辐射成像设备、计算机断层扫描设备及其辐射成像方法

文档序号:1269804阅读:177来源:国知局
辐射成像设备、计算机断层扫描设备及其辐射成像方法
【专利摘要】公开一种辐射成像设备、计算机断层扫描设备及其辐射成像方法。所述辐射成像设备包括:辐射发射器,被构造为在围绕对象运动的同时向对象发射辐射;辐射检测器,被构造为检测从辐射发射器发射的辐射,并将检测到的辐射转变为电信号,从而存储所述电信号;照射控制器,控制辐射发射器使得在围绕对象的至少一个位置或区域中向对象发射辐射,并使得辐射发射器在与所述至少一个位置或区域对应的位置或区域中停止向对象发射辐射。
【专利说明】辐射成像设备、计算机断层扫描设备及其辐射成像方法
【技术领域】
[0001]示例性实施例涉及一种辐射成像设备、计算机断层扫描设备和使用所述辐射成像设备的辐射成像方法。
【背景技术】
[0002]辐射成像设备(诸如数字射线照相(DR)系统、计算机断层扫描(CT)设备、全域数字化乳腺摄影(FFDM)设备等)是如下所述的成像系统,所述成像系统将辐射(例如,X射线(也称为伦琴射线))发射到对象(诸如人体或人体的一部分或者行李箱),从而获得对象的图像(例如,对象的内部材料、组织或结构的图像)。
[0003]辐射成像设备可用在医学成像系统中以检测人体的任意疾病或其它异常,可用于观察组件的内部结构,并可用作扫描仪以扫描机场中的行李箱等。
[0004]CT设备适合于通过从对象周围遍及360度地将福射连续发射到对象并检测已穿过对象的辐射,来获得对象的多个截面图像。为了获得连续的截面图像,CT设备从成像的开始到成像的结束将辐射持续地发射到对象(例如,人体)。

【发明内容】

[0005]一方面在于提供一种辐射成像设备、计算机断层扫描设备和辐射成像方法,所述设备和方法能够经由在对象附近在一些方向或区域中向对象发射辐射来获得整个对象的放射图像。
[0006]另一方面在于提供一种计算机断层扫描设备,所述设备能够经由在一些位置或区域中的辐射发射来产生对象的连续截面图像。
[0007]另一方面在于经由在一些方向或区域中的辐射发射而大幅减少对象的辐射暴露。
[0008]将在以下描述中部分阐述其他方面,并且其他方面部分将通过描述显而易见。
[0009]根据一方面,一种辐射成像设备包括:辐射发射器,在围绕对象运动的同时向对象发射辐射;辐射检测器,检测从辐射发射器发射的辐射,并将检测到的辐射转变为电信号,从而存储所述电信号;照射控制器,控制辐射发射器,使得在围绕对象的至少一个位置向对象发射辐射,并使得在与所述至少一个位置对应的位置不向对象发射辐射。
[0010]照射控制器可控制辐射发射器,使得如果辐射发射器位于围绕对象的至少一个位置,则辐射发射器向对象发射辐射,并且使得如果辐射发射器位于与所述至少一个辐射发射位置相对的位置,则辐射发射器停止辐射发射。
[0011]所述辐射成像设备还可包括:图像处理器,从由辐射检测器改变的电信号读出放射图像。
[0012]图像处理器可基于在辐射发射方向上捕获的单个放射图像产生在与辐射发射方向相反的方向上捕获的至少一个放射图像。
[0013]辐射发射器可以以预设角速度围绕对象运动。在这种情况下,照射控制器可基于辐射发射器的角速度确定是否由辐射发射器执行辐射发射,并可基于确定结果控制通过辐射发射器的辐射发射。另外,当在开始辐射发射之后经过辐射持续时间时,照射控制器可控制辐射发射器使得辐射发射器停止辐射发射,并且使得在停止辐射发射之后经过非照射持续时间后,辐射发射器开启辐射发射。
