包含具有目的颗粒大小的活性药物试剂的团聚体制剂的制作方法

文档序号:1200685阅读:196来源:国知局
专利名称:包含具有目的颗粒大小的活性药物试剂的团聚体制剂的制作方法
包含具有目的颗粒大小的活性药物试剂的团聚体制剂发明领域
本发明的多个实施方案涉及干粉吸入器(inhaler ),和更具体地,涉及产生预期的细颗 ^MK^^mCfine particle fraction)白勺(agglomerate)。背景
使用干粉吸入器(DPI)、定量吸入器和喷雾器可实现药物至肺的递送。大多数DPI是被动式的,即它们是“呼吸驱动的”装置,其中患者在吸入时提供使粉末呈雾状散开的能量。 为了使药物沉淀在呼吸道中,DPI递送微米级的药物颗粒,其具有约1-5 μ 的气体动力学直径。此大小的颗粒具有大表面积和颗粒间的大量接触点。在这样的系统中主要的颗粒间相互作用是范德华和Columbic相互作用。已证明DPI制剂是有待商榷的,因为微粒化的粉末易于聚集和难以流动,二者导致低雾化效率和药物难以递送。普通类型的DPI包括具有在小包(packet)或胶囊(capsule)中的微粒化颗粒的吸入器,基于载体制剂的DPI或基于团聚体制剂的DPI。在基于载体的系统中,微粒化药物与通常在60至90微米之间的粗糙的赋形剂混合。α -乳糖一水化物是使用最广泛的载体,尽管也研究了替代载体,例如山梨醇、木糖醇和甘露醇。在基于载体的系统中,微粒化的药物粘附在大载体颗粒上。当颗粒被在吸入过程中的气流带走时,药物从载体表面分离并被吸入,而大载体颗粒落在口咽部并被清除。另一种制剂方法是基于团聚体的系统。在此技术中,可使用赋形剂使微粒化的药物成团,如在 PULMICORT TURB0HALER 干粉吸入器(AstraZenecEi, Wilmington, DE)中使用的。可选地,微粒化的药物可与微粒化的赋形剂组合,如在ASMANEX TWISTHALER 干粉吸入器(Schering-Plough, Kenilworth, NJ)中使用的,并如US6503537中(以其整体引入本文)描述的配制成团聚体。在患者吸入的过程中,团聚体和吸入器壁之间的湍流和碰撞使这些团聚体破碎成细小的药物和赋形剂颗粒。基于载体的制剂和基于团聚体的制剂的主要差别是,对基于团聚体的制剂来说, 微粒化的药物和微粒化的赋形剂可被吸入肺深处,而在基于载体的系统中,大载体颗粒不能到达肺,因为它们通常卡在喉咙和肺之前的其他身体区域。因此,基于团聚体的系统具有独特的挑战,因为大部分来自团聚体的粉末被吸入肺。通常,希望吸入最少量的粉末至肺中。因此,希望通过增加制剂可到达肺的靶区域的期望的细颗粒(细颗粒组分含量,fine particle fraction或FPF)提高基于团聚体的制剂的效率,以治疗多种呼吸疾病,例如哮喘和C0PD,并减少需要从DPI吸入的粉末总量。发明概述
令人惊讶地发现了能够控制和增加基于团聚体的DPI系统的细颗粒组分含量的团聚体制剂和方法。具体地发现,随着APA颗粒大小的减少,增加了在基于团聚体的DPI的递送剂量上具有更高细颗粒组分含量的更高效的团聚体制剂。更具体地,利用使用包含较小颗粒大小的原料药(drug substance)制备的团聚体,令人惊讶地得到了更高的细颗粒组分含量。这些结果与文献中已报导的基于载体的DPI制剂的结果(Taki M.,Marriott,Zeng Χ. , Martin G. , An investigation into the influence of particle size, drug-drug and drug-excipient interactions on the aerodynamic deposition of drugs aerosolized from single and combination dry powder inhalers, Respiratory Drug Delivery, 2008, 589-592)趋势相反。