超声波诊断装置制造方法

文档序号:1267701阅读:367来源:国知局
超声波诊断装置制造方法
【专利摘要】本发明用于改善利用生物体光计测的超声波图像摄影中的超声波探测器位置引导。本实施方式所涉及的超声波诊断装置具备超声波探测器,光探测器、图像生成单元、计算单元、支援信息生成单元、输出单元。光探测器具有:光照射部,在超声波探测器的超声波收发面的周围,配置在该面的长边方向的中心轴上,从至少一个位置向被检体内照射光;和多个光检测部,在超声波收发面的周围,以所述超声波收发面的长边方向的中心轴为对称轴而配置在不同位置。计算单元基于各光检测部检测到的光的强度,计算在被检体内示出规定的光吸收系数的异常部位的位置及大小。显示单元显示异常部位的位置及大小被表示的超声波图像。
【专利说明】超声波诊断装置
【技术领域】
[0001 ] 本发明的实施方式涉及超声波诊断装置。
【背景技术】
[0002]非侵入式地测定生物体内部的技术有各种手法。作为其中之一的光计测具有如下优点:不存在被辐射的问题,能够通过选择波长来选择作为计测对象的化合物。就一般的生物体光计测装置而言,将光照射部压贴在生物体皮肤表面上,经皮地向生物体内部进行照射,计测透射或者反射来的光再次透射皮肤而向生物体外出射后的光,基于其来计算各种生物体信息。作为通过光计测来判断在生物体内部存在异常组织的根本,有与正常组织相比光的吸收系数不同这一点。即,在生物体内部异常组织的吸收系数是不同的,因此,会产生与吸收量之差相应的检测光量之差。换句话说,若根据检测光量来作为逆向问题进行求解,则能够求出异常组织的吸收系数,能够根据求出的吸收系数来辨别异常组织的性状。此外,通过计测出的光,对计测位置、深度进行解析。该解析手法中包括:调整光照射部(以后省略为光源)与检测器的距离的手法(空间分解法);使用强度随时间变化的光源、根据光到达的时间的不同来获得深度信息的手法(时间分解法);以及组合上述手法的方法等。通过这些解析法,实现了能够取得高品质的信号的生物体光计测装置。然而,在通过生物体内的光来进行的信息的图像化中存在空间分辨率低的问题。而且,为了根据反射光的检测结果获得正确的位置信息而需要用复杂的算法来对大量数据进行运算,而无法实时地进行判定。
[0003]在生物体光计测中,作为实现可能性高的应用,能够列举出乳腺癌检查。但是,在如上述那样单独进行光计 测的情况下,分辨率和解析时间存在问题,因此优选与其他治疗设备(modality)并用来提高检查性能。于是,在本申请中提出了利用超声波回波的形态信息来对光的低空间分辨率进行补偿的方式。通过该方式,期待与以往相比能够以更短时间来辨别出生物体组织中的形态特征和形态特征部分的成分分布辨别,然而在即时判定中仍然有改善的余地。
[0004]然而,乳腺癌是女性的主要死亡原因之一。乳腺癌的筛查和早期诊断对于减少死亡率、抑制健康管理的费用具有非常重大的价值。在现在的方法中,进行乳房的组织的触摸诊断和用于找出可疑的组织变形的X射线摄影。若X射线照片中有可疑的部位,则进行超声波摄影,进而进行外科的组织检查。这一系列的检查达到最终的结论为止需要花费相当长的时间。此外,闭经前的年轻层乳腺很多,还具有在X射线摄影中不易得到高灵敏度的问题。因此,特别是对于年轻层来讲,超声波摄影下的筛查的意义非常大。
[0005]一般而言,在超声波摄影中,由获得认定的操作者来获取超声波静止图像,由专门的阅片者(有时是多个)根据图像上的形态信息做出判定。鉴于在检查诊断中存在由于操作者的疲劳和集中力低下而看漏的危险性,将由一个操作者进行的筛查限定为每天最多50名。
[0006]在超声波图像的摄影中,获取捕捉到了形态特征的静止图像时,操作者的知识和经验是非常重要的。要进行准确且迅速的筛查,还要求熟练度。例如每个受检者的检查时间标准地讲为5分到10分,但因操作者的技能不同有时需要花费更多的时间。即,在现在的通过超声波摄影进行的筛查中,根据操作者的熟练度不同而图像获取的准确性可能会有偏差。而且,在获取图像时,既需要总是注视着图像,又需要依赖操作者单独的判断,因此,即便是熟练的操作者,精神方面的负担也很大。还存在以动态图像来获取全部图像信息的方式,但是该情况下也是,阅片者侧的负担变大。
[0007]为了解决这样的超声波画层诊断下的问题,提出过通过由生物体光计测得到的生物体的代谢信息来对超声波探测器的测定位置在面方向上进行引导,从而减轻技师的负担的方式。通过这样的方式,在超声波图像摄影中,能够与以往相比以更短时间且更容易地对异常部位进行检测、辨别。
[0008]先行技术文献
[0009]专利文献
[0010]专利文献1:特开2004 - 073559号公报
[0011]专利文献2:特开2009 - 247683号公报
[0012]专利文献3:特开2000 — 237196号公报
[0013]专利文献4:特开2005 — 331292号公报
[0014]专利文献5:特开2007 - 020735号公报
[0015]专利文献6:特开2009 - 077931号公报
[0016]然而,利用生物体光计测来`进行的超声波图像摄影的超声波探测器位置引导,依然存在改善的余地。`

【发明内容】

[0017]本实施方式所涉及的超声波诊断装置具有超声波探测器、光探测器、图像生成单元、计算单元、计算单元、显示单元。超声波探测器从超声波收发面向被检体发送超声波,经由超声波收发面而接收在被检体内被反射的超声波。光探测器具有:光照射部,在超声波收发面的周围,配置在超声波收发面的长边方向的中心轴上,从至少一个位置向被检体内照射光;和多个光检测部,在超声波收发面的周围,以超声波收发面的长边方向的中心轴为对称轴而配置在不同位置,检测在被检体内被反射的光的强度。图像生成单元使用由超声波探测器接收到的超声波来生成超声波图像。计算单元基于各光检测部检测到的光的强度,计算在被检体内示出规定的光吸收系数的异常部位的位置及大小。显示单元显示异常部位的位置及大小被表示的超声波图像。
【专利附图】

【附图说明】
[0018]图1是表示第一实施方式所涉及的超声波诊断装置I的框结构图的图。
[0019]图2是由光探测器40、光计测处理单元42构成的生物体光计测装置4的框结构图。
[0020]图3是光照射部400及光检测部401a~d相对于超声波探测器12的配置例的图。
[0021]图4 (a)、(b)、(C)是用于说明使用图3的配置例进行的紧贴度的测定处理的图。
[0022]图5 (a)、(b)、(C)是用于说明异常部位的三维的方位及距离的测定处理的图。[0023]图6是表示在异常部位的三维的方位及距离的测定处理中使用的光照射部400及光检测部401a~d的配置例的图。
[0024]图7是在乳腺癌检查中测定了向乳房的紧贴度、异常部位的三维的方位及距离的情况下显示在监视器14上的支援信息的一例。
[0025]图8是监视器14上显示的支援信息的变形例。
[0026]图9是表示以用于将异常部位配置在超声波扫描区域内的一次引导为目的的支援信息的一例的图。
[0027]图10是以用于在根据一次引导而移动了超声波探测器12后使来自异常部位的光的信号量最大化的二次引导为目的的支援信息的一例的图。
[0028]图11是将基于每个光检测部401的检测光的信号强度计算出的、每个光检测部401的吸收信号强度(或衰减信号强度)作为支援信息,以电平仪进行显示的实施例。
[0029]图12 (a)、(b)是表不作为声响信号而输出的支援信息的一例的图。
[0030]图13是图6所示的配置的变形例。
[0031]图14是图6所示的配置的其他变形例。
[0032]图15是图6所示的配置的其他变形例。
[0033]图16是图6所示的配置的其他变形例。
[0034]图17是图6所示的`配置的其他变形例。
[0035]图18是图6所示的配置的其他变形例。
[0036]图19是第二实施方式所涉及的超声波诊断装置I具有的生物体光计测装置4的框结构图。
[0037]图20是第三实施方式所涉及的超声波诊断装置I具有的生物体光计测装置4的框结构图。
