可控恒流脉冲发生电路的制作方法

文档序号:1021510阅读:306来源:国知局
专利名称:可控恒流脉冲发生电路的制作方法
技术领域
本发明属于医疗仪器技术领域,具体涉及一种脉宽、幅度可调的可控恒流脉冲发生电路,用于术前神经定位和术中神经监测。
背景技术
术前神经刺激可用于定位神经位置,术中神经刺激可用于监测神经状况。外周神经阻滞是很多外 科手术的必须步骤,而准确定位神经丛的位置是阻滞手术成功的关键。传统的外周神经阻滞手术结合解剖图采用盲探法,即依赖医生的经验和患者对异感的反馈来判断注药针尖是否到达合适的位置。若医生的经验不足,这种盲目试探的方法可能会对患者神经造成机械性损伤并带来疼痛;又或者患者处于昏迷状态或不配合时,该方法即无法实施,特别对于肥胖患者,其体表由于堆积大量脂肪导致体表解剖标志不明显,该方法效果即变得非常有限。神经生理监测技术是目前神经外科和脊柱外科领域受到广泛关注的一项新技术,其主要是通过采用特定参数的电脉冲刺激神经,观察神经的各项指标来了解和监控神经的功能状况,临床上用于术中避免神经损伤和预防术后神经功能受损。运动诱发电位(MEP)监测是术中神经监护(Intraoperative Neuromonitoring, 10ΝΜ)系统的重要组成部分,可在不开颅的条件下对皮层运动区施加刺激,实时评估手术中处于危险状态的神经系统功能的完整性,并提示术者采取干预措施使神经损伤消除或减至最小。MEP的实施需要特殊的高压、大电流、短脉冲电刺激器,且输出刺激脉冲的电压、电流、宽度的变化范围大,刺激模式多。参考专利:《神经丛刺激系统及神经丛刺激器》,申请号201120096646.6。

发明内容
基于上述两个背景,即术前神经刺激可用于定位神经位置和术中神经刺激可用于监测神经状况,本发明的目的在于提出一种脉宽、幅度可调的可控恒流脉冲发生电路。本发明提出的可控恒流脉冲发生电路,根据临床需求不同,可选择参数不同的刺激模式,这些参数主要为脉冲强度,即电流幅度、脉冲宽度、脉冲间隔和脉冲个数等。本电路尤其适合于运动诱发电位监测。神经刺激器的关键技术是可控恒流脉冲发生电路的设计。可控一要求输出脉冲幅度可根据设置的参数进行调整;恒流一要求脉冲发放过程中,刺激电流的幅度不受负载阻抗变化的影响。因为要求的电流取值范围大,为满足电流调节精度,采用高压充电电路在储能电容上得到高压,保证在三极管恒流输出控制电路的发射极参考电阻上有足够的压降范围。本发明提出的可控恒流脉冲发生电路,由微控制器、高压充电电路、脉冲幅度控制电路和三极管恒流输出控制电路组成。其中:
所述微控制器,接收外部的控制指令,设置脉冲幅度、宽度、间隔、个数等参数,根据指令控制相应硬件电路动作,按参数要求发放脉冲,同时对高压充电电路和脉冲幅度控制电路进行充电控制和反馈检测,保证硬件电路正常工作;
所述高压充电电路,将外供低压直流电源升至所需高电压并对其中的储能电容充电,该高压送入三极管恒流输出控制电路作为电源电压;
所述脉冲幅度控制电路,利用外供低压直流电源对其中的控制电容快速充电至设定电压值,该可控电压送入三极管恒流输出控制电路作为控制电压;
所述三极管恒流输出控制电路,由三极管基极通过总开关管从脉冲幅度控制电路中取出所设定电压值,利用三极管发射极和基极的压差恒定原理,实现对发射极参考电阻的恒压控制,参考电阻取固定阻值,即可实现对集电极负载的恒流控制。脉冲幅度是由微控制器通过数-模转换的输出电压V_DAC控制,脉冲宽度、间隔和个数的控制是由微控制器通过输出信号Ctrl3控制总开关管的导通时间 、截止时间和导通次数实现。本发明中,采用反激式开关电源构成高压充电电路以获得所需高压,并对较大容值的储能电容充电。采用反激式开关电源构成脉冲幅度控制电路,并对较小容值的控制电容进行快速充电至设定的电压值,该设定电压由微控制器的数-模转换输出电压值决定,从而实现脉冲幅度可控。