例如,在基于载体的系统中,已报导,较小的 APA颗粒导致APA和载体颗粒之间相互作用力的净增加。认为较小的APA颗粒大小使较小的单个APA颗粒在药物递送时更难从载体颗粒上脱离,导致吸入的APA颗粒选择性地具有较大的颗粒大小或是较小颗粒的APA块,和因此导致较低的细颗粒组分含量。因此,先验地, 本领域技术人员不会尝试减少用于制备基于团聚体的制剂的原料药的颗粒大小,因为本领域技术人员认为,这样的颗粒在DPI的驱使下将产生较大的颗粒/块,和不理想地,具有较低的FPF。本发明令人惊讶地发现,在团聚体中使用较小颗粒的APA在DPI的驱使下被排放时,实际上产生了具有较高FPF的颗粒。本发明的多个实施方案提供了包含至少一种活性药物试剂和至少一种赋形剂的团聚体;其中至少约90%的至少一种活性药物试剂具有小于约2Mm的颗粒大小。另外,团聚体可具有至少约50%的具有小于约IMffl的颗粒大小的至少一种活性药物试剂。优选的赋形剂是粘合剂并可为无水乳糖NF。团聚体可具有至少约9 mN,至少约10 mN,至少约13 mN或至少约15 mN的硬度。从干粉吸入器排放的活性药物试剂剂量可具有大于约30%、约50%、 约60%、约70%、约75%或约80%的细颗粒组分含量。可用的至少一种活性药物试剂包括但不限于,抗胆碱能剂、皮质类固醇、长效β激动剂、短效β激动剂、磷酸二酯酶4抑制剂和其两种或多种的组合。本发明的另外的实施方案提供了包含至少一种活性药物试剂和乳糖的团聚体;其中至少约90%的至少一种活性药物试剂具有小于约2Mm的颗粒大小。本发明的其他实施方案包括包含至少一种活性药物试剂和至少一种赋形剂的团聚体;其中至少一种活性药物试剂中的一种具有至少约90%的具有小于约2Mm的颗粒大小的颗粒,和其中第二种活性药物试剂具有约90%的具有不小于约2Mm的颗粒大小的颗粒。本发明的另外的实施方案提供了包含至少一种活性药物试剂和乳糖的团聚体;其中至少约90%的至少一种活性药物试剂具有小于约2Mm的颗粒大小,和其中团聚体具有至少9mN的硬度。本发明的另外的实施方案包括包含干粉吸入器装置和至少一种团聚体的药物产品,所述团聚体包含至少一种活性药物试剂和至少一种赋形剂;其中至少约90%的至少一种活性药物试剂具有小于约2Mm的颗粒大小。至少一种活性药物试剂中的一种具有小于 2Mm的Dv90和至少一种活性药物试剂中的第二种具有大于2Mm的Dv90。团聚体的硬度为至少约9 mN,至少约10 mN,至少约13 mN或至少约15 mN。附图简述


图1.具有不同APA颗粒大小的3个团聚体批次的光学显微镜图;(A)批次1 (ΑΡΑ Dv50= 0.92 Mm), (B)批次 2 (ΑΡΑ Dv50= 1. 19 Mm),和(C)批次 3 (ΑΡΑ Dv50= 2. 30 Mm)。图2.具有不同APA颗粒大小的3个团聚体批次的分散的团聚体显微镜图;(A) 批次 1 (ΑΡΑ Dv50= 0. 92 Mm), (B)批次 2 (ΑΡΑ Dv50= 1. 19 Mm),禾口(C)批次 3 (ΑΡΑ Dv50= 2. 30 Mm)。图3.批次 1 的团聚体的 SEM 图(ΑΡΑ Dv50= 0. 92 Mm)。图4.批次 2 的团聚体的 SEM 图(ΑΡΑ Dv50= 1. 19 Mm)。
图5.批次 3 的团聚体的 SEM 图(ΑΡΑ Dv50= 2. 30 Mm)。图6.随APA颗粒大小而变化的排放剂量(n=10)。图7.随API颗粒大小而变化的从ACI得到的细颗粒组分含量,通过Sympatec测量。图8. —般的基于团聚体的制剂的SEM。发明详述