[0014]所述辐射成像设备还可包括:滤波器,安装在辐射发射路径中以通过或阻挡从辐射发射器发射的辐射,其中,辐射发射器沿所述辐射发射路径发射辐射。这里,照射控制器可控制滤波器,使得如果辐射发射器在围绕对象运动的同时到达给定位置,则滤波器传输从辐射发射器发射的辐射,并且使得如果辐射发射器到达与所述给定位置关于对象相反的位置或区域,则滤波器阻挡从辐射发射器发射的辐射。
[0015]根据另一方面,一种辐射成像设备包括:辐射发射器,被构造为沿围绕对象限定的运动路径运动并在其运动期间向对象发射辐射;辐射检测器,接收从辐射发射器发射的辐射,并将接收的辐射转变为电信号,其中,所述围绕对象限定的运动路径被划分为辐射发射器发射辐射的至少一个照射区域和辐射发射器不发射辐射的至少一个非照射区域,并且非照射区域位于所述至少一个照射区域的对面。
[0016]所述辐射成像设备还可包括:图像处理器,通过组合经由检测在所述至少一个照射区域中发射的辐射所产生的至少一个放射图像来产生放射图像。
[0017]图像处理器可基于照射区域的放射图像产生与照射区域相反的非照射区域的放射图像。
[0018]照射区域或非照射区域可由运动路径上的至少两个位置之间的弧确定。
[0019]运动路径上的照射区域和非照射区域可以交替布置。
[0020]辐射发射器可以以预设角速度沿围绕对象限定的运动路径运动。
[0021]所述辐射成像设备还可包括:照射控制器,控制辐射发射器,使得辐射发射器在进入照射区域时开启辐射发射并且在进入非照射区域时停止辐射发射。
[0022]辐射发射器可以以预设角速度沿围绕对象限定的运动路径运动,照射控制器可基于辐射发射器的角速度确定是否由辐射发射器执行辐射发射,并可基于确定结果控制由辐射发射器进行的辐射发射。
[0023]照射控制器可控制辐射发射器,使得当在开始辐射发射之后经过照射持续时间时,辐射发射器停止辐射发射,并且使得在停止辐射发射之后经过非照射持续时间后,辐射发射器开启辐射发射。
[0024]根据另一方面,一种辐射成像设备包括:辐射发射器,被构造为沿围绕对象限定的运动路径运动,并向对象发射辐射;滤波器,安装在辐射发射路径中以传输或阻挡从辐射发射器发射的辐射,其中,辐射发射器沿所述辐射发射路径发射辐射;辐射检测器,接收从辐射发射器发射的辐射,并将接收的辐射转变为电信号,其中,滤波器在运动路径上的至少一个照射位置或照射区域中传输从辐射发射器发射的辐射,并且在与所述至少一个照射位置或照射区域对应的至少一个非照射位置或非照射区域中阻挡从辐射发射器发射的辐射。
[0025]所述辐射成像设备还可包括:图像处理器,从由在所述至少一个照射位置或照射区域中发射的辐射转变的电信号中读出放射图像。图像处理器可基于所述至少一个照射位置或照射区域的放射图像产生所述至少一个非照射位置或非照射区域的放射图像。
[0026]运动路径上的照射位置或照射区域以及非照射位置或非照射区域可以交替布置。
[0027]围绕对象限定的运动路径可以是圆形或螺旋形。[0028]滤波器可包括用于传输辐射的至少一个开口。
[0029]滤波器可围绕位于滤波器的内部或外部的旋转轴旋转。在这种情况下,滤波器可以以与辐射发射器沿圆形或螺旋形运动路径运动的角速度相应的角速度旋转。另外,可基于在滤波器中形成的用于通过辐射的开口的数量、辐射发射器的角速度、在辐射发射器旋转一次时发射辐射的次数、或者照射区域或非照射区域的大小,来确定滤波器的角速度。
[0030]根据另一方面,一种辐射成像设备包括:辐射发射器,被构造为围绕对象运动至少一次,并且在接收到施加到辐射发射器的功率时产生辐射并向对象发射产生的辐射;辐射检测器,被构造为根据辐射发射器的运动围绕对象运动至少一次,并且检测从辐射发射器发射的辐射并将检测到的辐射转变为电信号,从而存储所述电信号;照射控制器,控制到辐射发射器的功率的施加或切断,其中,在辐射发射器和辐射检测器围绕对象运动一次时,照射控制器执行多次到辐射发射器的功率的施加和切断。