[0038]图21是表示使用了图20所示的生物体光计测装置4来进行的紧贴度判定和异常部位的方位决定的顺序的一例的图。
[0039]图22是第四实施方式所涉及的超声波诊断装置I具有的生物体光计测装置4的框结构图。
[0040]图23是从被检体接触面侧来观察第五本实施方式所涉及的超声波诊断装置I的探测器的图。
[0041]图24是示意地表示在将异常部位近似为球体的情况下,探测器P和在超声波扫描截面上确定出的异常部位的位置及大小的图。
[0042]图25是表示与超声波扫描截面对应的超声波图像的图。
[0043]图26是用于说明在超声波图像上确定了位置和大小的异常部位的显示形态的图。
[0044]图27是表示第五实施方式所涉及的超声波诊断装置I的探测器的、光照射部400及光检测部401的配置的变形例I的图。
[0045]图28是表示第五实施方式所涉及的超声波诊断装置I的探测器的、光照射部400及光检测部401的配置的变形例2的图。
[0046]图29是表示第五实施方式所涉及的超声波诊断装置I的探测器的、光照射部400及光检测部401的配置的变形例3的图。[0047]图30是表示将由生物体光计测确定出的异常部位与探测器的接近状态,作为超声波图像的画面的一部分(例如图标等)的明亮度(的变化)来表示的形态的图。
[0048]图31 Ca)~(d)是示例随着探测器与确定出的异常部位接近而图标的明亮度变化的样态的图。
[0049]图32 Ca)~(d)是示例随着探测器与确定出的异常部位接近而图标的色彩等变化的样态的图。
[0050]图33 Ca)~(d)是示例随着探测器与确定出的异常部位接近而图标的显示面积变化的样态的图。
[0051]图34 Ca)~(d)是示例随着探测器与确定出的异常部位接近而图标的显示位置变化的样态的图。
[0052]图35 Ca)~(d)是示例随着探测器与确定出的异常部位接近而图标的摆动的振幅变化的样态的图。
[0053]图36 Ca)~(d)是示例随着探测器与确定出的异常部位接近而图标的形状变化的样态的图。
[0054]附图标记的说明
[0055]I……超声波诊断装置,11……装置主体,12……超声波探测器,13……输入装置,14……监视器,21……超声波发送单元,22……超声波接收单元,23……B模式处理单元,24……多普勒处理单元,25……RAW数据存储器,26……体数据生成单元,28……图像处理单元,30……显示处理单元,31……控制处理器(CPU),32……存储单元,33……接口单元,40……光探测器,42……光计测处理单元,44……支援信息生成单元,400……光照射部,401……光检测部,420……光源420,4`22……光信号控制部,424……光解析部,426……运算电路
【具体实施方式】
[0056]以下,根据附图对各实施方式进行说明。另外,在以下的说明中,对具有大致相同的功能及结构的构成要素赋予相同附图标记,重复说明仅在必要的情况下才进行。
[0057](第一实施方式)
[0058]图1示出了本实施方式所涉及的超声波诊断装置I的框结构图。该图所示的超声波诊断装置I具备:超声波探测器12、输入装置13、监视器14、超声波发送单元21、超声波接收单元22、B模式处理单元23、多普勒处理单元24、RAff数据存储器25、体数据生成单元26、图像处理单元28、显示处理单元30、控制处理器(CPU)31、存储单元32、接口单元33。此外,本实施方式所涉及的超声波诊断装置I还具备:用于实现生物体光计测装置4的光探测器40及光计测处理单元42 ;以及生成用于对超声波探测器12的配置操作进行支援的支援信息的支援信息生成单元44。
[0059]另外,本实施方式中,如图1所示,将内置有生物体光计测装置(与生物体光计测装置成一体构造)的超声波诊断装置I作为例子进行说明。然而,不局限于该例子,也可以将生物体光计测装置和超声波诊断装置设为分体构造。
[0060]超声波探测器12是对以生物体为典型例的被检体发送超声波,并接收基于该发送的超声波而从被检体反射的反射波的设备(探头),在其前端具有:排列有多个的压电振子、匹配层、衬垫构件等。压电振子基于来自超声波发送单元21的驱动信号,向扫描区域内的所需方向发送超声波,将来自该被检体的反射波变换为电信号。匹配层设置于该压电振子,是用于使超声波能量高效地传播的中间层。衬垫构件防止超声波从该压电振子向后方传播。若从该超声波探测器12向被检体发送超声波,则该发送超声波被体内组织的声阻抗的不连续面不断反射,作为回波信号被超声波探测器12接收。该回波信号的振幅依赖于进行了反射的不连续面的声阻抗之差。此外,所发送的超声波脉冲被移动中的血流反射的情况下的回波,根据多普勒效应,依赖于移动体的超声波收发信号方向的速度成分,受到频率偏移。
[0061]另外,本实施方式中,设为超声波探测器12是沿着规定的方向排列有多个超声波振子的一维阵列探测器。然而,不局限于该例子,超声波探测器12作为能够取得体数据的结构,也可以是二维阵列探测器(多个超声波振子排列成二维矩阵状的探测器)或者机械式4D探测器(能够使超声波振子列在与其排列方向正交的方向上机械式地扫射的同时执行超声波扫描的探测器)。
[0062]输入装置13与装置主体11连接,具有将来自操作人员的各种指示、例如条件和关心区域(ROI)的设定指示、各种画质条件设定指示等取入装置主体11内的各种开关、按钮、跟踪球、鼠标、键盘等。此外,输入装置13具有用于在后述的穿刺术支援功能中来指示获取包含穿刺针的针尖位置的穿刺术信息的定时的按钮等。
[0063]监视器14基于来自显示处理单元30的视频信号,将生物体内的形态学信息或血流/[目息显不为图像。
[0064]超声波发送单元21具有未图示的触发产生电路、延迟电路及脉冲电路等。在触发产生电路中,以规定的速率频率frHz (周期;l/fr秒)来反复产生用于形成发送超声波的触发脉冲。此外,在延迟电路中,对各触发脉冲赋予为了按照每个信道将超声波集束成束状并且决定发送指向性而需要的延迟时间。脉冲电路在基于该触发脉冲的定时,对探测器12施加驱动脉冲。`
[0065]超声波接收单元22具有未图示的放大电路、Α/D变换器、延迟电路、加法器等。在放大电路中,将经由探测器12获取的回波信号按照每个信道进行放大。在Α/D变换器中,将放大后的模拟的回波信号变换为数字回波信号。在延迟电路中,对数字变换后的回波信号决定接收指向性,并赋予要进行接收动态聚焦所需要的延迟时间,然后在加法器中进行加法处理。通过该加法,使得来自与回波信号的接收指向性对应的方向的反射成分被强调,通过接收指向性和发送指向性来形成超声波收发信号的综合的束。
[0066]B模式处理单元23从接收单元22接受回波信号,实施对数放大、包络线检波处理等,生成用亮度的明亮度来表现信号强度的数据。
[0067]多普勒处理单元24从自接收单元22接受到的回波信号抽取血流信号,生成血流数据。血流的抽取通常通过CFM (Color Flow Mapping:彩色血流图)来进行。该情况下,对血流信号进行解析,作为血流数据,针对多个点求出平均速度、分散、能量等血流信息。
[0068]RAff数据存储器25使用从B模式处理单元23接受到的多个B模式数据,生成三维的超声波扫描线上的作为B模式数据的B模式RAW数据。此外,RAW数据存储器25使用从多普勒处理单元24接受到的多个血流数据,生成三维的超声波扫描线上的作为血流数据的血流RAW数据。另外,为了实现噪声减少和图像关联性的加强,也可以在RAW数据存储器25之后插入三维的滤波器,来进行空间的平滑处理。
[0069]体数据生成单元26通过执行包含将空间的位置信息考虑在内的插补处理的RAff 一体素变换,来生成B模式体数据、血流体数据。
[0070]图像处理单元28对从体数据生成单元26接受的体数据,进行体绘制、多截面变换显不(MPR:multi planar reconstruction)、最大值投影显不(MIP:Maximum intensityprojection)等规定的图像处理。另外,为了实现噪声减少和图像的关联性的增加,也可以在图像处理单元28之后插入二维的滤波器,来进行空间的平滑处理。