本发明令人惊讶地发现了能够控制和增加基于团聚体的DPI系统的细颗粒组分含量的团聚体制剂和方法。本发明令人惊讶地发现,随着APA颗粒大小的减少,基于团聚体的DPI的递送剂量的细颗粒组分含量增加。利用使用大小较小的原料药制备的团聚体得到更高的细颗粒组分含量。这些APA颗粒大小的结果与文献中已报导的基于载体的DPI $^0 ^ (Taki Μ. , Marriott, Zeng X. , Martin G. , An investigation into the influence of particle size, drug-drug and drug-excipient interactions on the aerodynamic deposition of drugs aerosolized from single and combination dry powder inhalers, Respiratory Drug Delivery, 2008, 589-592)胃胃才目β。)(寸 — 载体的系统,已报导,较小的APA颗粒导致APA和载体颗粒之间相互作用力的净增加。认为较小颗粒大小的APA颗粒使APA颗粒在药物递送过程中更难从载体颗粒上脱离,导致吸入的颗粒结块,和因此导致较大的颗粒大小和较低的细颗粒组分含量。因此,根据现有技术, 本领域技术人员不会尝试减少用于制备基于团聚体的颗粒的原料药的颗粒大小,因为本领域技术人员认为,这样的颗粒在DPI的驱使下将产生较大的颗粒,和不理想地,具有较低的 FPF0本发明令人惊讶地发现,在团聚体中使用具有较小颗粒的APA在DPI的驱使下实际上产生了具有较高FPF的颗粒。认为此现象可能是由于若干作用因素(例如,颗粒形状、颗粒的表面能、硬度和团聚体的多孔性)。在本发明的多个实施方案中,压痕数据显示,由具有小颗粒大小的APA形成的团聚体产生强度较大的团聚体。本来以为较硬的团聚体将导致较低的细颗粒组分含量,然而,令人惊讶地发现具有较小颗粒大小APA的较硬的团聚体产生较高的细颗粒组分含量。 Dv表示体积直径。DvX是这样的体积直径,X%的对数正态累积大小分布低于此直径。Dv90是这样的体积直径,90%的对数正态累积大小分布低于此直径。Dv50是这样的体积直径,50%的对数正态累积大小分布低于此直径。DvlO是这样的体积直径,10%的对数正态累积大小分布低于此直径。因此,Dv90被定义为表示至少约90%的至少一种活性药物试剂具有小于特定颗粒大小的颗粒大小。因此,Dv50被定义为表示至少约50%的至少一种活性药物试剂具有小于特定颗粒大小的颗粒大小。本发明的多个实施方案提供了可用于DPI的团聚体,其中所述团聚体包括至少一种赋形剂和至少一种活性药物试剂,所述活性药物试剂具有小于约5微米(Mm),小于约4微米,小于约3微米(Mm),小于约2. 5微米(Mm),小于约2微米(Mm),小于约1. 8微米(Mm),小于约1.7微米(Mm),小于约1.5微米(Mm),小于约1.3微米(Mm)或小于约1微米(Mm)的 Dv90o本发明的多个实施方案提供了可用于DPI的团聚体,其中所述团聚体包括至少一种赋形剂和至少一种活性药物试剂,所述活性药物试剂具有小于约2微米(Mm),1. 8微米
5(Mm),小于约1.7微米(Mm),小于约1. 5微米(Mm),小于约1. 3微米(Mm),小于约1. 2微米 (Mm),小于约1. 1微米(Mm),小于约1. 0微米(Mm)或小于约0. 75微米(Mm)的Dv50。基于团聚体颗粒的DPI的另一个要求是团聚体制剂必须足够硬从而在DPI驱使以前不过早分离。团聚体制剂必须足够硬从而当其在DPI的储存室中闲置以及在制造全过程中在产品运输和操作期间抵御外力。根据现有技术,本领域技术人员倾向于认为使用较小颗粒制备的团聚体强度会更大,由于小颗粒相关的较强的力,和因此更难破碎成细颗粒。 这进而期望减少制剂的细颗粒组分含量。这已在基于载体的系统的文献中证实(Taki M., Marriott, Zeng X. , Martin G. , An investigation into the influence of particle size, drug-drug and drug-excipient interactions on the aerodynamic deposition of drugs aerosolized from single and combination dry powder inhalers, Respiratory Drug Delivery, 2008, 589-592)。