反激式开关电源可采用专利ZL 200720074627.7所述的电路。反激式开关电源具有结构简单、成本低、体积小、效率高等优点。本发明所用的两个反激式开关电源电路都是对电容进行充电,不同之处在于,高压充电电路采用较大容值的储能电容存储能量,且电压维持恒定;脉冲幅度控制电路采用较小容值的控制电容快速充电,该电容存储能量小,且电压值可控。由电容放电公式Ut=U0Xe^t/EXC (其中Ut为电容当前电压,Utl为电容初始电压)可知,当前电压Ut相对于初始电压Utl的衰减由放电时间t、放电阻抗R和储能电容容值C决定。当放电时间t的最大值、放电阻抗R的最小值确定时,可根据所要求的误差(Ut相对于U0的衰减)选择合适的电容容值。在t和R —定的情况下,电容容值越大,Ut相对于U0的衰减越小,即输出脉冲幅度的误差越小。但储能电容的容值越大,其充电时间就越长,电容的体积也越大。故应该根据所设定的误差范围和充电时间要求选择合适的电容容值。在本发明中,负载电流最大将达到安培数量级。在耐高压三极管领域,三极管的电流放大倍数β大多为10左右,由脉冲幅度控制电路提供的旁路电流将不足以驱动该三极管正常工作。故所述三极管恒流输出控制电路采用多级三极管复合成的达林顿管形式,且工作于射极跟随模式。实施方式中采用了两级三极管复合成达林顿管的形式,考虑脉冲幅度控制电路最大输出电流极小,故可以复合更多级的三极管,每增加一级三极管,基极电流的驱动能力将增加一个数量级。同时,单个三极管基极与发射极的压差在硅管一般为0.7V,多级三极管的压差随复合三极管数目的增加成正比例增长。相应地,为补偿该压差,可通过软件控制微调微控制器的数-模输出电压V_DAC,从而调整脉冲幅度控制电路的输出电压进行补偿。复合三极管的级数将依据脉冲幅度控制电路输出功率和三极管的电流放大倍数β共同权衡决定。


图1是电路总框图。图2是高压充电电路图。
图3是脉冲幅度控制电路图。图4是三极管恒流输出控制电路图。
具体实施例方式本发明提供的可控恒流脉冲发生电路,可用于术前神经定位和术中神经监测。在本具体实施例中,负载阻抗不超过3kQ ;最大输出脉冲电流不超过IOOmA ;输出脉冲电流误差不超过±10% ;脉冲宽度
50-1 ΟΟΟμ^ ;脉冲间隔50~100叫;脉冲个数I 10。
具体实施方式
如下:
图1所示为本发明的电路总框图。微控制器接收外部控制指令,设置脉冲幅度、宽度、间隔、个数等参数;微控制器根据接收到的指令控制相应硬件电路动作,按参数要求发放脉冲;同时对高压充电电路和脉冲幅度控制电路进行充电控制和反馈检测,保证硬件电路正常工作。高压充电电路将低压直流电源升压,并对储能电容Cl充电至高压,该高压Vl送入三极管恒流控制电路作为电源电压。脉冲幅度控制电路根据设置的脉冲幅度,利用低压直流电源对小容值的控制电容C2快速充电至相应的电压值,该可控电压V2送入三极管控制电路作为控制电压。三极管恒流输出控制电路利用三极管发射极和基极的恒定压差实现对发射极参考电阻的恒压控制,参考电阻取为固定阻值,即可实现对集电极负载的恒流控制。本具体实施中取低压直流电源为12V的电压源;储能电容上电压Vl取为1300V ;考虑负载阻抗不超过3kQ ,最大输出电流不超过100mA,负载上最大压降为300V,取参考电阻为IOkQ ,可设控制电容上电压V2的取值范围为0~1000V。上述取值忽略了三极管恒流输出控制电路中三极管基极和发射极0.7V的恒定压降。