[0071]显示处理单元30对在图像处理单元28中生成、处理后的各种图像数据,执行动态范围、亮度(brightness)、对比度、Y曲线校正、RGB变换等各种处理。
[0072]控制处理器31具有作为信息处理装置(计算机)的功能,控制各构成要素的动作。此外,控制处理器31执行依据于后述的超声波探测器操作支援功能的处理。
[0073]存储单元32保管有用于实现后述的超声波探测器操作支援功能的专用程序、摄影到的体数据、诊断信息(患者ID、医师的见解等)、诊断协议、收发信号条件、其他数据群。此外,根据需要,还被用于未图示的图像存储器中的图像的保管等。存储单元32的数据也能够经由接口单元33被向外部周边装置传送。
[0074]接口单元33是与输入装置13、网络、新的外部存储装置(未图示)有关的接口。此外,还能够经由接口单元33,将,外设的生物体光计测装置连接到本超声波诊断装置主体11上。能够将由该装置得到的超声波图像等数据或解析结果等通过接口单元33经由网络向向其他装置传送。
[0075]图2是由光探测器40、光计测处理单元42构成的生物体光计测装置4的框结构图。
`[0076]光探测器40具有至少一个光照射部400和多个光检测部401。光照射部400将光源420产生的光(近红外光)朝向被检体照射。光检测部401具有例如由光纤的端部构成的检测面,由对从该检测面经由光导波部输入的来自被检体内的反射光进行光电变换的多个检测元件构成。作为检测元件,除了能够采用例如光电二极管、光电晶体管等受光元件之外,还能够采用(XD、APD、光电子增倍管等。也可以在光照射部400及各光检测部401的与被检体接触的接触面设置光匹配层。
[0077]图3是表示光照射部400及光检测部401a~d相对于超声波探测器12的配置例的图。在该图中示出了在超声波探测器12的超声波收发面120的中央附近配置光照射部400,并且,在以光照射部400为中心的圆周上,以将超声波收发面120 (与被检体接触的接触面)包围在内的方式,对光检测部401a~d进行等间隔配置的例子。光照射部400及各光检测部401a~d的与被检体接触的接触面例如设定成与超声波收发面120相同的高度水平,配置成在计测时与被检体表面直接或间接地接触的状态。另外,光照射部400及光检测部401相对于超声波探测器12的配置不局限于图3所示的例子。关于配置的应用例,留待后面详细说明。
[0078]光计测处理单元42具有光源420、光信号控制部422、光解析部424、运算电路426。光源420是产生如下光的半导体激光器、发光二极管、固体激光器、气体激光器等发光元件等,该光为:生物体内吸收小的波长的光(例如,被称作生物体的窗的波长带附近即600nm~1800nm范围的光)、在异常部位吸收量增加的特定波长的光(例如,在被称为生物体的窗的波长带范围内且血液中的血红蛋白吸收的750~850nm的波长范围的光)。光源420中产生的光经由光纤或由薄膜光导波路构成的光导波部(或直接经由空间的传播),被向光照射部400供给。另外,光源420也可以与光照射部400 —体地构成。
[0079]光信号控制部422动态或静态地控制生物体光计测装置4。例如,光信号控制部422在超声波诊断装置I的控制处理器31的控制下,控制光源420,使得以规定的定时、频率、强度、强度变动周期T,从光照射部400照射光。此外,光信号控制部422控制光解析部424,使得在规定的定时执行光解析处理。
[0080]光解析部424将从光检测部401输入的模拟信号放大后,将其变换为数字信号。而且,光解析部424对光检测部401间的检测光的强度变化进行解析。
[0081]运算电路426基于光检测部401间的检测光的强度变化,计算光检测部401与被检体表面的紧贴度、以在被检体内示出规定的光吸收系数的异常部位(例如,相比于正常组织而更多地吸收特定波长的部位)与被检体的表面相距的深度、规定的位置(例如光照射部400、超声波收发面120的中心等)为基准的异常部位的三维的位置及距离。运算电路426中的计算结果被送出至支援信息生成单元44。
[0082](超声波探测器操作支援功能)
[0083]接下来,对本超声波诊断装置具有的超声波探测器操作支援功能进行说明。本功能是指,计算超声波探测器12与被检体表面的紧贴度、和被检体内的异常部位的三维的方位及距离(接近度)中的至少一方,基于其结果,生成并输出用于相对于被检体及诊断对象部位更好地引导超声波探测器12的位置、朝向、姿势、加压度等的支援信息,由此对超声波探测器操作进行支援。
[0084](紧贴度的测定处理)`[0085]首先,对光检测部401与被检体表面的紧贴度的测定处理进行说明。在此,所谓紧贴度是关于在光检测部401与生物体表面之间的间隙中存在的空气层的厚度和占据光路的截面积比率的量。理想话的是没有空气层,或者厚度为检测光的波长以下并且覆盖率为
0.1%以下。
[0086]图4 (a)、(b)、(C)是用于说明使用图3的配置例进行的紧贴度的测定处理的图。另外,在图4 (a)、(b)、(c)各自中,在上段表示图3的A — A截面图,在下段表示光照射部400的照射面、光检测部401的各检测面向被检体表面投影的投影图。
[0087]如图4 (a)所示,首先,在将探测器P配置到了被检体表面上的状态下,从光照射部400朝向被检体内照射近红外光。此时,假定为如下情况:光检测部401b~d(分别对应于ch2~4)的检测面与被检体表面良好地接触,而在光检测部401a (对应于chi)的检测面与被检体表面之间存在空间(间隙)。在该情况下,在相对于被检体表面离开的光检测部401a中,由于折射率的差异,而使得从被检体放出的反射光的一部分被检测面反射。作为其结果,向光检测部401a的入射光强度相比于向光检测部401b~d的入射光较弱。这样的光检测部401间的光强度的变化在光解析部424中被解析出来。运算电路426将光检测部401a中的光强度的信号电平,与预先设定的光强度的信号电平或者根据光检测部401b~d中的光强度的信号电平以指定危险率计算出的数值,进行比较。作为其结果,在光检测部401a中的光强度的信号电平较小的情况下,运算电路426判定为光检测部401a相对于被检体表面离开(紧贴度低下状态)。在全部的光检测部401被判定为适当的紧贴度时,由光检测部401包围的超声波探测器12的紧贴度也被判定为是适当范围。
[0088]支援信息生成单元44基于运算电路42的判定结果及计算结果,生成对超声波探测器12的位置、姿势、朝向等进行指示、引导的支援信息,以便使超声波收发面120与被检体紧贴。所生成的支援信息在监视器14上以规定的形态被显示。另外,关于支援信息的具体例,留待后面详细说明。
[0089]操作者按照所显示的支援信息的引导来操作超声波探测器12,再次进行紧贴度测定。作为其结果,在判定为紧贴度落入恰当范围内的时刻,开始超声波图像摄影。
[0090](异常部位的三维的方位及距离的测定处理)
[0091]接下来,对异常部位的三维的方位及距离的测定处理进行说明。图5(a)、(b)、(c)是用于说明异常部位的三维的方位及距离的测定处理的图。图6是表示在异常部位的三维的方位及距离的测定处理中使用的光照射部400及光检测部401a~d的配置例的图。另外,在图5 (a)、(b)、(c)各自中,将异常部位作为吸收体,而分别在上段示出了图6的A —A截面图,在下段示出了光照射部400、光检测部401的各检测面向被检体表面的投影图。
[0092]首先,为了计算异常部位的三维的方位及距离,在将探测器P配置到了被检体表面上的状态下,从光照射部400朝向被检体内照射在异常部位吸收量会增加的特定波长的光。如图5 (a)所示那样处于与光照射部400较近位置(接近位置)处的光检测部401a'~401d'和如图5 (b)所示那样处于与光照射部400较远位置(外周位置)处的光检测部401a~401d分别检测该照射的光来自被检体内的反射光。