令人惊讶地,据显示,当使用较小的 APA 颗粒大小配制时,如本发明的多个实施方案中要求保护的团聚体制剂具有更高的细颗粒组分含量。本发明的多个实施方案包括至少一种ΑΡΑ。一些实施方案可能具有2种或3种 ΑΡΑ。通过改变用于产生团聚体的多种APA的颗粒大小,可定制得到的从DPI排放的FPF剂量以适应具体需要。例如,可能希望得到具有30或40% FPF的APA的团聚体制剂,然而可能希望在同一团聚体制剂中得到具有60或70% FPF的第二种ΑΡΑ。通过改变初始APA的颗粒大小,现在有可能得到这种类型的团聚体制剂。在一种团聚体中也可包含具有不同颗粒大小的第三和第四种ΑΡΑ。另外,可改变在一种团聚体中包含赋形剂的颗粒大小以定制希望得到的从DPI排放的FPF。这样的团聚体制剂可用于干粉吸入器系统,例如khering-Plough出售的 TWISTHALER 。可用的赋形剂包括乳糖,例如无水乳糖NF,乳糖一水化物或其组合。若干其他实施方案提供了包含DPI装置和团聚体的给药系统;其中当驱动DPI装置并递送团聚体时,驱动剂量包含至少30%、至少40%、至少50%、至少60%、至少70%、至少 75%或至少80%的细颗粒组分含量。依照本发明的团聚体是小颗粒的结合团。团聚体可包含至少一种第一材料和至少一种赋形剂,例如固体粘合剂。依照本发明的第一材料可为任意材料,只要本发明可广泛地用于产生能自由流动的用于任意应用(包括药物、化妆品、食品和调味品等等)的团聚体。理想地,第一材料是对需要某些治疗过程的患者施用的活性药物试剂或药物。可使用单独的药物团聚体或具有另一种物质的药物团聚体,例如在US6503537中 (将其引入本文)描述的那些团聚体。可使用任意使固体粘合剂和药物活性剂聚集的方法。 可用的聚集方法包括无需过早将固体粘合剂的非晶形含量转化为结晶形式而可实现的方法,和不需要使用另外的粘合剂的方法,可依照本发明实施上述方法。依照本发明的团聚体是小颗粒的结合块。团聚体可包含至少一种第一材料和至少一种固体粘合剂。依照本发明的第一材料可为任意材料,只要实际上本发明可广泛地用于产生能自由流动的用于任意应用(包括药物、化妆品、食品和调味品等等)的团聚体。然而优选地,第一材料是对需要某些治疗过程的患者施用的活性药物试剂或药物。可预防性地施用活性药物试剂作为预防剂或在医学病症过程中施用活性药物试剂作为治疗或疗法。活性药物试剂或药物可为能够以干粉形式被施用至呼吸系统(包括肺) 的材料。例如,可这样施用依照本发明的药物,以使其通过肺被吸收进血流中。然而更优选地,活性药物试剂是粉末状的药物,其可直接和/或局部地有效治疗肺或呼吸系统的某些病症。可用的团聚体包括大小范围在约100至约1500 μ m之间的团聚体。团聚体可具有约300至约1,000 μ m之间的平均大小。可用的团聚体可具有范围从约0. 2至约0. 4 g/ cm3之间或0. 29至约0. 38 g/cm3之间的容积密度。具有紧密的颗粒大小分布是有用的。在此情况下,颗粒大小指团聚体的大小。优选地,不超过约10%的团聚体与平均或靶团聚体大小相比小50%或大50%。例如,对于300 μ m的团聚体,不超过约10%的团聚体比约150 μ 小或比约450 μπι大。US6503537 (将其引入本文)描述了制备团聚体的可用方法。合适的方法包括以约 100 1至约1 :500之间;约100 1至1 :300之间(药物粘合剂);约20 1至约1 :20之间的比例或约1 :3至约1 :10相对固体粘合剂的量的比例混合预选量的一种或多种药物活性剂和微粒化的、包含非晶形含量的干燥固体粘合剂。