用于分析物感测或经皮给药的皮肤渗透装置的制作方法

文档序号:1143887阅读:224来源:国知局
专利名称:用于分析物感测或经皮给药的皮肤渗透装置的制作方法
技术领域
本发明涉及经皮分析物感测或给药的装置和方法的领域。
相关申请的交叉引用
本申请要求2007年4月27日提交的发明名称为“Device forPermeabilizing Skin for Analyte Sensing or Transdermal Drug Delivery(用于分析物感测或经皮给药的能渗透皮肤的装置)”的US60/914,552的优先权。
背景技术
通常,药物以非常低的速度渗透过皮肤,甚至完全不能渗透皮肤。在该过程中,主要的速度限制步骤是化合物穿过皮肤最外层(被称为角质层)的步骤。角质层是由死细胞构成的薄层,该层用作两侧均不渗透物质的层。角质层主要提供皮肤的屏障功能。早已发现角质层的损失或改变会使许多物质对其的渗透率得到提高;物质可以更容易地扩散进或扩散出皮肤。皮肤的屏障功能对致力于经皮施药或经皮收集体液的药物制造商而言是非常重要的问题。
经由人的皮肤传输和接收的电信号和生物材料也受到角质层阻挡。例如,经由皮肤测量的生物电位和生物电流的信号保真度因角质层的高阻抗而降低。因此,高阻抗对于如下情况构成问题经由皮肤从人的细胞、器官和组织接收理想传输和测量的生物电信号。
角质层的移除降低了皮肤的高阻抗并使得电信号或生物种传输至人的组织以及从人的组织进行接收时的传输和接收效果更好。已经表明电磁能量引起的角质层改变会使得角质层对物质的渗透率提高(参见例如授予Yaegashi的美国专利No.6,315,722、授予Flock等人的美国专利No.6,251,100、授予Marchitto等人的美国专利No.6,056,738、以及授予Waner等人的美国专利No.5,643,252)。作为另一种选择,通常被称为“渗透增强剂”的化合物可以在某些情况下成功地渗透角质层。传统方法需要用砂纸和刷子研磨皮肤、用胶带或化学药品剥离皮肤、利用激光器或热烧蚀法移除角质层、或利用注射针刺穿皮肤。借助这些方法的备皮对于对象来说可能是高可变性的、危险的、痛苦的,并且通常是不方便的。
经由皮肤给药或提取分析物的备皮常规方法需要外部反馈机构来控制备皮的程度。在实践中,需要导电连接介质、返回电极和/或水凝胶贴剂使可控备皮的反馈机构能够运行(参见例如授予Marchitto等人的美国公开No.20060100567、以及授予Marchitto等人的美国公开No.20030204329)。因为返回电极仅在位于具有足够电导率的皮肤位置上时可以提供准确的反馈,所以这种装置和系统的可靠性是可疑的。不幸的是,皮肤的电导率根据多种条件而改变,例如年龄、位置、日照、护肤品的使用、水分含量和周围条件等。
因此,需要一种用于降低皮肤高阻抗的改进系统。
本发明的目的在于提供用于降低皮肤高阻抗的改进系统。
本发明的另一个目的在于提供用于测量皮肤的阻抗的改进方法。
本发明的另一个目的在于提供改进的经皮给药和/或分析物感测系统。


发明内容
本文描述用于增加皮肤渗透率的装置、系统、套件。这些装置、系统、套件可以用于经皮给药和/或分析物提取或测量。可控研磨装置包括(i)手柄件、(ii)磨头、(iii)反馈控制机构、(iv)两个或更多个电极以及(v)电动机。优选地,反馈控制机构是内部反馈控制机构。在该实施例中,磨头包括两个电极,即供电电极和返回电极。在另一个实施例中,反馈控制机构是外部反馈控制机构。在优选的实施例中,装置包括同轴或同心布置的两个电极。在该实施例中,磨头包括供电电极,返回电极位于手柄件的近端。磨头可以由具有能对皮肤进行研磨的表面的任意材料制成。该材料可以是导电的或不导电的。在优选的实施例中,该材料是导电的。可选地,磨头在应用于皮肤之前用润湿流体进行润湿。可控研磨装置可以设置在套件中,该套件包括该可控研磨装置、一个或多个磨头以及可选的润湿流体。在一个实施例中,磨头被润湿流体湿润并且被密封到容器中以将润湿流体保持在磨头内。在另一个实施例中,以独立容器或例如预包装擦拭布等材料来供应润湿流体。增加皮肤渗透率的方法包括将可控研磨装置应用于皮肤表面的一部分一段短时间,例如多至30秒钟。可以将所需的皮肤阻抗或电导率水平设定为预定值,由此可以将经处理位置的所得渗透率设定为预定值。
可选地,可以基于所需的皮肤完整性水平、对象的不适感或应用持续时间来选择皮肤阻抗或电导率的水平。该可控研磨装置包括作为反馈控制机构一部分的反馈电路,该反馈电路基于电导率信息利用合适的算法或信号处理来确定何时到达所需的皮肤渗透率水平。一旦到达所需的渗透率水平,则移除研磨装置并且将给药结构或装置或分析物感测器应用于经处理的位置上。