[0093]入射光一边在 生物体内散射一边通过,但是若通过异常部位就会被更多地吸收。因此,配置在特定距离的光检测部(图5、图6的例子中为检测部401a、光检测部401a')的检测光成为包含有异常部位的深度信息。光解析部424对来自配置在各方位角的光检测部401a~401d (分别对应于chi~4)、光检测部401a'~401(1'(分别对应于ch5~8)的检测光进行解析。结果,例如在图5 Ca)中ch2 < chi < ch3、ch4、在图5 (b)中ch5、6< ch7、8的情况下可知,在ch2与chi之间(ch5与ch6之间)且靠近ch2 (ch5)侧的位置处存在有异常部位。此外,根据例如ch5、ch6的信号强度比ch2、chl的信号强度弱可知,异常部位存在于比较浅的位置。
[0094]运算电路426对解析出的接近位置的信号强度分布与外周位置的信号强度分布进行比较,如图5 (c)所示,计算相对于所存在的异常部位的基准位置(例如光照射部400)而言的三维的方向及距离。具体地说,将利用光照射部400与光检测部401之间的距离的函数而求出的正常组织中的光强度信号作为基准值,进而根据I个光检测部401中的基准值将其他位置的光检测部401的基准值规范化。将规范化后的基准值作为各个光检测部401的位置处的光强度的系数,求出由各光检测部401实测出的光强度信号与光强度基准值的差分,计算差分与光强度基准值之比并将其作为变化率,根据变化率和位置信息来计算异常部位的方位角和接近状态。而且,将各光检测部401的X坐标和变化率相乘,对相乘后的结果求出合算或平均值来作为X方向成分。还同样地求出Y方向成分、Z方向成分。求出将作为其结果而得到的各成分合成而得到的方向向量的方向角,由此生成异常部位的方位角(方位信息)。而且,将各光检测部401的X坐标、变化率、系数相乘并求出绝对值,对这些进行合算来作为X成分。同样地求出Y方向成分、Z方向成分。使用将各方向的绝对值合计而得到的值,计算以异常部位的光照射部400为基准的三维的距离。[0095]支援信息生成单元44为了将异常部位配置在超声波扫描区域中,而基于所得到的三维的方位、三维的距离,来生成用于对超声波探测器12的移动进行指示、引导的支援信息。所生成的支援信息在监视器14中以规定的形态被显示。另外,关于支援信息的具体例,留待后面详细地说明。
[0096]操作者按照所显示的支援信息的引导,使超声波探测器12移动,再次进行异常部位的三维的方位及距离的测定。作为其结果而判定为异常部位落入了恰当范围内(例如,判定为异常部位落到了超声波扫描区域的中央)的时刻,开始超声波图像摄影。
[0097](支援信息)
[0098]图7是在乳腺癌检查中测定向乳房的紧贴度、异常部位的三维的方位及距离的情况下显示于监视器14的支援信息的一例。在该图的例子中,用图像的浓淡来显示超声波收发面120向乳房表面的紧贴度,例如在画面中,右下的较暗部分表示相对而言信号强度低的区域。此外,该图右侧的异常部位的推测深度显示为零位置表示的是,强度低下原因在于表面。根据两显示可知,启示了在信号强度较低的区域,探测器从生物体表面浮起来了。操作者按照所显示的支援信息的引导,为了使较暗部分成为与其他区域相同的明亮度,而进行较强地按下探测器的右下侧的操作。
[0099]图8是显示于监视器14的支援信息的变形例,基于计算出的探测器紧贴度,用十字记号来显示检测不良之处。在该图的例子中,十字记号集中在画面右下,因此可知,与该十字对应的光检测部401的检测面与被检体表面的紧贴度较低。操作者视觉辨认到所显示的该支援信息,按照其引导,进行较强地按压探测器的右下侧的操作,以提高检测不良之处的紧贴度。
[0100]按照图7或图8所示的支援信息,超声波探测器12被操作,在探测器12与被检体表面的紧贴度落入了适当范围内后,提供异常部位的方位信息及用于相对于该异常部位更良好地配置超声波探测器12的移动方向、移动量,作为支援信息。
[0101]图9是表示以用于将异常部`位配置在超声波扫描区域内的一次引导为目的的支援信息的一例的图。通过使超声波探测器12按照该图所示的箭头方向及距离(箭头的长度)进行移动,使得操作者能够容易地将异常部位配置在超声波扫描区域内。图10是表示以在按照一次引导使超声波探测器12移动了之后用于使来自异常部位的光的信号量(在多个光检测部401检测来自异常部位的光的情况下为该信号量的和)最大化的二次引导为目的的支援信息的一例的图。通过该二次引导,使超声波探测器12移动,以便通过异常部位的深度使信号量最大化。通过进行这样的阶段性的引导,与以往相比,能够从异常部位取得更多的信号。
[0102]图11是将基于每个光检测部401的检测光的信号强度计算出的、每个光检测部401的吸收信号强度(或衰减信号强度),作为支援信息来显示于电平仪(level meter)的实施例。在该图中,根据信号强度的平衡可知,异常部位存在于光源附近。
[0103]图7~11示例了将对探测器的紧贴度、超声波探测器的移动方向及移动量等进行表示的支援信息,在监视器14上通过图像来输出的情况。与此相对,也能够通过声响信号来输出支援信息。
[0104]图12 (a)、(b)示出了作为声响信号而被输出的支援信息的一例。图12 Ca)的例子中,将光检测部401 (或超声波收发面)的当前的紧贴度,以声音的周期性,通知给操作者。例如,在全部光检测部401被判定为非接触的情况下为上段的无音状态,在至少一个光检测部40被判定非接触的情况下输出中段的断续音,在全部光检测部401被判定紧贴度适当的情况下输出下段的连续音。此外,图12 (b)的例子中,用声音(频率)的高低来通知异常部位的接近信息。例如,随着探测器接近异常部位,使得以图12 (b)的上段所示的周期来输出的连续音,如图12 (b)所示那样低频化。这样的基于声响信号的支援信息,具有操作者不观察监视器14也能够接受扫描引导的优点。此外,不局限于该例子,例如,也能够通过控制音量、调音、节奏、旋律、声音等,来将支援信息作为声响信号输出。
[0105](配置变形例)
[0106]接下来,说明光照射部400及光检测部401相对于超声波探测器12的配置的变形例。
[0107]图13是图6所示的配置的变形例。在该图所示的变形例中,在超声波收发面120的长边方向的中心轴(对称轴)上配置光照射部400 (光源),将多个光检测部401,以相对于光源成为放射状且相对于超声波探测器120的中心轴成为线对称的方式,配置在二重的同心圆上。通过这样使光检测部401的排列对称轴与超声波探测器12的中心轴实质上一致(或使光检测部401的配置对称轴落在超声波探测器的设备宽度的范围内),能够消除两种检测系统的相对的位置误差,所以,相比于图6,配置方面更优良。另外,光照射部400至光检测部401的最大距离被要求为异常部位的可测定深度的2倍以上,所以作为探测器P整体而有变大的趋势。然而,通过如本变形例那样将光照射部400配置在超声波探测器12的中心轴上的接近位置处,与图6的例子相比,能够实现探测器P整体的尺寸减小。
[0108]图14是图6所示的配置的其他变形例。在该图所示的变形例中,光检测部401以在超声波探测器12的轴向上较长的方式对称配置。通过该配置,能够抑制探测器P整体的宽度,所以使得超声波探测器12的扫射动作容易。
`[0109]图15是图6所示的配置的其他变形例。在该图所示的变形例中,在超声波探测器12的两肋对称配置多个光照射部400。此外,将多个光检测配置成,相对于多个光源的中心成为放射状并且相对于超声波探测器12的中心轴成为线对称。通过使光计测系统与超声波探测器12的轴一致,能够消除两种检测系统的相对的位置误差,所以,该实施例相比于图6的例子,配置方便更优良。此外,通过使用多个光照射部400与多个光检测部401的选择检测,使得实质上来自光源的距离增加,具有能够通过单光源以宽广范围来检测异常部位的存在位置的优点。