[0031]根据另一方面,一种辐射成像设备包括:辐射发射器,被构造为围绕对象运动并向对象发射辐射;辐射检测器,检测从辐射发射器发射的辐射,并将检测到的辐射转变为电信号,从而存储所述电信号;照射控制器,控制辐射发射器,使得在对象的给定方向上向对象发射辐射,并使得在与向对象发射辐射的所述给定方向对应的方向上不向对象发射辐射。
[0032]根据 另一方面,一种计算机断层扫描设备包括:可旋转台架,辐射发射器被安装在所述台架的一侧以向对象发射辐射;托架,对象被放置在托架上,所述托架被移动到台架内;辐射检测器,安装到台架上的辐射发射器的相对侧,并且用于接收穿过放置在托架上的对象的辐射并将接收的辐射转变为电信号,其中,辐射发射器在对象的给定方向上向对象发射辐射,并且在与所述给定方向相反的方向上不向对象发射辐射。
[0033]所述计算机断层扫描设备还可包括:照射控制器,控制辐射发射器使得辐射发射器在围绕对象运动的同时位于给定位置时发射辐射,并且当辐射发射器位于与所述给定位置对应的位置时,阻挡通过辐射发射器的辐射发射。
[0034]辐射发射器可以以预设角速度围绕对象运动,照射控制器可基于辐射发射器的角速度确定是否执行通过辐射发射器的辐射发射,并可基于确定结果控制由辐射发射器进行的辐射发射。
[0035]当在开始辐射发射之后经过照射持续时间时,照射控制器可停止由辐射发射器进行的辐射发射,并且在停止辐射发射之后经过非照射持续时间后,照射控制器可开启由辐射发射器进行的辐射发射。
[0036]辐射发射器可以以预设角速度围绕对象运动。
[0037]所述计算机断层扫描设备还可包括:图像处理器,从由辐射检测器转变的电信号读出放射图像。
[0038]图像处理器可基于在辐射发射方向上捕获的单个放射图像来产生在与辐射发射方向相反的方向上捕获的至少一个放射图像。
[0039]图像处理器可产生在沿相同方向发射多次辐射时获得的多个放射图像之间的至少一个中间放射图像。
[0040]图像处理器可基于产生的至少一个中间放射图像产生在与辐射发射方向相反的方向上捕获的至少一个放射图像。
[0041]根据另一方面,一种计算机断层扫描设备包括:可旋转台架,辐射发射器被安装在所述台架的一侧以向对象发射辐射;滤波器,被安装在辐射发射器的辐射发射方向上以传输或阻挡从辐射发射器发射的辐射;托架,对象被放置在托架上,所述托架沿与台架垂直的方向被移动到台架内;辐射检测器,被安装到台架上的辐射发射器的相对侧,并且用于接收穿过放置在托架上的对象的辐射并将接收的辐射转变为电信号,其中,滤波器在台架的运动期间在至少一个照射位置或照射区域中传输从辐射发射器发射的辐射,并且在与所述至少一个照射位置或照射区域对应的至少一个非照射位置或非照射区域中阻挡从辐射发射器发射的辐射。
[0042]所述计算机断层扫描设备还可包括:图像处理器,从转变的电信号读出放射图像。
[0043]图像处理器可基于产生的放射图像产生关于由滤波器阻挡的辐射的放射图像。更具体地讲,图像处理器可产生在沿相同方向发射多次辐射时获得的多个放射图像之间的至少一个中间放射图像。
[0044]图像处理器可基于产生的至少一个中间放射图像产生在与辐射发射方向相反的方向上捕获的至少一个放射图像。
[0045]滤波器可包括用于通过辐射的至少一个开口,滤波器可围绕位于滤波器的内部或外部的旋转轴旋转。
[0046]滤波器可以以与台架的角速度相应的角速度旋转,并且可基于在滤波器中形成的用于通过辐射的开口的数量、台架的角速度或者在辐射发射器旋转一次时发射辐射的次数来确定滤波器的角速度。