图1示出使用外部反馈控制机构的示例性可控研磨装置。
图2A和图2B是示出用于内部反馈控制的容纳两个电极的磨头的视图。图2A包括示出与研磨装置相关的磨头的正视图和分解视图,图2B是示出与皮肤表面接触的磨头的侧视图。
图3A-图3D是使用外部反馈控制机构的可控研磨装置的视图。
图3A是可控研磨装置的剖视图,示出穿过皮肤进入装置的电流通路。
图3B和图3C是可控研磨装置的近端的底视平面图,示出同轴或同心布置的两个电极。图3B示出也用作供电电极的磨头。图3C示出在内部插入有导电元件的磨头,其中导电元件用作供电电极。图3D是一次性磨头的近端的剖视图,示出供电电极和提供磨头与电动机轴之间的导电通路的弹簧的接触。
图4是控制皮肤表面区域的研磨以获得所需的渗透率水平的方法的流程图。
图5是在将可控研磨装置应用于皮肤期间皮肤电导率随时间变化(I,以计数(count)为单位)的曲线图。实线是计数(1计数=0.0125μA)随时间(秒)变化的曲线(实线);虚线是电导率曲线随时间(秒)变化的一阶导数(即,ΔI/ΔT(计数/秒))的曲线图;水平点线表示一阶导数的最大值。
图6是示出确定何时终止渗透步骤的方法的流程图。
图7A、图7B和图7C是与图6的流程图中的步骤对应的示意性曲线图。
图8是如下结果的血糖水平(mg/dL)对时间(小时)的曲线图,该结果是对测试对象应用研磨系统来渗透皮肤然后连续地进行经皮葡萄糖监测所获得的。

具体实施例方式 本文所述的装置、系统、套件和方法提供方便、快速、经济、且侵入最小的系统和提高皮肤渗透率的方法。这些装置、系统、套件和方法可以用于经皮给药和/或分析物测量。
I.可控研磨装置 在图1中示出可控研磨装置(10)。该装置包括(i)手柄件(12)、(ii)磨头(20)、(iii)反馈控制机构(30)、(iv)两个或更多个电极(40)、以及(v)电动机(50)。该可控研磨装置可以包括额外的控制器和/或用户接口。
如图1和图3A-图3D所示的装置具有外部反馈控制机构。优选地,反馈控制机构是内部反馈控制机构。在图2A中示出具有内部反馈控制机构的示例性可控研磨装置。
a.磨头 磨头(20)可以是可重复使用的或一次性的。如果磨头是可重复使用的,则该磨头被设计成在每次使用之后进行清洁并重新使用。在优选的实施例中,磨头是一次性的。
一次性磨头可借助任意合适的连接装置安装到手柄件的近端上以及从该近端上移除。
在图3A和图3D中示出一次性磨头的优选实施例。在优选的实施例中,一次性磨头安装到管(24)(优选为塑料管)上。管(24)被插入到塑料杯形件或锥形件(27)的中心空隙内,其中,中心空隙成形为在可控研磨装置启动时允许磨头移动的情况下容纳管(参见图3D)。杯形件或锥形件(27)设计为防止流体与手柄件(12)接触从而将使用后清洁手柄件的需要降至最低或完全消除。在优选的实施例中,杯形件或锥形件(27)的开口(25)与手柄件(12)的近端(14)的外壁(21)的内侧配合(参见图3D)。在优选的实施例中,外壁(21)包括用作返回电极(44)的导电材料。
i.材料 磨头可以由具有能够对皮肤进行研磨的表面的任意材料制成,例如砂纸、粗糙织品、例如典型地由100%医用尼龙制成并具有多层涂层和末道漆的用于整形微晶换肤术的真皮用织物(dermal gradefabrics)、金属丝刷、碳纤维或微针等。该材料可以是导电的或不导电的。例如,容易以低成本获得医用的作为不导电材料的白色氧化铝。该材料能够承受高温,例如典型地存在于制造磨头的大体积粘结/制造所需的任意玻璃化过程中的那些温度。在一些实施例中,比氧化铝软的材料是优选的,从而与氧化铝相比该材料对皮肤的刺激更小。聚合物微珠可以代替氧化铝用作研磨材料。通常聚合物微珠提供与氧化铝相比更软、刺激更小的材料。材料的优选基于待处理的特定个体以及处理目的。因此对于不同个体,可以用不同材料代替以上所列材料。
采用合适的工程设计,还可以采用导电材料作为磨头的研磨材料。合适的导电材料包括但不限于金属、碳、导电聚合物和导电弹性体。
在优选的实施例中,该材料是具有多个孔或孔眼(22A和22B)的导电材料,优选的是金属,最优选的是不锈钢薄板.在图3B中示出该实施例的实例.通过对该材料冲孔以形成直径与待研磨的皮肤区域对应的盘形件来形成磨头.然后将该盘形件成形为拱形结构并安装到管(24)(优选的是塑料管)上. ii.尺寸 磨头可以具有任意合适的厚度和直径。在一个实施例中,将磨粒涂覆到诸如丙烯腈丁二烯苯乙烯(ABS)等塑料片基上,并且研磨涂层的厚度由磨粒的磨料粒度来限定。在优选的实施例中,磨粒的磨料粒度为约120(直径为约0.0044英寸、或约120微米)。典型地,磨料粒度为120或以下,这是因为磨料粒度大于120的颗粒会引起擦伤。