可用的团聚体可具有范围从约50 mg至约5,000 mg之间,和最优选约200 mg至约 1,500 mg 之间的强度。在可Ukiko Instruments, Inc. Tokyo, Japan 获得的 kiko TMA/SS 120C热机械分析器上测试压碎强度(crush strength),使用可从制造商处获得的程序。应当注意,以这种方式测量的强度受本文描述的颗粒间结晶结合的质量和程度影响。 然而,团聚体的大小也在测量的压碎强度中起作用。通常,与较小的颗粒相比,需要更大的力将较大的团聚体压碎。可使用多种药物活性剂。合适的至少一种活性药物试剂包括但不限于抗胆碱能齐U、皮质类固醇、长效β激动剂、短效β激动剂、磷酸二酯酶IV抑制剂。合适的药物可用于预防或治疗呼吸系统疾病、炎性疾病或阻塞性气道疾病。这样的疾病的实例包括哮喘或慢性阻塞性肺病。合适的抗胆碱能剂包括(R)-3_[2-羟基-2,2_( 二噻吩_2_基)乙酰氧基]-1-1[2-(苯基)乙基]-1-氮杂二环[2.2.2]辛烷、胃长宁、异丙托溴铵、氧托溴铵、硝酸甲基阿托品、硫酸阿托品、异丙托铵、颠茄提取物、东莨菪碱、甲溴东莨菪碱、甲东莨菪碱、 甲溴后马托品、莨菪碱、isopriopramide、奥芬那君、苯扎氯铵、噻托溴铵、GSK202405、上述任一的单独的同分异构体或上述任一的药学上可接受的盐或水化物,或上述2种或多种的组合。合适的皮质类固醇包括糠酸莫米松;二丙酸倍氯米松;布地奈德;氟替卡松;地塞米松;氟尼缩松;去炎松;(22R)-6· α . ,9. α·-二氟-11. β ·,21-二羟基-16. α ·,17. α . -丙基亚甲基二氧基-4-孕烯-3,20- 二酮,替泼尼旦,GSK685698,GSK799943或上述任一的药学上可接受的盐或水化物,或上述2种或多种的组合。合适的长效β激动剂包括carmoterol、indacaterol、TA-2005、沙美特罗、福莫特罗或上述任一的药学上可接受的盐或水化物,或上述2种或多种的组合。合适的短效β激动剂包括沙丁胺醇、硫酸特布他林、双甲苯喘定甲磺酸盐、左旋沙丁胺醇、硫酸异丙喘宁、醋酸吡布特罗或上述任一的药学上可接受的盐或水化物,或上述2种或多种的组合。合适的磷酸二酯酶IV抑制剂包括西洛司特、罗氟司特、tetomilast,l-[[5-(l(S)_氨基乙基)-2-[8-甲氧基-2-(三氟甲基)-5-喹啉基]-4- P恶唑基]羰基]-4(R)_[(环丙基羰基)氨基]-L-脯氨酸,乙酯或上述任一的药学上可接受的盐或水化物,或上述2种或多种的组合。在本发明的某些实施方案中,至少一种活性药物试剂包括皮质类固醇,例如糠酸莫米松。糠酸莫米松是抗炎症的皮质类固醇,具有9,21_ 二氯-11(β),17-二羟基-16 ( α )-甲基孕-1,4- 二烯-3,20- 二酮17- (2糠酸)的化学名。其几乎不溶于水;略溶于甲醇、乙醇和异丙醇;可溶于丙酮和氯仿;和易溶于四氢呋喃。其在辛醇和水之间的分配系数大于5000。莫米松可以多种水化的、结晶的和对映体形式(例如一水化物)存在。这些化合物中的一些可以药理学上可接受的酯、盐、溶剂化物例如水化物,或这些酯或盐的溶剂化物(如果有的话)的形式施用。此术语也意为包含外消旋混合物以及一种或多种光学异构体。依照本发明的药物也可为可吸入的蛋白质或肽,例如胰岛素、干扰素、降钙素、甲状旁腺激素、粒细胞集落刺激因子等等。如本文使用的“药物”可指单个药理学活性实体,或任意两种或多种的组合,可用的作为剂型的组合的实例包括皮质类固醇和激动剂。依照本发明可用的优选的活性药物试剂是糠酸莫米松。为了在肺或上和/或下气道通道中局部有效,希望活性药物试剂以约10 ym或更小的颗粒被递送。见Task Group on Lung Dynamics, Deposition and Retention Models For Internal Dosimetry of the Human Respiratory lr^ct,Health Phys.,12,173, 1966。