[0047]根据另一方面,一种使用计算机断层扫描设备的放射图像获得方法包括:通过在辐射发射器到达照射位置或区域时向对象发射辐射来获得至少一个照射位置或区域中的图像数据;当辐射发射器到达至少一个非照射位置或区域时,停止辐射发射;通过反复进行放射图像数据的获得和辐射发射的停止,来获得多个照射位置或区域中的多个图像数据,其中,所述至少一个照射位置或区域和所述至少一个非照射位置或区域可被布置为彼此对应。
[0048]所述放射图像获得方法还可包括:基于获得的所述多个图像数据中的在所述至少一个照射区域中获得的至少一个图像数据,计算在非照射区域中捕获的至少一个图像数据。
[0049]所述放射图像获得方法还可包括:如果辐射发射器到达所述至少一个照射区域,则通过滤波器传输发射到对象的辐射,并且如果辐射发射器到达所述至少一个非照射区域,则阻挡发射到对象的辐射,并且所述至少一个照射区域可被布置为与所述至少一个非照射区域对应。
[0050]在示例性实施例中,存在一种辐射成像设备,所述设备包括:辐射发射器,被构造为朝对象发射辐射并且同时围绕对象运动;辐射检测器,被构造为检测从辐射发射器发射的辐射,将检测到的辐射转变为信号,并存储所述信号;照射控制器,被构造为控制辐射发射器,使得在围绕对象的第一位置中朝对象发射辐射,并使得在与第一位置对应的第二位置中不朝对象发射辐射。
[0051]在另一示例性实施例中,存在一种辐射成像设备,所述设备包括:辐射发射器,被构造为沿围绕对象的路径运动,并在运动期间朝对象发射辐射;辐射检测器,被构造为接收从辐射发射器发射的辐射,并将接收的辐射转变为信号,其中,所述围绕对象的路径被划分为辐射发射器发射辐射的至少一个照射区域和辐射发射器不发射辐射的至少一个非照射区域,并且所述至少一个非照射区域位于所述至少一个照射区域的对面。
[0052]在一个示例性实施例中,存在一种辐射成像设备,所述设备包括:辐射发射器,被构造为沿围绕对象的第一路径运动,并朝对象发射辐射;滤波器,被布置在第二路径中以传输或阻挡从辐射发射器发射的辐射,其中,辐射发射器沿第二路径发射辐射;辐射检测器,被构造为接收从辐射发射器发射的辐射,并将接收的辐射转变为信号,其中,滤波器在第一路径上的至少一个照射位置或照射区域中传输从辐射发射器发射的辐射,并且在与所述至少一个照射位置或照射区域相应的至少一个非照射位置或非照射区域中阻挡从辐射发射器发射的辐射。
[0053]在另一示例性实施例中,存在一种使用计算机断层扫描设备的放射图像获得方法,所述方法包括:执行辐射成像操作,用于通过控制辐射发射器获得多个方向上的多个放射图像数据,使得在围绕对象的至少一个方向上朝对象发射辐射,并且使得在与所述至少一个方向对应的方向上不朝对象发射辐射;执行图像数据组合操作,用于组合所述多个方向上的所述多个放射图像数据。
[0054]在一个示例性实施例中,存在一种辐射成像设备,所述设备包括:发射器,被构造为同时朝对象发射辐射并围绕对象运动;检测器,被构造为检测穿过对象的辐射,将检测到的辐射转换为信号,并存储所述信号;用于确定发射器或检测器的位置的装置;控制器,被构造为基于由所述用于确定的装置检测到的发射器或检测器的位置来控制辐射发射器,以在所述位置是第一位置时朝对象发射辐射,并在所述位置是与第一位置相反的第二位置时不朝对象发射辐射。
[0055]在另一示例性实施例中,存在一种辐射成像设备,所述设备包括:发射器,被构造为同时朝对象发射辐射并围绕对象运动;用于开闭由发射器发射的辐射的装置;检测器,被构造为检测穿过所述用于开闭的装置和对象的辐射,将检测到的辐射转换为信号,并存储所述信号;控制器,被构造为基于发射器或检测器的位置控制所述用于开闭的装置。
【专利附图】

【附图说明】