典型地,磨头的厚度在0.5微米至150微米的范围内,优选地在15微米至120微米的范围内。
磨头可以具有任意合适的形状或几何结构。磨头典型地具有圆形形状的横截面区域。磨头的尺寸决定于借助研磨而被渗透化(permeabilized)的区域的尺寸。例如,对于需要待渗透化区域较小的应用场合,磨头的直径大至几微米,例如1微米至25微米。对于需要渗透化区域较大的应用场合,磨头的直径可以大至几英寸,例如0.1英寸至5英寸。
iii.润湿流体 根据磨头材料的导电性,可能需要或不需要润湿流体将磨头润湿而提供通往皮肤的导电通路。润湿流体可以包含任意合适的制剂,例如水、盐、离子或非离子表面活化剂、防腐剂、乙醇、丙三醇、凝胶、和其它类似制剂。可以根据所需的应用场合,将这些制剂的各种混合物配制成具有各种导电水平的润湿流体。本文所用的“高导电流体”或“具有高电导率的流体”指的是电导率为约1000微西/厘米至约100000微西/厘米的流体。本文所用的“具有低电导率的流体”指的是电导率为约0.1微西/厘米至约999微西/厘米的流体。例如,对于外部反馈控制机构,如图1所示,如果磨头由诸如塑料或研磨材料等不导电材料制成,则需要高导电流体提供经由皮肤的导电通路。如果磨头由诸如金属等导电材料制成,则可以使用电导率高或电导率低的润湿流体。作为另一种选择,该系统可能不需要润湿流体,例如如果金属磨头本身的导电性足够高从而能够提供经由经渗透的皮肤的导电通路。在优选的实施例中,外部反馈控制机构使用电导率为500微西/厘米至50000微西/厘米的润湿流体。
对于如图2A和图2B所示的内部反馈控制机构,应该使用具有低电导率的润湿流体。通常应该避免使用具有高电导率的润湿流体,这是因为容易造成短路和非正常的装置功能。如图2A和图2B所示的磨头通常由不导电材料形成。使用该润湿流体能够在皮肤完好无损时提供低电导率基准,然后在用研磨装置渗透皮肤位置时使电导率显著地升高。
优选地,润湿流体包含水、盐、乙醇、丙三醇、非离子表面活化剂、防腐剂、聚乙二醇、和/或它们的混合物。具有高电导率的润湿流体实例为在净化水中包含0.1%-20%(wt/wt)的盐、0%-2%(wt/wt)的离子表面活化剂、0%-20%(wt/wt)的乙醇、以及0%-1%(wt/wt)的防腐剂。具有低电导率的润湿流体实例为在净化水中包含0%-2%(wt/wt)的非离子表面活化剂、0%-50%(wt/wt)的乙醇、以及0%-1%(wt/wt)的防腐剂。
可选的是,润湿流体包含待输送到对象中的例如药物等一种或多种活化剂、诊断剂或预防剂。这种润湿流体在给药应用中是尤其有用的。
在一个实施例中,磨头由不导电材料形成并且润湿流体是电导率低的流体。
iv.电极 磨头(20)典型地容纳第一电极(42)(在本文中还被称为“供电电极),该第一电极与待渗透化的组织上的所关注位置电接触并且与电动机(50)电连通来提供与反馈控制电路的连续性.在一个优选的实施例中,磨头或者容纳用作供电电极的导电元件,或者由用作供电电极的导电材料形成(参见图3D),并且供电电极与弹簧(28)接触以提供从磨头(20)至电动机轴的连续性.虽然图3D示出了磨头还用作供电电极的应用,但是由不导电材料形成并容纳插入到内部的至少一个导电元件的磨头可以采用相同的弹簧构造.在该实施例中,供电电极位于磨头(20)内并位于与磨头的外表面同高的位置上. 如图3D所示的相同弹簧构造可以用于包括内部反馈控制机构的研磨装置,例如如图2A所示的研磨装置。
在包括外部反馈控制机构的研磨装置的一些实施例中,磨头不包括电极。在这些实施例中,第一电极(42)(或供电电极)可以位于定位环(60)内(参见例如图1)。
电极可以由包括例如金属和导电聚合物等在内的任意合适导电材料制成。此外,电极均设计有允许电极与皮肤接触并与反馈控制电路电连通的任意合适形状。
可以使用多个电极来获得更均匀的皮肤渗透率。为了提供准确的电读数,与至少一个电极接触的患者皮肤表面必须经充分地渗透化,即应该从施用电极的位置上移除角质层。
在优选实施例中,磨头(20)设计有内部反馈控制机构。在该实施例中,磨头包括两个电极,这两个电极位于磨头内并位于与磨头的外表面同高的位置上。在该实施例中,磨头包括第一电极或供电电极(42)、以及第二电极或返回电极(44)。电极由包括例如金属和导电聚合物在内的任意合适导电材料制成。为了在本实施例中使内部反馈机构适当地运行,磨头优选地由不导电材料形成。如果将润湿流体应用于磨头,则润湿流体优选地是具有低电导率的流体。