剂型实际上施用这些治疗上有效大小颗粒的游离颗粒的能力是细颗粒组分含量。细颗粒组分含量因此是在施用过程中以具有小于某个阈值的颗粒大小的药物的游离颗粒被释放的结合的药物颗粒的百分比的量度。可使用Copley Instruments (Nottingham) LTD 制造的多级液体尘埃测定器,使用制造商的方案测量细颗粒组分含量。依照本发明,可接受的细颗粒组分含量是以重量计至少10%的药物,其被制造为可获得具有6. 8 Mm或更小的气体动力学颗粒大小的游离颗粒,所述颗粒大小在60升/分钟的流速下测量。施用的药物量将随着若干因素而变化,这些因素包括但不限于年龄、性别、体重、 患者的病症、药物、疗程、每日剂量数等等。对糠酸莫米松,每个剂量(即每次吸入)递送的药物量通常范围从约 10. 0 μ g 至约 10,000 μ g。优选 25 μ g,50 μ g,75 μ gUOO μ g,125 μ g>150 μ gU75 μ g,200 μ g、250 μ g、300 μ g、400 μ g 和 / 或 500 μ g 的剂量。依照本发明的固体粘合剂可为任意物质,其以与如上所述的活性药物试剂的颗粒大小大概一致的颗粒大小提供,或减少至上述颗粒大小。例如,无水糠酸莫米松USP的团聚体将优选地以具有至少80% ^ 5 μπι和至少95% ^ 10 μπι (通过体积分布测量)的颗粒提供。固体粘合剂,例如无水乳糖,NF将以具有至少60%彡5 μ m,至少90%在10 μ m以下,和至少95% ( 20 μ m的颗粒提供。二者的平均颗粒大小大概相同,并小于10 μπι。合适的固体粘合剂包括多羟基醛、多羟基酮和氨基酸。优选的多羟基醛和多羟基酮是水化的和无水糖类,包括但不限于乳糖、葡萄糖、果糖、半乳糖、海藻糖、蔗糖、麦芽糖、 棉子糖、甘露醇、松三糖、淀粉、木糖醇、甘露醇、肌醇、其衍生物,等等。特别有用的氨基酸是甘氨酸、丙氨酸、.甘氨酸三甲内盐(betaine)和赖氨酸。百分比以重量标准表示,除非上下文明确另外指示。在此说明书或权利要求书中提及的任意特定原料药旨在不仅包含基础药物,而且包含药物的药学上可接受的盐、酯、水化物和其他形式。当提及药物的特定盐或其他形式时,设想可替换为其他盐或形式。实施例材料和方法
在此研究中使用的APA属于一类PDE-4 (磷酸二酯酶4)抑制剂。使用无水乳糖作为制剂中的赋形剂。使用喷磨机微粒化乳糖至接近2 Mm的平均颗粒大小。APA的微粒化
APA 首先通过经过 Quadro 磨机(Quadro Comil Co. , model 197AS)进行 delumping 过程。经过Quadro磨机的材料的一部分用于批量制造(被称为批次3),而剩余的材料(批次1 和2)之后使用喷磨微粒机(Jet Pulverizer Co. , micron master 4英寸)以如表1中概述的不同的加料速度和压力被微粒化,以产生不同的APA颗粒大小。在微粒化后,使用具有 HEL0S 和R0D0S 附件的Sympatec颗粒大小分析器(Sympatec GmbH)测定粉末颗粒大小分布。3个APA批次各自的颗粒大小结果(DvK1,Dv50, Dv9tl)可见表1。表1. APA批次的微粒化条件和对应的颗粒大小数据。
! It :/广I 丨 IJ』丨进 M ii i< W I.....IXm—I.....1 ;!.....1 )I
I jI (psi)!分 i'h! μηιI
I , I 75 I 25 Π^ΤΙΙ ΓΤΤτΓΙ
.........................................2........................................1...............................40................................1................................50................................]—Ι —[— Τ 9—I—2A6—|