[0056]通过下面结合附图对示例性实施例进行的描述,这些和/或其他方面将变得清楚和更容易理解,其中:
[0057]图1是示出根据示例性实施例的辐射成像设备的整体构造的示图;
[0058]图2是示出根据示例性实施例的辐射发射器的示图;
[0059]图3A至图3E是解释根据示例性实施例的辐射发射器在运动路径上的辐射发射的示图;
[0060]图4A至图4C是解释根据另一示例性实施例的辐射发射器在运动路径上的辐射发射的示图;
[0061]图5A至图是示出滤波器的示例性实施例的示图;
[0062]图6A和图6B是示出滤波器的另一示例性实施例的示图;
[0063]图7A至图7C是示出滤波器的多种示例性实施例的示图;
[0064]图8是解释根据示例性实施例的朝着对象的辐射的发射的示图;
[0065]图9是示出根据示例性实施例的辐射检测器的示图;[0066]图1OA至图1OC是安装到辐射检测器的准直器的透视图和说明性示图;
[0067]图1lA和图1lB是示出根据几个示例性实施例的图像处理器的构造的示图;
[0068]图12A至图12C是分别示出沿不同方向的辐射发射和通过辐射发射获得的放射图像的示图;
[0069]图12D至图12F是分别示出通过辐射成像设备获得的空间域和频域的示图;
[0070]图13是示出计算机断层扫描设备的构造的示图;
[0071]图14至图16是示出计算机断层扫描设备的构造的示图;
[0072]图17和图18是解释通过计算机断层扫描设备的放射的示图;
[0073]图19至图21是示出计算机断层扫描设备的另一示例性实施例的示图;
[0074]图22k至图22C是解释根据示例性实施例的放射图像的产生的示图;
[0075]图23至图25是解释全域数字化乳腺摄影(FFDM)设备的示例性实施例的示图;
[0076]图26和图27是示出放射图像产生方法的各种示例性实施例的流程图。
【具体实施方式】
[0077]现在将对示例性实施例做出详细的说明,在附图中示出示例性实施例的示例,其中,相同的标号始终表示相同的元件。
[0078]图1是示出根据示例性实施例的辐射成像设备的整体构造的示图。
[0079]如图1中所示,根据示例性实施例,辐射成像设备包括辐射发射器10和辐射检测器20。辐射发射器10将辐射(例如,X射线)发射到对象ob。应当注意的是,本发明不限于发射X射线的辐射发射器10,而且预期使用输出除了 X射线之外的电磁频谱形式的辐射的其他发射器。辐射检测器20接收穿过了对象ob的辐射或者指向对象ob附近的辐射,并将接收到的辐射转变为将被存储的电信号,或者转变为作为随后存储的辐射信息或放射图像的代表的电信号。
[0080]如图1中示例性地所示,辐射成像设备还可包括:图像处理器30,从存储在辐射检测器20中的电信号读出放射图像。可选地,图像处理器30读出存储在辐射检测器20中的辐射信息或放射图像。图像处理器30可处理产生的放射图像,或者可使用产生的放射图像产生另外的放射图像。
[0081]辐射成像设备还可包括:照射控制器40,控制是否由辐射发射器10执行辐射发射,例如,控制由辐射发射器10进行辐射的发射。在一个示例性实施例中,照射控制器40控制辐射发射器10实现这种控制。
[0082]另外,辐射成像设备可包括:运动控制器50,控制辐射发射器10的运动,例如,围绕对象ob的旋转运动。在另一示例性实施例中,运动可以是弯曲的、弧形的、曲线的、线性的或阶梯式的。运动控制器50还控制辐射发射器10和辐射检测器20的运动。辐射发射器10的运动可与辐射检测器20的运动相应。在一个示例性实施例中,辐射发射器10的运动可与辐射检测器的运动匹配、对称、同步、近似匹配、近似对称或近似同步。