在具有外部反馈控制机构的研磨装置的优选实施例中,研磨装置(10)的近端(14)包括同轴或同心布置的两个电极(参见图3B和图3C)。在该实施例中,研磨装置(10)的近端(14)包括第一电极或供电电极(42)、以及第二电极或返回电极(44)。观看研磨装置的近端(14)的平面图,供电电极位于研磨装置的近端的中心处。供电电极被空气所填充的空间(26)包围,该空间被返回电极(44)包围。图3B示出磨头由导电材料形成并还用作供电电极的实施例。图3C示出磨头由不导电材料形成并将通常采用线材形式的供电电极插入到研磨材料中的实施例。
在同轴或同心布置方式中,第二电极或返回电极(44)位于手柄件的近端(14)的外壁(21)内。观看研磨装置的近端(14)的平面图,返回电极(44)形成装置的外环(参见图3B和图3C)。
在具有外部反馈控制机构的研磨装置的另一个实施例中,第二电极或返回电极(44)与可控研磨装置分离(参见例如图1)。第二电极的位置可以邻近或远离第一电极的位置。
b.反馈控制机构 反馈控制机构(30)包括使用如下部件(i)第一电极(42),其位于将被/正被研磨的皮肤位置(“磨皮位置”)上以定期地或连续地测量磨皮位置上的皮肤电导率;(ii)至少第二电极(44),其可以位于远离磨皮位置的位置上,或可以与磨皮位置相邻,或可以与磨皮位置接触;以及(iii)控制器(32).控制器利用合适的算法对电极(42和44)所提供的电导率信息进行数学分析或信号处理,并计算皮肤电导率的动力学.控制器还控制研磨装置(10). 在将研磨装置应用于皮肤时实时地测量皮肤的电导率的动态变化。基于测量结果来执行信号处理,并且通过执行动态数学分析来控制皮肤的渗透水平。该分析的结果用于控制研磨装置的应用以获得所需的皮肤阻抗水平。所需的皮肤阻抗水平可以设定为预定值。作为另一种选择,可以基于所需的皮肤完整性水平、对象的不适感或应用持续时间来选择皮肤阻抗的水平。
在授予Elstrom等人的美国专利No.6,887,239中描述并在图4-图7中示出可控皮肤渗透的实时算法实例。授予Elstrom等人的美国专利No.6,887,239描述了在皮肤位置经历渗透增强处理时控制皮肤表面的渗透率的普通方法。
图4是控制皮肤表面上的研磨区域来获得所需的渗透率水平的方法的流程图。在步骤108中提及的皮肤渗透装置是本文所述的研磨装置。然而,可以改变可选渗透装置和方法以使用本文所述的可控反馈机构。可选渗透方法包括带剥离、摩擦、砂磨、研磨、激光器烧蚀、射频(RF)烧蚀、化学物、超声波导入(sonophoresis)、离子导入、电穿孔、以及热烧蚀。在步骤102中,使第一电极或供电电极连接成与皮肤的需要渗透的第一区域电接触。
接下来,在步骤104中,使第二电极或返回电极与皮肤的第二区域电接触。皮肤的该第二区域可以位于远离磨皮位置的位置上,或可以与磨皮位置相邻,或者可以位于磨皮位置上。
当两个电极被适当地定位时,在步骤106中,测量出两个电极之间的初始电导率。这可以通过经由电极将电信号施加到皮肤区域上来完成。在一个实施例中,电信号可以具有足够的强度从而可以测量出皮肤的电参数,但也可以具有适当低的强度从而电信号不会对皮肤造成永久性的伤害、或其它损伤效果。在一个实施例中,使用频率在10Hz至100Hz之间的AC电源在供电电极与返回电极之间产生电压差。所供应的电压不应该超过500mV,优选地不超过100mV,否则将会对皮肤造成损伤。还可以适当地限制电流量值。在施加电源之后利用合适的电路测量初始电导率。在另一个实施例中,电阻型感测器在10Hz至100Hz之间的频率上测量皮肤区域的阻抗。在另一个实施例中,可以借助类似或不相同的刺激源利用双频率或多频率AC电源来进行两次或多次测量。在另一个实施例中,使用1kHz电源。也可以使用其它频率的电源。
在步骤108中,将研磨装置应用于皮肤的第一位置上。
在步骤110中,测量两个电极之间的电导率。可以定期地测量、或者可以连续地测量该电导率。使用用于测量初始电导率的相同电极设置来进行监测测量。
在步骤112中,可以对皮肤电导率数据的时间变化进行数学分析和/或信号处理。可以以固定的周期来测量皮肤电导率,例如在渗透处理期间每秒钟一次、或连续地进行测量。
在将电导率数据绘制成曲线之后,曲线图呈现出S形曲线,这可以由下述一般S形曲线方程式(方程式1)来表示 方程式1 其中C是电流;Ci是t=0时的电流;Cf是最终电流;S是灵敏度常数;t*是到达拐点所需的暴露时间;以及t是暴露时间。