[0110]图16是图6所示的配置的其他变形例。在该图所示的变形例中,在超声波探测器12的两肋对称配置多个光照射部400,除此之外还在超声波探测器12的中心轴上配置其他的光照射部400。此外,将多个光检测部401配置成相对于多个光源的中心成为放射状并且相对于超声波探测器12的中心轴成为线对称。本变形也是,使光计测系统与超声波探测器12的轴一致,由此,能够消除两种检测系统的相对的位置误差,所以,相比于图6的实施例,配置方面更优良。此外,通过使用多个光源,具有能够更宽广范围地检测异常部位的存在位置的优点。此外,通过采用改变探测器两肋的多个光源和超声波探测器12的中心轴上的其他光源的输出光的波长的结构,还能够同时得到更多的信息。
[0111]图17是图6所示的配置的其他变形例。在该图所示的变形例中,将多个超声波探测器12 (图17中示例了 2个)以使中心轴对齐的方式串联配置,在其间隙的中心配置至少一个光照射部400。本变形也是,使光计测系统与超声波探测器12的轴一致,能够消除两种检测系统的相对的位置误差,所以相比于图6的实施例,配置方面优良。此外,通过使光照射部400位于多个超声波探测器12的排列中心,具有能够宽广范围地检测异常部位的存在探索域的优点。
[0112]图18是图6所示的配置的其他变形例。在该图所示的变形例中,配置成使光检测部401在异常部位的最终引导位置附近处密集。本变形也是,使光计测系统与超声波探测器12的轴一致,消除了两种检测系统的相对的位置误差,所以,相比于图6的实施例,配置方面更优良。此外,通过局部地密集配置光检测部401,具有能够在空间上更高精度地检测异常部位的光吸收信息的优点。
[0113]在以上所述的各例中,示例了将多个光检测部401以两个同心圆状配置的情况。然而,不局限于该各例子,也可以是在两个以上的同心圆上排列光检测部401。
[0114]根据以上所述的本实施方式所涉及的超声波诊断装置,能够实现以下的效果。
[0115]第一,关于光检测部与被检体表面的紧贴度的效果。即,在生物体光计测中,在光检测部未与被检体紧贴的状态下,会在光检测部的检测面(入光部)产生反射损失,最多有可能会产生10%等级的损失。而另一方面异常部位的吸收所引起的差异为%等级程度,从而上述的光检测部设置不良所引起的信号的差异更大。因此,可以想到,光检测部与生物体的紧贴度是否适当是在异常部位的检测以前应该确认的信息。根据本超声波诊断装置,使用生物体光计测功能来计算探测器与被检体表面的紧贴度,基于其结果来生成用于将探测器引导到更好的位置处的支援信息并输出。操作者掌握探测器与被检体表面的当前的接触状况,并且在紧贴不完全的情况下,能够按照支援信息的引导,容易且迅速地对探测器的姿势、朝向、加压方向、移动方向等进行校正。 [0116]第二,关于异常部位的深度信息的有效利用的效果。在皮肤表面附近存在的异常部位与在几厘米(cm)的深度处存在的异常部位相比,与得到最大信号的检测器之间的相对位置是不同的。除了对异常部位的深度进行方位计算之外,还应当适当地进行位置引导。根据本实施方式所涉及的超声波诊断装置,使用生物体光计测功能来计算被检体内的异常部位的三维的方位及距离,基于其结果,以使异常部位配置在超声波扫描区域的良好的位置的方式,生成用于对超声波探测器的位置进行引导的支援信息并输出。操作者能够直观地掌握当前的超声波探测器与异常部位的位置关系,并且,在异常部位不存在于超声波扫描区域内的情况下,能够按照支援信息的引导,以使异常部位被包含在超声波扫描区域内的方式,容易且迅速地对超声波探测器的位置、姿势、朝向等进行校正。
[0117]第三,关于超声波探测器与光学检测系统的对位(对准)的效果。在本实施方式中,超声波探测器、至少一个光照射部、多个光检测部被配置成使得光照射部、多个光检测部的对称轴位于超声波收发面内。结果,能够矫正在通过光学系统的信号解析引导到的最佳位置处与在通过超声波回波观察到图像位置处产生的微妙的误差。
[0118]如以上所述,不管操作者的经验等如何,都能够在使超声波收发面与被检体表面良好地紧贴的状态下,始终取得异常部位的良好的超声波图像,有助于提高超声波图像诊断的质量。
[0119](第二实施方式)
[0120]图19是第二实施方式所涉及的超声波诊断装置I具有的生物体光计测装置4的框结构图。在本实施方式所涉及的超声波诊断装置I中,光源420产生异常部位吸收的特定波长的光,使用该光来进行紧贴度的计算、异常部位的三维的方位等的确定。此外,在运算电路426中,从超声波摄影系统取入超声波图像,例如,基于超声波图像上的亮度值的变化来推测超声波扫描区域图像中的异常部位的位置,通过利用该推测出的位置,来进行生物体光计测中的位置精度的提高和部位的异常性的精密鉴定。通过这样并用生物体光计测系统和超声波摄影系统,能够更正确地进行紧贴度的计算、异常部位的三维的方位等的确定。
[0121](第三实施方式)
[0122]图20是第三实施方式所涉及的超声波诊断装置I具有的生物体光计测装置4的框结构图。该图所示的生物体光计测装置4具备:光源420a和光源420b这两个光源,光源420a产生异常部位的吸收较小而被检体的透射性较高的波长光,光源420b产生异常部位吸收的特定波长光;和光混合器421,将两光源的光混合。在该结构中,通过相对地比较被检体的透射性较高的波长和特定波长的检测光量,能够将因光检测部401的紧贴度和因异常部位而引起的吸收的效果分开。而且,通过利用透射被检体的波长的检测光量对特定波长的检测光量进行标准化,能够减少因超声波探测器12与被检体的紧贴度偏差而引起的测定误差。
[0123]此外,图20所示的生物体光计测装置4具有运算电路426a、426b,例如,在引导超声波探测器12时,在运算电路426a中,执行紧贴度、异常部位的方位确定的简易计算,而另一方面,在异常鉴定时,在运算电路426b中,执行紧贴度、异常部位的方位确定的精密计算。但是,在运算电路426a或者运算电路426b具有足够的计算速度和运算能力的情况下,也可以使用任意一方的运算电路来对超声波探测器12进行引导。
[0124]图21是表示使用图20所示的生物体光计测装置4来进行的紧贴度判定和异常部位的方位决定的顺序的一例。如该图所示,从光照射部400向生物体内交错地放出被检体的透射性较高的波长和异常部位所吸收的特定波长。如前面所记载的那样,在从被检体表面离开的光检测部401中,从被检体放出的信号光的一部分由于折射率的差异而在表面反射,从而减弱向检测器的入射光强度。
[0125]于是,如图21 (a)所示,在首先使用被检体的透射性较高的波长、与预先设定的光强度信号电平比较而测定信号强度较小的情况下,判定为该位置的光检测部401从被检体表面离开。基于紧贴度判定结果生成支援信息并进行显示,由此进行用于将探测器整体向与被检体紧贴的方向施加压力的指示、引导。作为其结果,如图21 (b)所示,光检测部401向被检体表面的加压被调整。
[0126]接着,如图21 (c)所示,向生物体内入射异常部位所吸收的特定波长,由各光检测部401检测所放出的光。就因紧贴度引起的检测光量的变化率而言,在生物体的透射性较高的波长的情况下和在异常部位所吸收的特定波长的情况下都是同等的,两者的差异很小。2波长的检测光量的有意义的差异起因于异常部位的有无。因此,在将异常部位所吸收的特定波长的光量利用生物体的透射性较高的波长的光进行标准化之后,利用与第一实施方式相同的手法,来求出被检体内的异常部位的三维的方位及距离,生成方位信息和距离信息。基于方位信息和距离`信息来生成支援信息并显示,由此,对超声波探测器12整体的移动方向和加压方向进行指示、引导。结果,在判定为探测器测定位置处于适当范围的时亥IJ,开始超声波图像摄影。[0127](第四实施方式)