丨.........................................3.....................................................................K/A.............................!............................N^A.............................1......... μ .........L3C).........i..............1
I_I_1_1_t_i_I批量制造
以400 g的批量大小制造3个批次,每批包含3批微粒化APA (批次1、2和3)之一和微粒化的无水乳糖。在这些批次中的APA浓度为14.7% Wi在装备增强条(intensifier bar)的2夸脱V-搅拌器壳中将微粒化的乳糖和APA混合在一起以对微粒化粉末(由于粘附、聚集和静电作用不能自由流动)施加高剪切力。在混合后,使用摇动筛粉器将粉末配制为自由流动的团聚体,以产生具有500 Mm平均直径和约0.35 g/ml (3)容积密度的团聚体。 控制工艺参数例如混合时间、摇动筛粉器的筛选大小、团聚时间、固化时间和条件以产生具有预期物理性质的团聚体。将这些团聚体填充进khering-Plough’ s TWISTHALER 装置。团聚体的块状(bulk)物理特征
通过光学显微镜、SEM、压痕和颗粒大小分布评估了块状团聚体的物理特征。拍摄了完整的团聚体和在油性非溶剂中分散的团聚体二者的光学显微照片,以观察表面形态和APA 颗粒性状。在具有斜射照明的立体显微镜下观察了完整的或未分散的团聚体。使用数码相机通过一系列放大(40-100X)捕获照片。在偏振光显微镜下以IOOX的放大倍数观察分散的团聚体。使用压痕技术(CSM Instruments,Needham, ΜΑ)检测了团聚体以定量其硬度。使用2 mm半径的平顶端冲头探针切割团聚体。使用的加载和卸载速率为25. O mN/分钟。将团聚体置于平表面上并用平探针缓慢压碎直到观察到第一“失败”点(在压痕曲线中观察到的第一个力挠度点)。这被用作指示团聚体的硬度。使用装备GRADIS (重力分散)干粉分散器和振动给料器的Sympatec激光衍射颗粒大小分析器测定块状团聚体的颗粒大小分布。质量中值气体动力学直径和排放的剂量一致性对批次1、2和3在吸入器上进行了 Andersen级联分析。共检测了 5个单个吸入器。 组装并检测了由玻璃窄颈、中心DPI吸入器适配器、填充了样品溶剂(10 ml)的预分离器、 7个撞击器阶段(-1至5)和滤器组成的改进的Andersen级联撞击器(ACI)装置,以确保在持续气流下60升/分钟的吸入流速。上面列出的7个盘的截止直径依次分别是8. 6,6. 5、 4. 4、3. 3、2. 0、1. 1和0. 54 μ m。在滤器上收集小于0. 54 μ m的颗粒。在ACI中驱动吸入器2秒。通过HPLC测定在每个阶段上沉淀的APA质量。在流动相成分不变的条件下(isocratic condition)使用由40%乙腈和60%含0. 5%三氟乙酸的水组成的流动相以1 ml/分钟的流速进行HPLC。将柱的温度控制在40° C并通过紫外光在254 nm处通过外标测量法检测。用于此研究的细颗粒组分含量被定义为在6. 5 μπι的颗粒大小以下的颗粒的百分比。共检测了 10个单个吸入器的排放剂量。在由改造的具有定做的玻璃熔块的分离用漏斗和玻璃纤维滤器组成的装置中收集从每个吸入器排放的剂量。每次测试运行收集单个吸入剂量。以60 L/分钟(应用2秒)的气流流速通过依照USP程序建议的流量控制的串联真空管道得到剂量。通过HPLC测定收集的剂量。结果