图5包括采用电流随时间变化的曲线形式的代表性数据组。图5示出在用研磨装置进行处理时皮肤电导率的时间变化数据。在图5中,在对测试对象进行皮肤渗透处理期间连续地测量电导率(电流计数,实线)。
方程式1的值t*对应于到达拐点(即,曲线斜率改变符号的点)所需的暴露时间并对应于一阶导数的峰值,基于如图4所示的数据,该峰值具有值625。
图6是示出确定何时终止渗透步骤的方法的流程图。图7A、图7B、图7C是与图6的流程图的步骤对应的示意性曲线图。在图6中,在步骤302中,对电导率数据进行A/D转换。这生成了与图7A所示的曲线图类似的曲线图。接下来,在步骤304中,对数字数据进行滤波。如图7B所示,经滤波的数据与图7A的未经滤波的数据相比具有较光滑的曲线。接下来,在步骤306中,计算曲线的斜率。在步骤308中,保存斜率的最大值。如果在后续测量期间所获得的斜率的当前值大于所保存的最大值,则用当前值代替最大值。接下来,在步骤310中,如果斜率不小于或等于最大值,则处理返回到步骤302以等待峰值。如果斜率小于或等于最大值,则在步骤312中处理探测到在图7C中标记为“X”的峰值或拐点,然后,在步骤314中该装置终止将研磨力施加到皮肤上。
在一个实施例中,可以确认峰值探测的有效性。可以提供该附加步骤以保证在步骤312中探测到的“峰值”不仅仅是噪声,而确实是峰值。
在另一些实施例中,即使在拐点(即到达“峰值”)之后也可以继续施加研磨力。在另一个实施例中,施加研磨力直到斜率降低至某值。参考图5,在到达拐点之后,因施加研磨力斜率降低(见虚线)。因此,可以继续施加研磨力直到斜率减少了电导率曲线的一阶导数的最大值的预定百分比,例如50%、或者减少至预定值。如上所述,该确定过程是灵活的并且可以各不相同。类似地,如图5所示,计算电导率曲线的实时一阶导数(图6的步骤306),并且发现最大值为625(步骤308和312)。该曲线的偏移量(即基准)为大约17(ΔI/ΔT)。对于如图5所示的数据,如果将渗透步骤的停止点预设在电导率曲线的一阶导数的最大值的50%,则当一阶导数到达指示皮肤渗透完成的321(针对偏移量进行了校正的数据)时设备自动关闭。可以使用其它的百分比,并且该百分比可以基于包括疼痛阈值和皮肤特征在内的因素。
在另一个实施例中,该停止点设定为预定时间长度。该预定时间长度可以基于到达拐点的时间百分比。例如,一旦达到拐点,则额外继续应用研磨装置一段时间,该段时间为到达拐点需要的时间的50%(参见例如图5)。因此,如果到达拐点需要14秒钟,则额外施加研磨装置7秒钟(在附图中未示出)。可以使用其它的百分比,并且该百分比可以基于包括疼痛阈值和皮肤特征在内的因素。
在另一个实施例中,测量拐点处的电流,然后针对该电流的预定百分比继续施用磨头。例如,如果拐点到达40μA并持续施用该磨头至电流到达拐点处电流的预定百分比(例如拐点处电流的10%),则施用磨头直到电流到达总值44μA。另外,该确定过程是灵活的并且可以各不相同。
参考图4,在步骤114中,计算出对皮肤阻抗(或电导率)变化的动力学进行描述的参数。这些参数包括(除别的以外)皮肤阻抗、皮肤阻抗随时间的变化、初始皮肤阻抗、皮肤阻抗的移动平均数、最大皮肤阻抗、最小皮肤阻抗、皮肤阻抗的任意数学计算、最终皮肤阻抗、拐点时间处的皮肤阻抗、电流计数、最终电流、达到拐点时间的暴露时间等。
在步骤116中,当到达描述皮肤电导率的参数的所需值时,在步骤108中停止应用皮肤渗透装置。
c.电动机 电动机(50)位于手柄件(12)中。磨头(20)与电动机(50)直接或间接地连接,这允许在可控研磨装置启动时电动机例如利用振动或旋转而使磨头移动。
可以使用下述两种主要类型的电动机AC和DC电动机。它们可以是旋转式电动机或线性电动机。
优选地,电动机(50)是旋转DC电动机。在优选实施例中,电动机是旋转电刷式DC电动机,这是因为其实用性并且因为与在构造中利用更昂贵的稀土金属的“无电刷”式电动机相比该电动机相对容易使用标准电源(即,直流电池)。然而,也可以将无电刷电动机用于皮肤渗透装置。
电动机可以产生多种运动形式,例如线性、振动、同心、同轴、和离轴(off-axle)运动。此外,电动机可以具有多种运动速度,例如在0.01-10000rps或Hz的范围内。
d.向磨头提供力的装置 在优选的实施例中,可控研磨装置包括向磨头提供力的一个或多个装置以保证在可控研磨装置启动时磨头保持与皮肤接触。合适的装置包括弹簧(16),该弹簧装载到电动机轴或轴联器上以在磨头与皮肤表面接触时向磨头提供向下(即朝向皮肤表面)力(参见图3A)。