[0128]图22是第四实施方式所涉及的超声波诊断装置I具有的生物体光计测装置4的框结构图。该图所示的生物体光计测装置4在图20所示的例子的基础上,在光学计算中将由超声波摄影取得的超声波图像作为数据取入,能够实现位置精度的提高和部位的异常性的精密鉴定。在本实施方式中,按照如下顺序来完成测定:与紧贴度有关的探测器的引导、向异常部位的超声波探测器12的引导、超声波图像的摄影、精密光学测定、超声波图像与光学数据的链接和再计算、校正图像形成。另外,在图22所示的例子中,在超声波探测器12的引导中通常使用作为简易计算电路的运算电路426a,但是在信号强度较高的情况下,也可以选择作为精密计算用运算电路的运算电路426b。
[0129]在以上所述的各实施方式中,说明了通过手动操作来进行生物体光计测。与此相对,也可以通过自动操作来进行生物体光计测。
[0130](第五实施方式)
[0131]第五实施方式所涉及的超声波诊断装置I能够更迅速地计算被检体内的异常部位的位置、大小,并能够在超声波图像上明确地显示。 [0132]图23是从被检体接触面侧对本实施方式所涉及的超声波诊断装置I的探测器进行观察的图,是表示光照射部400及光检测部401的配置例的图。如该图所示,光照射部400在超声波收发面120的周围,排列在该超声波收发面120的长边方向的中心轴上C。在本实施方式中,光照射部400同时或者选择性地将2波长的光向被检体照射。多个光检测部401在超声波收发面120的周围,按照以同样的超声波收发面的长边方向的中心轴C为对称轴成对、且以光照射部400为中心呈放射状的方式排列。另外,在该图的例子中,多个光检测部401在以光照射部400为中心的半径rl、r2、r3 (例如rl = 15mm, r2 = 25mm, r3=35mm等)的同心圆周上,以3对(3组)的光检测部401相对于中心轴上C成轴对称的方式排列。另外,光照射部400及各光检测部401被遮光板403覆盖。
[0133]另外,光照射部400、多个光检测部401的排列不局限于图23的例子,能够采用各种形态。即,本实施方式所涉及的超声波诊断装置I的探测器只要是使超声波扫描面与多个光检测部401排列的对称轴(对称面)实质上一致的结构、或者光学感测器的配置对称轴落在超声波回波探测器的设备宽度(或超声波收发面120的短边方向的宽度)的范围内的结构即可,可以任意。
[0134]此外,本实施方式所涉及的生物体光计测装置4还具备存储用于确定出超声波扫描截面内的异常部位的位置和大小的数据库的存储单元。该存储单元既可以是内部存储器也可以是外部存储器,但是从想要加快处理的要求和所需要的存储器容量来看,利用装置内的半导体存储器来保管的实施例是优选的。关于其他结构,与图20、22所示的内容实质上相同。数据库是按照每个光学的吸收系数(k),将超声波探测器12的超声波扫描面内的异常部位的位置及大小,与各光检测部401检测到的光的强度的每个组合预先建立了对应的数据库。运算电路426a、426b进行用于将在各光检测部401中实际检测到的光的强度与在数据库中预先存储的数值进行对比的计算,确定出超声波扫描面内的异常部位的位置及大小。
[0135]从图23那样配置的光照射部400,向检测体内照射生物体透射率较高且在异常部位吸收量增加的两个特定波长的光(例如,氧化血红蛋白的吸收波长(770nm附近)、和脱氧血红蛋白的吸收波长(900nm附近)的2波长的光)。所照射的光一边在被检体内散射一边传播,若通过异常部位则被更多地吸收。图23那样配置的多个光检测部401在各自的位置处检测从被检体出射的光。各光检测部401检测到的光包含有异常部位的深度信息。光解析部424对各光检测部401检测到的光进行解析。运算电路426a、426b基于光检测部401间的检测光的强度变化,来计算光检测部401与被检体表面的紧贴度、在被检体内示出规定的光吸收系数的异常部位的位置、大小(尺寸)。
[0136]运算电路426a、426b根据已叙述的算法,基于光检测部401间的检测光的强度变化,计算光检测部401与被检体表面的紧贴度、在被检体内示出规定的光吸收系数的异常部位与被检体的表面相距的深度、以规定的位置为基准的异常部位的三维的位置及距离。运算电路426中的计算结果被送出至支援信息生成单元44中。支援信息生成单元44根据已叙述的手法,生成对超声波探测器12的位置、姿势、朝向等进行指示、引导(导航)的支援信息。所生成的支援信息在例如监视器14中以规定的形态被显示。操作者按照所显示的支援信息,使超声波探测器120移动,以使超声波收发面120来到示出规定的光吸收系数的异常部位的正上方。另外,关于用于使超声波收发面120移动到异常部位的正上方的支援信息的显示形态,存在各种类型。对此,留待在第六实施方式中详细地说明。
[0137]在被检体表面,以使超声波收发面120来到示出规定的光吸收系数的异常部位的正上方(或异常部位位于超声波探测器12的长边对称轴下的对称面上)的方式,配置超声波探测器120。若作为其结果,超声波探测器12的位置被判定为适当范围,则通过接下来所述那样的手法,执行异常部位的位置及大小的计算。
[0138]图24是在将异常部位近似为球体的情况下,示意地表示探测器P和在超声波扫描截面上确定出的异常部位的位置及大小的图。将球体的中心位置(x,y)、尺寸(直径Φ)、光学的吸收系数(k)的水平作为参数,将光扩散方程式作为正问题(forward probIem)而在各个光检测器的位置求解光强度,将使该解与光吸收信息建立了对应的数据作为数据库,预先存储在生物体光计测装置4的存储单元中。在将光吸收区域用最单纯化的球形进行近似的情况下,能够以解析学的变形贝塞尔函数的近似解来求解,但是,在更复杂的形状的情况下,很难解析性地求解。于是,利用使用了有限要素法的具有散射的光扩散方程式模拟,来求出近似值。数据库能够适当地选择参数的水平来进行计算,基于此来制作表格。在此,作为光强度的表格的制作方法而示例了模拟,但是,还有如下方法:制作将各参数的水平汇总后的体模(phantom),通过实际测定来决定数值的方法,以及将实际测定数据的一部分与模拟结果复合地结合而制作的方法。因此,在球近似的情况下,要求解的未知数是在生物体的截面画面上的位置(x,y)、直径(Φ)、光学的吸收系数(k)这4个,最少需要4个光量测定结果。在旋转椭圆体近似的情况下,最少需要5个光量测定结果。在此,成对的检测器在光学模型上来讲是对称的,光强度应该成为相等的值,所以,不将检测数据作为独立值。
[0139]运算电路426a、426b将预先记录在上述数据库中的数值与在各光检测部401中检测到的光的强度进行对比。作为对比的手段,例如有最小二乘法下的选择方法。该情况下,各个检测器位置的光强度按照位数进行变化,所以,需要使用利用没有光吸收部位的情况的光强度进行了标准 化后的标准化相对强度变化等,需要花费相应的工夫。数据库的数值与检测到的光的强度的对比能够按照秒以下的时间来瞬时地进行计算。因此,能够实时地掌握异常吸收部位的位置(X,y)、直径(Φ )、光学的吸收系数(k)的信息。[0140]即,在本实施方式中,不是使用在各光检测部401中检测到的光的强度来作为逆问题(参照第一实施方式等)计算被检体内的异常部位的位置及大小,而是使用预先存储在存储单元中的数据库和在各光检测部401中实际检测到的光的强度,来作为正问题计算被检体内的异常部位的位置及大小。这样的计算手法例如在实时性很重要等情况下,特别具有实际意义。然而,不局限于该例子,当然也能够采用在第一实施方式等中说明的作为逆问题的算法。此外,根据需要,也可以是,准备从被检体透射的其他波长的光,将该光作为参照光进行感测并将其他波长的测定光量标准化,由此来减少因各种偏差引起的测定误差。
[0141]计算出的异常部位的位置、大小在超声波图像上以规定的形态被实时地显示。图25是表示与超声波扫描截面对应的超声波图像的图,图26是用于说明在超声波图像上位置、大小被确定了的异常部位的显示形态的图。在图25所示的超声波图像上,若计算出异常部位的位置、大小,则例如图26所示那样,通过分配给光学的吸收系数(k)的色彩,来显示所确定出的位置(中心(x,y))及大小(径Φ)的圆。由此,观察者能够在超声波图像上实时地且直观地掌握异常部位的大概位置、大小。此外,通过记录显示有异常部位的超声波图像,能够使用异常部位必然被映像化的超声波图像来进行图像诊断。