图2所示为本发明的高压充电电路图。所述高压充电充电电路由直流电源DC、开关管Q1、变压器Tl、二极管D1、储能电容Cl连接组成,电阻Rl为后级电路的等效阻抗。其中变压器Tl初级的一端(同名端)接直流电源的正极,另一端接开关管Ql的漏极;开关管Ql的源极接直流电源的负极并接实地GND ;开关管Ql的栅极接来自微控制器的控制信号Ctrll0变压器Tl次级的同名端接接储能电容Cl的负极并接浮地FGND,另一端接二极管Dl的正极;二极管Dl的负极接储能电容Cl的正极。后级电路的等效阻抗Rl与储能电容Cl并联。控制信号Ctrll控制开关管Ql的导通和关断。当开关管Ql导通时,低压直流电源DC对变压器Tl充电,变压器Tl的初级有电流流过,此时次级有感应电动势,但是由于二极管Dl的反向截止,次级没有电流,能量存储在变压器Tl之中。当开关管Ql关断时,初级电流骤减为0,但由于变压器磁通不能突变,次级会感应反相电动势,瞬时产生高电压,于是二极管Dl正向导通,实现对储能电容Cl充电。开关管Ql反复通断即可实现持续充电,最终能量存储于储能电容Cl上。控制信号Ctrll采用高频的PWM信号。此处高压充电电路引用专利 ZL 200720074627.7。本具体实施中取储能电容的容值€1=120μΡ。后级电路的等效阻抗Rl之IOkQ,一
次脉冲串发放时间 tS1000FxIO=IOms ,根据公式 Ut =UQXe4/K1XG1,$l^l0ms , Rl=IOkQ
,可算得放电结束时电容电压衰减至初始值的99.2%,即输出脉冲电流的最大误差不超过1%。所以在一次脉冲串发放过程中可认为输出始终保持恒流。
图3所示为本发明的脉冲幅度控制电路图。该电路结构与高压充电电路结构基本相同,包括直流电源DC、开关管Q2、变压器T2、二极管D2、小容值的控制电容C2,工作原理也与高压充电电路基本相同。不同之处在于,该电路的输出电压V2要根据设置的脉冲参数进行调整,即输出电压要可控。该电路的控制信号Ctrl2是高频的PWM信号,Ctrl2信号的发放是由比较器Al控制,比较器Al的负端接控制电容C2的反馈电压V2_Ref,比较器的正端接微控制器的数-模转换输出电压V_DAC。微控制器接收外部的控制指令,根据脉冲幅度参数设置输出不同的电压V_DAC,当V_DAC > V2_Ref时,Ctrl2输出PWM信号,开关管Q2正常通断,充电电路工作,对控制电容C2充电,电压V2升高,同时反馈电压V2_Ref升高;当V_DAC<V2_Ref时,Ctrl2始终为低电平,开关管Q2关断,停止对控制电容C2充电。控制电容C2的反馈电压V2_Ref是由电压V2分压后经过采样电路得到,分压电路在此不再列出。本具体实施中取控制电容的容值02=1μΡ,当C2充至最大电压1000V时,所需的充电时间约70ms。所以该控制电容C2能够实现快速充电至设置的电压值。图4所示为本发明的三极管恒流输出控制电路图。该电路由开关管Q3、三极管Q4和Q5、参考电阻Rref、负载RL组成。开关管Q3的栅极接控制信号Ctrl3,漏极接图3中控制电容C2上的电压V2,源极接三极管Q4的基极;三极管Q4和Q5复合成达林顿管,电压Vl接自图2中储能电容Cl上的电压Vl ;参考电阻Rref接在三极管Q5的发射极和浮地FGND之间;负载RL接在Vl和三极管Q5的集电极之间。微控制器通过发放信号Ctrl3控制Q3的导通时间、截止时间和导通次数,从而实现脉冲宽度、脉冲间隔和脉冲个数的控制。当Q3导通时,电压V2加到Q4的基极,根据三极管发射极和基极压差恒定的原理,可在参考电阻Rref上得到恒定的电压值,Rref取固定阻值,即可实现对集电极负载的恒流控制。本具体实施中,为补偿两级三极管复合导致的压差1.4V,可通过微调微控制器的数-模输出电压V_DAC,从而调整脉冲幅度控制电路中控制电容C2上的电压V2,进行补偿。以上仅为本发明的较佳实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或者替换,都应涵盖在本发明的保护范围之 内。因此,本发明的保护范围应该以权利要求书要求所界定的保护范围为准。
权利要求