如图3A所示,弹簧(16)在磨头挤压皮肤时收缩。当弹簧收缩时,手柄件(12)的近端(14)朝向皮肤的表面移动,从而使得返回电极(44)接触皮肤。这样,在该位置上,供电电极(42)、磨头(20)和返回电极(44)与皮肤的表面接触。
e.返回电极 如上所述,该研磨装置典型地包括用作返回电极(44)的至少一个第二电极(参见例如图1、图2A、图2B、和图3A-图3D)。对于设计为包括内部反馈控制机构的研磨装置,返回电极位于磨头内(参见图2A和图2B)。然而,如果该研磨装置设计为包括外部反馈控制机构,则返回电极布置在皮肤表面的不同于磨皮位置的位置上(参见图1和图3A-图3C)。返回电极可以布置在远离磨皮位置的位置上(参见例如图1)。可选的是,返回电极可以布置在邻近磨皮位置的皮肤位置上(参见例如图3A-图3C)。如图1所示,返回电极(44)与控制器电接触,并且与第一电极(42)电接触。如图3A所示,返回电极(44)可以与研磨装置成一体。返回电极(44)与控制器电接触,并且与第一电极(42)电接触。
带有位于远离待渗透位置的位置上的返回电极的研磨装置的可靠性是可疑的,这是因为返回电极仅在位于具有足够电导率的皮肤位置上时能提供准确的反馈。因此,在优选的实施例中,返回电极位于磨头上。在该实施例中,返回电极还与待渗透的皮肤接触。
在外部反馈控制机构的优选实施例中,返回电极(44)与第一电极成同轴或同心布置。在该实施例中,第二电极或返回电极(44)位于手柄件的近端(14)的外壁(21)内,并且形成包围供电电极和磨头的外环(参见图3B和图3C)。从研磨装置的中心向外移动,磨头和供电电极被与磨头连接的塑料管(24)包围,塑料管被由空气填充的间隙或空间(26)包围,该间隙被塑料杯形件或锥形件(27)包围,杯形件或锥形件杯被用作返回电极(44)的导电材料包围。
II.分析物感测系统 本文所述的可控研磨装置可以与分析物感测器结合来探测存在于体液中的所关注的一种或多种分析物的含量。可以利用物理力、化学力、生物力、真空压力、电力、渗透力、扩散力、电磁力、超声波力、空化力(cavitation force)、机械力、热力、毛管力、流体在皮肤中的循环、电声力、磁力、磁流体动力、声学力、迁移扩散、光声力、从皮肤上漂洗体液及它们的组合来提取体液。体液可以利用包括如下方法在内的收集方法来收集吸收、吸附、相分离、机械、电气、化学诱导、及它们的组合。分析物的存在可以利用包括如下方法在内的感测方法来感测电化学、光学、声学、生物学、生化酶技术及它们的组合。
例如,在使用可控研磨装置于皮肤位置上获得所需的渗透率水平之后,诸如葡萄糖感测装置等分析物感测器可以布置在经过研磨系统处理的皮肤位置上方。葡萄糖感测器通过经由皮肤连续地接收葡萄糖流量而运行。相应地,该研磨装置提供单位为毫微安(nA)的电信号,利用商用手指刺针血糖仪将该电信号校准为对象的参考血糖(BG)值。下面,在实例中描述可控研磨系统与血糖感测器的结合。
虽然上述实例涉及血糖感测,但是可以使用相同的方法分析其它分析物。分析物可以是存在于例如血液、血浆、血清、或间质液等生物流体中的任意分子、或生物种。待监测的分析物可以是所关注的任意分析物,包括但不限于血糖、乳酸、血液气体(例如二氧化碳、或氧气)、血液pH值、电解液、氨水、蛋白质、生物标志、或存在于生物流体中的任意其它生物种。
III.给药系统 本文所述的可控研磨装置可以与给药结构或装置结合以经皮给药至对象。药物可以是具有任意合适形式的任意合适的治疗、预防、或诊断分子或制剂。药物可以溶解或悬浮在液体、固体、半固体中,或封装并/或分布在微粒或毫微粒、乳剂、脂质体、或脂囊泡之中或之内。药物可以输送到血液、淋巴、间质液、细胞、组织、和/或器官、或它们的任意组合。药物典型地对称地进行输送。
例如,在使用可控研磨装置于皮肤位置上获得所需的渗透率水平之后,诸如包括待施用的药物的药膏、乳剂、凝胶、或药贴等给药结构或装置可以布置在经过研磨系统处理的皮肤位置上方。
可选的是,药物可以包含于施加到磨头上的润湿流体中。在该实施例中,可以在研磨表面的同时施用药物。
IV.套件 用于可控研磨的套件包括上述研磨装置和一个或多个磨头。可选的是,套件包括封装到合适容器中以添加到磨头上的润湿流体。在另一个实施例中,润湿流体预施加到一个或多个磨头上并被封装以保持磨头的湿度。在另一个实施例中,套件包括含有润湿流体的一个或多个预湿润擦拭布。
如果该研磨装置使用一次性磨头,则套件还优选地包括一个或多个一次性塑料杯形件或锥形件(27)。优选地,一次性磨头安装到设计为与手柄件配合和连接的管(24)上。
