还输出其分析的正确概率,以便 支持主治医生确定进一步的措施。本发明的一个有利实施方式在于,如果医生决定选择组织提取和 实验室检查,则个别地存储所测量的参数。于是,实验室结果可以通 过过程计算机的接口 、例如输入程序而与所存储的测量数据一起被输 入,以便逐渐扩展用于分类的数据存在。
权利要求
1.一种利用超声波换能器阵列、用于所述换能器阵列的控制装置、至少一个在500nm之上的波长范围内具有很小谱宽度的光源、至少一个光探测器和用于处理光探测器的测量值的过程计算机来对活的组织进行体内组织分类的方法,其中光探测器只采集从组织反向散射的光,超声波换能器阵列在将聚焦的超声波照射到组织中期间辐射,并且过程计算机隔离超声波聚焦中所散射的光对于光探测器所测量的总光强度的分量,并由此计算超声波聚焦中该组织的光学参数,其特征在于,过程计算机通过以下方式根据所计算的参数推导对于预定的优化标准被优化的特征量,即控制装置按照过程计算机改变组织中超声波聚焦的位置,并且过程计算机将所确定的超声波聚焦最佳位置中的光学参数与所存储的数据表相比较,并且由此对组织进行分类。
2. 根据权利要求l的方法,其特征在于,所述特征量是光学参 数与测量期间所记录的健康组织基准值的偏差。
3. 根据前述权利要求中任一项的方法,其特征在于,预定的优 化标准是所述特征量最大化。
4. 根据前述权利要求中任一项的方法,其特征在于,在测量光 学参数之前执行超声波扫描,其中控制装置记录反射的超声波的渡越 时间,并且要在其中形成超声波聚焦的待分类的组织的区域由此被确 定。
5. 根据前述权利要求中任一项的方法,其特征在于,存储在过 程计算机中的数据表包括组织分类及其由体外测量所得到的光学参 数。
6. 根据权利要求5的方法,其特征在于,过程计算机可选地存 储所测量的光学参数并且具有用户接口,其中可以通过所述用户接口 为所存储的参数分配组织分类,其中所存储的数据表被重新调整。
7. 根据前述权利要求中任一项的方法,其特征在于,过程计算 机在比较光学参数与所存储的数据表时计算并输出分类正确性的概 率。
全文摘要
本发明涉及一种利用具有控制设备的超声换能器阵列、至少一个在500nm之上的波长范围内具有小的谱宽度的光源、至少一个光探测器和用于处理光探测器的测量信号的过程计算机对腰部区域的组织进行分类的方法。根据本发明,光探测器只探测从组织反向散射的光,超声换能器阵列在照射期间将聚焦的超声波射入到组织中,并且过程计算机将超声波聚焦散射光分量与光探测器所测量的总光强度隔离,并且由此为超声波聚焦中的组织计算光学参数,其中过程计算机根据所计算的参数推导针对预先确定的优化标准被优化的特征变量,方法是其这样控制控制设备,即使得根据过程计算机改变组织中超声波聚焦的位置,并且过程计算机将所确定的最优超声波聚焦位置处的光学参数与所存储的数据表相比较,并由此将组织分类。
文档编号A61B5/00GK101247754SQ200680031059
公开日2008年8月20日 申请日期2006年7月7日 优先权日2005年7月19日
发明者V·赫尔曼 申请人:尼尔鲁斯工程股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1