1.一种可控恒流脉冲发生电路,其特征在于:由微控制器、高压充电电路、脉冲幅度控制电路和三极管恒流输出控制电路组成;其中: 所述微控制器,接收外部的控制指令,设置脉冲幅度、宽度、间隔、个数参数,根据指令控制相应硬件电路动作,按参数要求发放脉冲,同时对高压充电电路和脉冲幅度控制电路进行充电控制和反馈检测,保证硬件电路正常工作; 所述高压充电电路,将外供低压直流电源升至所需高电压并对其中的储能电容充电,该高压送入三极管恒流输出控制电路作为电源电压; 所述脉冲幅度控制电 路,利用外供低压直流电源对其中的控制电容充电至设定电压值,该可控电压送入三极管恒流输出控制电路作为控制电压; 所述三极管恒流输出控制电路,由三极管基极通过总开关管从脉冲幅度控制电路中取出所设定电压值,利用三极管发射极和基极的压差恒定原理,实现对发射极参考电阻的恒压控制,参考电阻取固定阻值,即实现对集电极负载的恒流控制;其中,脉冲幅度由微控制器通过数-模转换的输出电压V_DAC控制,脉冲宽度、间隔和个数的控制由微控制器通过输出信号Ctrl3控制总开关管的导通时间、截止时间和导通次数实现。
2.根据权利要求1所述的可控恒流脉冲发生电路,其特征在于,所述高压充电充电电路由直流电源DC、开关管Q1、变压器Tl、二极管D1、储能电容Cl连接组成;其中变压器Tl初级的一端接低压直流电源DC的正极,另一端接开关管Ql的漏极;开关管Ql的源极接直流电源DC的负极并接实地GND ;开关管Ql的栅极接来自微控制器的控制信号Ctrll ;变压器Tl次级的同名端接接储能电容Cl的负极并接浮地FGND,另一端接二极管Dl的正极;二极管Dl的负极接储能电容Cl的正极;所述高压充电电路通过反激式开关电源升压产生所需高压并对储能电容Cl充电,产生的高压作为三极管恒流输出控制电路的电源电压。
3.根据权利要求1所述的可控恒流脉冲发生电路,其特征在于,所述脉冲幅度控制电路包括直流电源DC、开关管Q2、变压器T2、二极管D2、控制电容C2和比较器Al ;开关管Q2栅极的控制信号Ctrl2由比较器Al的输出端进行控制,比较器Al的负端接控制电容C2的反馈电压V2_Ref,比较器A2的正端接微控制器的数-模转换输出电压V_DAC ;所述脉冲幅度控制电路根据设置的脉冲幅度,利用反激式开关电源对控制电容C2快速充电至相应的电压值,该可控电压作为三极管恒流输出控制电路的控制电压。
4.根据权利要求1所述的可控恒流脉冲发生电路,其特征在于,所述三极管恒流输出控制电路采用由多级三极管复合成的达林顿管的形式,且工作于射极跟随模式。
5.根据权利要求1所述的可控恒流脉冲发生电路,其特征在于,当脉冲幅度控制电路输出的可控电压范围确定后,改变三极管恒流输出控制电路的发射极参考电阻的阻值,在集电极负载上得到不同的电流范围;负载阻抗发生变化时,脉冲电流的幅度保持不变。
全文摘要
本发明属于医疗仪器技术领域,具体为一种可控恒流脉冲发生电路。该可控恒流脉冲发生电路包括微控制器、高压充电电路、脉冲幅度控制电路和三极管恒流输出控制电路。微控制器接收外部的控制指令,按照参数要求控制其它各部分电路的工作,同时对高压充电电路和脉冲幅度控制电路进行充电控制和反馈检测,保证硬件电路正常工作;高压充电电路通过反激式开关电源产生所需高压并对储能电容充电;脉冲幅度控制电路根据设置的脉冲幅度,利用反激式开关电源对控制电容快速充电至相应的电压值;三极管恒流输出控制电路利用三极管发射极和基极的恒定压差实现对发射极参考电阻的恒压控制,参考电阻取为固定阻值,实现对集电极负载的恒流控制。本发明可用于术前神经定位和术中神经监测。
文档编号A61B5/04GK103190896SQ20131007280
公开日2013年7月10日 申请日期2013年3月7日 优先权日2013年3月7日
发明者邬小玫, 王建飞, 杨圣均, 王威琪 申请人:复旦大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1