如果研磨装置设计为包括外部反馈控制机构,则套件还包括一个或多个返回电极。
V.减少皮肤阻抗的方法 A.可控研磨装置 本文所述可控研磨装置可以应用至对象皮肤的表面从而使皮肤阻抗与下述皮肤阻抗相比减少至1/30或以下,即在不进行皮肤渗透处理的情况下在用纯净水进行润湿之后测量的皮肤阻抗。当通过将两个电极布置在距润湿皮肤约1cm的距离内时,在不进行皮肤渗透处理的情况下在用纯净水进行润湿之后测量的典型皮肤阻抗为约300k欧姆或以上。在用可控研磨装置对皮肤的同一区域进行处理之后,阻抗值可以减小至约10k欧姆或以下。
典型地应用磨头多至90秒钟的一段短时间,例如1至30秒钟,优选地为5至25秒钟。可以将所需的皮肤阻抗(或电导率)水平设定在预定值,从而可以将所得到的经处理的位置处的渗透率设定为预定值。可选地,如上所述,可以基于所需的皮肤完整性水平、对象的不适感、或应用时间来选择皮肤阻抗(电导率)水平。
一旦到达了所需的渗透率水平,则移除研磨装置,并且将给药结构或装置、或者分析物感测器应用于经处理的位置上。一旦将给药系统应用于经研磨的皮肤,则可以立即进行给药。以类似的方式,一旦将分析物感测器应用于皮肤,则分析物可以从身体扩散到分析物感测器中。然而,在“准备”期间(即经皮分析物流量达到平衡、感测器消灭皮肤携带分析物以及可能的其它干扰物种、感测器与皮肤位置的物理连接变稳定所需的时间),通常不能获得分析物的准确值。在将分析物感测器应用于准备位置上之后,准备时间典型地持续约1个小时。
在应用研磨装置之后,该位置典型地保持高至24小时可渗透,在一些实施例中,保持高至72小时可渗透。
B.其它渗透装置 其它渗透装置和技术可以代替本文所述的可控研磨装置来使用以获得所需的皮肤渗透率水平。例如,反馈控制机构可以与其它备皮方法结合,例如带剥离、摩擦、砂磨、研磨、激光器烧蚀、射频(RF)烧蚀、化学法、超声波导入、离子导入、电穿孔以及热烧蚀。
实例 实例1两种皮肤渗透方法的比较超声波导入和研磨 在6-对象24-小时研究中,利用与图4所示的相同控制算法将研磨方法的性能与授予Elstrom等人的美国专利No.6,887,239所述的超声波导入方法的性能进行比较。每个对象在胸部或腹部位置上具有一个研磨位置和一个经声波处理的位置。
对于可控研磨系统,将如图1所述的研磨装置应用于患者的皮肤5秒钟至25秒钟,直到到达电导率反馈阈值为止(如之前的部分I.b.反馈控制机构的描述)。
对于可控超声波导入系统,利用Sontra

超声皮肤渗透装置将频率为55kHz的超声波应用于患者皮肤5秒钟至30秒钟。应用超声波直到到达电导率反馈阈值为止(如之前的部分I.b.反馈控制机构的描述)。
葡萄糖感测单元布置在通过可控的研磨或超声波导入来准备的两个对象皮肤位置的每一者上。在研究的过程中,在清醒时期、接近进餐的每小时间隔、或15分钟间隔,取得参考手指刺针血糖(“BG”)样本,并且该样本与感测器的电信号相关。
分析该相关性提供关于装置精确性、一致性、和性能有效长度的信息。
图8是在连续经皮葡萄糖感测之后对感测对象应用研磨系统并渗透皮肤获得的结果的曲线图.表1示出作为进行连续葡萄糖监测的皮肤渗透手段的研磨与声处理直接比较的结果.表1示出基于从6个对象获得的数据的平均值. 表1
利用使用手指刺针的商用血糖仪来测量参考血糖(Ref BG)值。基于在1.2小时和9.1小时处的Ref BG值(在图8中标记为“校准点”),对葡萄糖感测器进行两次校准。感测器葡萄糖读数(预测BG)与参考血糖(Ref BG)的密切接近度指示经皮葡萄糖感测器具有良好的精确度。Ref BG与预测BG之间的24小时平均相对差异绝对值(MARD)是11.9mg/dl。
对于使用可控研磨装置的渗透率,平均24小时MARD是11.7mg/dl,带有31%的信号漂移。对于可控超声波导入系统,平均24小时MARD是13.1mg/dl,带有26%的信号漂移。因此,可控研磨装置提供的追踪(nA与BG的相关性)在如下方面可比得上或在一些情况下优于超声波导入系统即准备时间(一个小时)、精确度(MARD,平均相对差异绝对值,即以mg/dl为单位的感测器预测葡萄糖与参考BG之间的平均相对差异绝对值)、漂移(感测器葡萄糖和参考BG之间的与时间相关的%偏移量)、和基于克拉克误差网格分析法的“A区域”中的数据分布百分比(“%A区域”)。