[0142](变形例I)
[0143]图27是从被检体接触面侧对本实施方式所涉及的超声波诊断装置I的探测器进行观察的图,是示出了光照射部400及光检测部401的配置的变形例I的图。光照射部400排列在超声波收发面120的长边方向的中心轴上C,照射(不是两个波长而是)特定的一个波长的光。此外,4对(4组)的光检测部401以超声波收发面的长边方向的中心轴C为对称轴而设置。由此,不使用两个波长的光,而能够得到异常部位的位置及大小、光学的吸收系数(k)的信息。
[0144](变形例2)
[0145]图28是从被检体接触面侧对本实施方式所涉及的超声波诊断装置I的探测器进行观察的图,是示出了光照射部400及`光检测部401的配置的变形例2的图。如该图所示那样,两个光照射部400在超声波收发面120的长边方向的中心轴上C的不同位置处相邻地配置。此外,两对(两组)光检测部401以超声波收发面的长边方向的中心轴C为对称轴而设置。通过本变形例也是,不使用两个波长的光,而能够得到异常部位的位置及大小、光学的吸收系数(k)的信息。此外,与图23、图25所示的例子相比,具有能够进一步减少光检测部401的数量的优点。
[0146](变形例3)
[0147]图29是从被检体接触面侧对本实施方式所涉及的超声波诊断装置I的探测器进行观察的图,是表示光照射部400及光检测部401的配置的变形例3的图。如图所示那样,两个光照射部400在超声波收发面120的长边方向的中心轴上C上,以隔着超声波收发面120的方式配置。此外,两对(两组)光检测部401以超声波收发面的长边方向的中心轴C为对称轴而设置。通过本变形例也是,不使用两个波长的光,而能够得到异常部位的位置及大小、光学的吸收系数(k)的信息。此外,与变形例2相同,与图23、图25所示的例子相比,也具有能够进一步减少光检测部401的数量的优点。而且,通过将光照射部400配置在超声波探测器12的两端,还具有容易将异常部位引导到超声波收发面120的中心轴上C的中央附近的优点。[0148]根据以上述那样的结构,能够将探测器引导(导航)到被检体内部的可疑组织的上方而在该可疑组织被包含在扫描截面内的状态下,实施超声波图像的取得、生物体光计测。因此,能够使用检测到的光,将可疑组织的位置、大小,作为对在各检测部中检测到的光的强度和预先生成的数据库进行比较的正问题,简便且迅速地进行计算,能够显著地提高实时性。施术者能够以时序高的实时性来执行向被检体内的可疑组织正上方的探测器配置、超声波图像的截面上的目视检查、该超声波图像上明确示出的血液代谢信息(血红蛋白的吸收位置、尺寸、吸收系数等信息)等的观察及良性恶性判定等。作为其结果,不管熟练度如何,谁都能正确、适当且迅速地进行乳腺癌检查.判定(异常部位的检测、良性和恶性判定)
坐寸ο
[0149]此外,在生物体光计测中,从光照射部至光检测部的最大距离被要求是异常部位的可测定深度的2倍以上,所以,作为探测器整体而有变大的趋势。在本实施方式中,构成为作为超声波收发面的长边方向的中心轴,将光照射部及光检测部配置在超声波探测器的附近,因此,能够使超声波探测器、光探测器成为一体的探测器的整体尺寸变得小型紧凑。
[0150](第六实施方式)
[0151]在已叙述的各实施方式中,作为探测器向异常部位的引导或良好的探测器的紧贴度的传递手段,示例了例如图7~图10所示的显示法或用图12所示的声响信号等进行传递的方法等。然而,在实际摄影时,检查者一边观察超声波图像一边使探测器移动,所以,要同时还注视着图7等所示那样的探测器操作的支援信息的话,有时会成为很大的负担。此外,基于声响信号进行的传递具有检查者不用观察画面就能够接受扫描引导的优点,但另一方面还具有被检者会因异常音而变得不安的缺点。
[0152]于是,在本`实施方式中,说明了如下的超声波诊断装置1:将表示由生物体光计测确定出的探测器向异常部位的接近状态的信息,以尽量减少检查者的注视负担的形态,迅速地以可观察的方式进行显示,使得探测器向异常部位的引导变得容易。
[0153]本实施方式中的表示探测器向异常部位的接近状态的信息、探测器操作的支援信息的显示形态中,例如有如下的两个特征。第一,作为检查者注视的超声波图像的画面的一部分,显示表示探测器向异常部位的接近状态的信息。由此,检查者不使视线往复就能够得到信息。第二,以不会妨碍检查者将注意力集中到超声波诊断图像上的行为的程度,以能够瞬时地掌握其内容的形态,来显示表示探测器向异常部位的接近状态的信息。
[0154]图30示出了将由生物体光计测确定出的异常部位与探测器的接近状态,作为超声波图像的画面的一部分(例如图标等)来表示的形态的图。图31 Ca)~(d)是示例了随着探测器与确定出的异常部位接近而图标的明亮度变化的样态的图。
[0155]在图30所示的超声波图像的画面右上显示的图标A的明亮度如图31 (a)、(b)所示那样,随着探测器与确定出的异常部位接近而变化,在探测器最接近于异常部位时(即,超声波收发面120配置在异常部位的正上方时),如图31 (c)所示那样,最明亮。此外,在超声波收发面120从异常部位的正上方离开了的情况下,图标A的明亮度从图31 (c)的状态向图31 Cd)的状态变化,随着探测器从异常部位离开而逐渐变暗。
[0156](变形例I)
[0157]图32 Ca)~(d)是示例了随着探测器与确定出的异常部位接近而图标的色彩等变化的样态的图。[0158]例如,在图32所示的超声波图像的画面右上显示的图标A的色彩在由生物体光计测确定出的异常部位与探测器的距离为一定以上的情况下,如图33 (a)所示那样以规定的色相(例如绿色)被显示。若根据支援信息,扫描探测器,异常部位与探测器的距离变为一定以内,则图标A的色彩如图33 (b)所示,变化为其他色相(例如橙色),在探测器最接近于异常部位时,如图33 (c)所示那样,例如由红色来显示。此外,在超声波收发面120从异常部位的正上方离开了的情况下,与异常部位与探测器之间的距离相对应地,图标A的明亮度从图33 (c)的红色变化为其他颜色(图33 (d)的例子中为绿色)。
[0159](变形例2)
[0160]也可以将由生物体光计测确定出的异常部位与探测器的接近状态表示为超声波图像的画面的一部分(图标等)的亮灭周期的变化。例如,超声波图像的画面右上显示的图标A在由生物体光计测确定出的异常部位与探测器的距离为一定以上的情况下,以一定以上的长周期进行亮灭。根据表示探测器向异常部位的接近状态的信息,扫描探测器,随着异常部位与探测器的距离变小,而图标A的亮灭周期变短,在探测器最接近于异常部位时,图标A以最短周期进行亮灭。此外,在超声波收发面120从异常部位的正上方离开了的情况下,图标A与异常部位与探测器之间的距离相对应地一边使周期变化一边进行亮灭。
[0161](变形例3)
[0162]图33 Ca)~(d)是示例了随着探测器与确定出的异常部位接近而图标的显示面积变化的样态的图。
[0163]例如,在图30所示的超声波图像的画面右上显示的图标A的面积如图33 (a)、图33(b)所示那样,随着 由生物体光计测确定出的异常部位与探测器的距离变近而变大,在最接近于异常部位时,如图33 (c)所示那样成为最大。此外,在超声波收发面120从异常部位的正上方离开了的情况下,图标A的面积如图33 (C)、图33 (d)所示那样,随着探测器从异常部位离开而变小。
[0164](变形例4)
[0165]图34 Ca)~(d)是示例随着探测器与确定出的异常部位接近而图标的显示位置变化的样态的图。
[0166]例如,在图30所示的超声波图像的画面右上显示的图标A例如图34 (a)、图34
(b)所示那样,在由生物体光计测确定出的异常部位与探测器的距离分离了一定以上的情况下,显示在相同的位置,在最接近于异常部位时(异常部位与探测器的距离变为一定范围内的情况下),如图34(c)所示那样显示在规定的位置(图的例子中,显示位置上升)。此外,在超声波收发面120从异常部位的正上方离开了一定以上的情况下,图标A如图34 (d)所示那样,显示在与图34 (a)、图34 (b)相同的位置。