获得完整的团聚体和在油性非溶剂中分散的团聚体二者的光学显微照片。这些显微照片显示制造出完整的团聚体,APA批次2具有光滑的表面和近似球形的形状(图1Α)。APA批次2中制造的团聚体的形状较不似球形且显示了具有从团聚体表面突出的棒状APA颗粒的区域(图1Β)。最后,APA批次3中制造的团聚体显示包含许多从团聚体突出的棒状结构的团聚体(图1C),并且与其他批次相比似乎被打散。分散的团聚体的偏振光显微照片验证了在批次1中完全微粒化的APA的存在(图2Α),而批次2显示了长度约10-50 μ m的棒状APA 的少量实例(图2B)。批次3展示了大量棒状结构的APA,然而,这些棒的长度为约20-100 μπι(图2C)。在图3-5中展示了在不同放大倍数上的3个批次的团聚体的SEM图。这些图片进一步证实了批次1是分散良好的系统,批次2中存在一些针状APA颗粒,而批次3中有若干针状APA颗粒。显微镜结果显示,最苛刻的APA微粒化条件(批次1)产生了形状更接近球形和大小似乎更一致的团聚体。以随机取向组装的棒状结构通过限制乳糖和APA可能附着的接触点的数目引起附着力的减少,可导致团聚体的易碎性增加。表2.随APA颗粒大小变化的团聚体颗粒大小。
权利要求
1.一种团聚体,其包含至少一种活性药物试剂和至少一种赋形剂;其中至少约90%的所述至少一种活性药物试剂具有小于约2Mm的颗粒大小。
2.权利要求1的团聚体,其中至少约50%的所述至少一种活性药物试剂具有小于约 IMm的颗粒大小。
3.权利要求1的团聚体,其中所述至少一种赋形剂是粘合剂。
4.权利要求1的团聚体,其中所述至少一种赋形剂是无水乳糖NF。
5.权利要求1的团聚体,其中所述团聚体的硬度为至少9mN。
6.权利要求1的团聚体,其中所述团聚体的硬度为至少13mN。
7.权利要求1的团聚体,其中所述活性药物试剂从干粉吸入器排放的剂量具有大于约 50%的细颗粒组分含量。
8.权利要求1的团聚体,其中至少一种活性药物试剂从干粉吸入器排放的剂量具有大于约70%的细颗粒组分含量。
9.权利要求1的团聚体,其中所述至少一种活性药物试剂选自抗胆碱能剂、皮质类固醇、长效β激动剂、短效β激动剂、磷酸二酯酶4抑制剂和其两种或多种的组合。
10.一种团聚体,其包含至少一种活性药物试剂和乳糖;其中至少约90%的所述至少一种活性药物试剂具有小于约2Mm的颗粒大小。
11.一种团聚体,其包含至少一种活性药物试剂和至少一种赋形剂;其中所述至少一种活性药物试剂中的一种具有至少约90%的具有小于约2Mm的颗粒大小的颗粒,和其中第二种活性药物试剂具有约90%的具有不小于约2Mm的颗粒大小的颗粒。
12.—种团聚体,其包含至少一种活性药物试剂和乳糖;其中至少约90%的所述至少一种活性药物试剂具有小于约2Mm的颗粒大小,和其中所述团聚体具有至少9mN的硬度。
13.一种药物产品,其包含干粉吸入器装置和至少一种团聚体,所述团聚体包含至少一种活性药物试剂和至少一种赋形剂;其中至少约90%的所述至少一种活性药物试剂具有小于约2Mm的颗粒大小。
14.权利要求13的药物产品,其中所述至少一种活性药物试剂中的一种具有小于2Mm 的Dv90和至少一种活性药物试剂中的第二种具有大于2Mm的Dv90。
15.权利要求13的团聚体,其中所述团聚体的硬度为至少9mN。
16.权利要求13的团聚体,其中所述团聚体的硬度为至少13mN。
全文摘要
本发明的多个实施方案提供了包含至少一种活性药物试剂和至少一种赋形剂的团聚体;其中至少约90%的至少一种活性药物试剂具有小于约2μm的颗粒大小。
文档编号A61K9/72GK102458380SQ201080027923
公开日2012年5月16日 申请日期2010年4月23日 优先权日2009年4月24日
发明者L. 维利 J., 潘迪 P., P. 查马蒂 S. 申请人:先灵公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1