实例2在应用研磨装置之后降低皮肤阻抗 当用纯净水润湿人体的皮肤时,在将两个电极布置在距经润湿的皮肤的距离为约1cm之内来进行测量的情况下,阻抗值通常为300k欧姆或以上。然而,当利用如图1所示的使用控制算法的可控研磨装置来对同一区域进行处理时,将该可控研磨装置布置在皮肤表面上5至25秒钟并与应用该研磨装置同时地获得阻抗值,该阻抗值显著降低至约10k欧姆或以下。在该研究中,磨头包括涂覆到ABS基底上的白色氧化铝(120粒度)。
除非另外限定,本文所用的所有技术和科学术语的含义与本发明所属领域技术人员通常理解的含义相同。本文所引用的公开文献和引用这些公开的材料特别地通过引用并入本文。
本领域的技术人员将认识到、或者能够在不利用非常规实验的情况下确定本文所述本发明的具体实施例的许多等同内容。这些等同内容旨在由以下权利要求书涵盖。
权利要求
1.一种可控研磨装置,包括手柄件、磨头、反馈控制机构、供电电极、返回电极以及电动机,其中,
所述供电电极位于所述磨头中。
2.根据权利要求1所述的装置,其中,
所述反馈控制机构是内部反馈控制机构。
3.根据权利要求1所述的装置,其中,
所述反馈控制机构是外部反馈控制机构。
4.根据权利要求3所述的装置,其中,
所述返回电极位于所述手柄件的近端,并且所述返回电极包围所述磨头。
5.一种可控研磨装置,包括手柄件、磨头、外部反馈控制机构、供电电极、返回电极、定位环以及电动机,其中,
所述供电电极位于所述定位环中。
6.根据权利要求1至5中任一项所述的装置,其中,
所述磨头包括润湿流体。
7.根据权利要求1和3至5中任一项所述的装置,其中,
所述磨头包括从如下群组中选择的材料,所述群组包括导电材料和不导电材料。
8.根据权利要求7所述的装置,其中,
所述磨头包括导电材料并且所述磨头是供电电极。
9.根据权利要求8所述的装置,其中,
所述导电材料包括孔眼。
10.根据权利要求1至9中任一项所述的装置,其中,
所述磨头是一次性磨头,并且所述装置还包括包围所述磨头的杯形件。
11.根据权利要求5所述的装置,其中,
所述返回电极位于所述手柄件之外。
12.一种降低组织位置的阻抗的方法,包括
将根据权利要求1至10中任一项所述的可控研磨装置应用于所述组织位置;
将所述磨头布置在所述组织位置上;
开启所述电动机;以及
测量所述组织位置的电参数。
13.根据权利要求12所述的方法,其中,
测量所述组织位置的电参数的步骤包括将电流施加在所述供电电极与所述返回电极之间。
14.根据权利要求12所述的方法,其中,
所述电参数从如下群组中选择,所述群组包括电流计数、特定时间段内的电流计数变化、电流计数变化的瞬时速率、组织位置上的阻抗值、特定时间段内组织位置上的阻抗值变化、以及组织位置与参考组织位置之间的阻抗值差。
15.根据权利要求12所述的方法,还包括
分析所述电参数,并基于分析结果控制所述磨头的持续时间、速度或力、或其组合。
16.根据权利要求15所述的方法,其中,
分析步骤包括对所测得的电参数进行处理以获得所述组织位置的电流计数或阻抗值。
17.根据权利要求15所述的方法,其中,
控制步骤包括在经分析的电参数大致等于或超过预定值时关闭所述电动机。
18.根据权利要求12所述的方法,其中,
在将所述磨头应用于所述组织位置期间连续地执行测量所述组织位置的电参数的步骤。
19.根据权利要求17所述的方法,还包括
在停止应用所述磨头之后将分析物感测器或给药结构或装置布置在所述组织位置上。
20.根据权利要求19所述的方法,其中,
所述分析物感测器能够感测从如下群组中选择的分析物,所述群组包括葡萄糖、乳酸、血液气体、血液pH值、电解液、氨水、蛋白质和生物标志。
21.一种降低组织位置的阻抗的套件,所述套件包括根据权利要求1至10中任一项所述的可控研磨装置以及润湿流体。
22.根据权利要求21所述的套件,包括两个或更多个磨头。
全文摘要
本发明公开一种用于增加由测出的皮肤电参数所控制的皮肤渗透率的装置、系统、套件。这些装置、系统、套件可以用于经皮给药和/或分析物提取或测量。可控研磨装置包括(i)手柄件、(ii)磨头(20)、(iii)反馈控制机构、(iv)两个或更多个电极(42、44)以及(v)电动机。优选地,反馈控制机构是内部反馈控制机构。
文档编号A61B18/20GK101707872SQ200880020556
公开日2010年5月12日 申请日期2008年4月25日 优先权日2007年4月27日
发明者荘恒, 祖云·P·亚斯拉法, 詹姆斯·P·赫尔利, 迪巴斯·戈殊, 杰夫·杰斯太尼亚, 史葛·C·嘉乐 申请人:回声治疗有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1