[0167](变形例5)
[0168]图35 Ca)~(d)是示例随着探测器与确定出的异常部位接近而图标的摆动的振幅变化的样态的图。
[0169]例如,在图30所示 的超声波图像的画面右上显示的图标A的摆动的振幅例如图35(a)、图35 (b)所示那样,随着由生物体光计测确定出的异常部位与探测器的距离变近而变化,在最接近于异常部位时,如图35 (C)所示那样以最大振幅的摆动被显示。此外,在超声波收发面120从异常部位的正上方离开了的情况下,图标A的摆动的振幅如图35 (d)所示那样,随着探测器从异常部位离开而变小。
[0170](变形例6)
[0171]图36 Ca)~(d)是示例随着探测器与确定出的异常部位接近而图标的形状变化的样态的图。
[0172]例如,在图30所示的超声波图像的画面右上显示的图标A的形状例如图36 (a)、图36(b)所示那样,随着由生物体光计测确定出的异常部位与探测器的距离变近而变化(图的例子中凸部的个数增加),在最接近于异常部位时,如图36 (C)所示那样以凸部最多的形状来显示。此外,在超声波收发面120从异常部位的正上方离开了的情况下,图标A的形状如图36 Cd)所示那样,以随着探测器从异常部位离开而凸部变少的方式变化。
[0173]其中,示出了用于通知异常部位与探测器的接近状态的各种显示例。这些显示法当然能够任意组合。例如,也可以除了基于本变形例I所示的图标的色彩变化而进行的显示法之外,还可以组合明亮度变化,也可以使亮灭周期、显示面积、形状、摆动的大小等与接近状态相对应地同时变化。由此,能够以视觉辨认性更高的形态来提示异常部位与探测器的接近状态。
[0174]根据以上所述的结构,能够将被检体内的异常部位与被检体表面的探测器的接近状态在显示有超声波图像的画面上,通过图标的明亮度、色彩、亮灭周期、显示面积、形状、摆动的振幅或它们的组合,来视觉地进行提示。由此,检查者不使视线往复也能够视觉辨认超声波图像及探测器操作支援信息。此外,探测器操作支援信息作为图标的明亮度等的变化而被提示。因此,不会妨碍检查者对超声波诊断图像的注意力,提示可迅速且简单地掌握的探测器操作支援信息。
[0175]说明了本发明的几个实施方式,这些实施方式指示作为例子而提示,并不意欲限定发明的范围。这些新的实施方式能够以其他各种形态来实施,在不脱离发明的要旨的范围能够进行各种省略、置换、变更。这些实施方式及其变形被包含在发明的范围及要旨内,并且被包含在权利要求书所记载的发明及`其等同的范围内。
【权利要求】
1.一种超声波诊断装置,其中,具备: 超声波探测器,从超声波收发面向被检体发送超声波,经由所述超声波收发面接收在所述被检体内被反射的超声波; 光探测器,具有光照射部和多个光检测部,该光照射部在所述超声波收发面的周围,排列在所述超声波收发面的长边方向的中心轴上,从至少一个位置向所述被检体内照射光,该多个光检测部在所述超声波收发面的周围,以所述超声波收发面的长边方向的中心轴为对称轴而配置在不同位置,检测在所述被检体内被反射的光的强度; 图像生成单元,使用由所述超声波探测器接收到的超声波,生成超声波图像; 计算单元,基于所述各光检测部检测到的光的强度,计算在所述被检体内示出规定的光吸收系数的异常部位的位置及大小;以及 显示单元,显示所述异常部位的位置及大小被表示的所述超声波图像。
2.如权利要求1所述的超声波诊断装置,其中, 还具备: 存储单元,将所述被检体内的异常部位的位置及大小,按照所述多个光检测部的各位置处的光的强度的每个组合,预先进行存储; 所述计算单元通过比较在所述各光检测部中检测到的光的强度的组合与在所述存储单元中存储的光的强度的组合,来计算在所述被检体内示出规定的光吸收系数的异常部位的位置及大小。
3.如权利要求1或2所`述的超声波诊断装置,其中, 所述多个光检测部以所述超声波收发面的长边方向的中心轴为对称轴而设置有至少四对。
4.如权利要求1或2所述的超声波诊断装置,其中, 所述光照射部从两处以上的位置照射光, 所述多个光检测部以所述超声波收发面的长边方向的中心轴为对称轴而设置有至少两对。
5.如权利要求1或2所述的超声波诊断装置,其中, 所述光照射部照射包含至少两种频率的光, 所述多个光检测部以所述超声波收发面的长边方向的中心轴为对称轴而设置有至少三对。
6.如权利要求1至5中任一项所述的超声波诊断装置,其中, 还具备: 接近信息生成单元,基于所述计算出的异常部位的位置及大小,生成用于表示所述超声波收发面向所述异常部位的接近状况的接近信息。
7.如权利要求6所述的超声波诊断装置,其中, 所述显示单元将所述接近信息与所述超声波图像一起显示。
8.如权利要求7所述的超声波诊断装置,其中, 所述接近信息为,通过对应于所述超声波收发面与所述异常部位之间的距离而使画面的一部分的明亮度变化,来表示所述超声波收发面向所述异常部位的接近状况。
9.如权利要求7所述的超声波诊断装置,其中,所述接近信息为,通过对应于所述超声波收发面与所述异常部位之间的距离而使画面的一部分的面积变化,来表示所述超声波收发面向所述异常部位的接近状况。
10.如权利要求7所述的超声波诊断装置,其中, 所述接近信息为,通过对应于所述超声波收发面与所述异常部位之间的距离而使画面的一部分的亮灭频率变化,来表示所述超声波收发面向所述异常部位的接近状况。
11.如权利要求7所述的超声波诊断装置,其中, 所述接近信息为,通过对应于所述超声波收发面与所述异常部位之间的距离而使画面的一部分振动显示的振幅变化,来表示所述超声波收发面向所述异常部位的接近状况。
12.如权利要求7所述的超声波诊断装置,其中, 所述接近信息为,通过对应于所述超声波收发面与所述异常部位之间的距离而使画面的一部分的色相变化,来表示所述超声波收发面向所述异常部位的接近状况。
13.如权利要求7所述的超声波诊断装置,其中, 所述接近信息为,通过对应于所述超声波收发面与所述异常部位之间的距离而使画面上的图标的位置变化,来表示所述超声波收发面向所述异常部位的接近状况。
14.如权利要求7所述的超声波诊断装置,其中, 所述接近信息为,通过对应于所述超声波收发面与所述异常部位之间的距离而使画面的一部分的形状变化,来表示所述超声波收发面向所述异常部位的接近状况。
15.如权利要求1至14中任一项所述的超声波诊断装置,其中, 所述计算单元基于所述各光检测部中检测到的光的强度,来计算所述各光检测部与所述被检体表面的紧贴度, 该超声波诊断装置还具备: 支援信息生成单元,基于所述计算出的紧贴度,生成用于支援所述超声波探测器的操作的支援信息;以及 支援信息输出单元,输出所述支援信息。
16.如权利要求15所述的超声波诊断装置,其中, 所述支援信息包含所述超声波探测器的位置、朝向、姿势、加压度中的至少一个。
17.如权利要求15所述的超声波诊断装置,其中, 所述支援信息包含用于以使所述多个光检测部检测的来自所述异常部位的信号强度之和最大的方式配置所述光探测器及所述超声波探测器的信息。
18.如权利要求1所述的超声波诊断装置,其中, 所述计算单元基于所述超声波图像和所述多个光检测部检测的光强度的变化,计算所述异常部位的位置及大小。
19.如权利要求1所述的超声波诊断装置,其中, 所述光照射部照射包含作为所述异常部位的吸收波长带的第一波长成分和除了所述异常部位的吸收波长带之外的第二波长成分的光, 所述计算单元比较由所述第一波长成分引起的检测光的强度与由所述第二波长成分引起的检测光的强度,来计算所述异常部位的位置及大小。
【文档编号】A61B8/06GK103784165SQ201310532739
【公开日】2014年5月14日 申请日期:2013年10月31日 优先权日:2012年10月31日
【发明者】高山晓, 浦野妙子, 中西务, 中村健二 申请人:株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1