[0083]图像处理器30、照射控制器40和运动控制器50的功能可由诸如中央处理单元(CPU)的处理器或设置在辐射成像设备中的单独的信息处理装置执行。
[0084]辐射成像设备还可包括:托架61,如图1中所示对象ob被放置在托架61上。根据示例性实施例,托架61可以是可移动的。在一个实施例中,托架是患者检查台。[0085]具体地讲,辐射发射器10可在围绕对象ob沿运动路径rl运动的同时向对象ob发射辐射。在该示例性实施例中,例如,运动路径rl可以是如图1中示例性地所示的椭圆形路径或圆形路径。虽然可以或者可不预先确定运动路径rl,但是在一个示例中,运动路径rl可以是圆形或椭圆形的一部分,或者可具有弧形形状。如此,辐射发射器10可在沿着与对象ob分开预定距离的圆形、椭圆形或弧形的运动路径rl围绕对象ob运动的同时向对象ob发射辐射。然而,运动路径rl不限于圆形或椭圆形形状,而可具有其他形状,包括以上公开的那些形状。
[0086]根据示例性实施例,辐射发射器10可向对象ob发射具有不同能带的辐射。这可实现多能X射线(MEX)图像的获得。
[0087]与辐射发射器10类似,辐射检测器20可沿运动路径r2运动,从而接收从辐射发射器10发射的辐射。同样地,可以或者可不预先确定运动路径r2。在这种情况下,辐射检测器20的运动路径r2可具有与辐射发射器10的运动路径相同的形状。例如,如图1中示例性地所示,辐射检测器20的运动路径r2可以是如在辐射发射器10中相同方式的圆形。另外,辐射检测器20的运动路径r2可具有椭圆形形状,或者可具有弧形形状。辐射检测器20用于在沿圆形、椭圆形或弧形的运动路径r2运动的同时检测从辐射发射器10发射的辐射,并将检测到的辐射转变为电信号以将电信号存储在其中。然而,运动路径r2不限于圆形或椭圆形形状,而可具有其他形状,包括以上公开的那些形状。
[0088]根据辐射成像设备的示例性实施例,辐射发射器10和辐射检测器20可以可移动地安装到外部驱动装置(例如,计算机断层扫描设备的台架)。即,辐射发射器10和辐射检测器20可通过计算机断层扫描设备的台架的旋转沿预定方向围绕对象Ob圆形地运动。在围绕对象ob运动期间,辐射发射器10和辐射检测器20可被布置为彼此相对,以确保辐射的适当接收。在这种情况下,辐射发射器10和辐射检测器20可具有相同的角速度或角加速度,但是不必受限于此。
[0089]如上所述,运动控制器50可被设置为使辐射发射器10和辐射检测器20运动。
[0090]图2是示出根据示例性实施例的辐射发射器10的示图。
[0091]如图2中所示,根据示例性实施例的辐射发射器10可包括:辐射管11,产生辐射,例如X射线;以及电源12,电连接到辐射管11,从而将电压施加到辐射管11。此外,在其他示例性实施例中,辐射发射器10可以是输出除了 X射线之外的电磁频谱形式的其他辐射的发射器。
[0092]现在将通过示例的方式描述通过辐射发射器10产生辐射的方法。
[0093]如果辐射发射器10的电源12将预定电压施加到辐射管11,则电子根据被施加的电压在辐射管11的阴极灯丝111中加速,从而朝阳极112运动。在到达阳极112时,加速的电子的速度在阳极112的原子核附近快速减小。在这种情况下,根据能量转换的原理,在阳极112中产生辐射(例如,X射线)。
[0094]在阳极112中产生的辐射本质上并非仅导向用户期望的方向和范围。此外,即使辐射被导向用户期望的方向,也可例如在对象小的情况下或者在期望将辐射仅发射到对象的局部时,必需减小发射范围。因此,为了控制辐射发射方向和辐射发射范围,例如,为了控制更宽或更窄的发射范围,根据示例性实施例,可将第一准直器13安装在从辐射管11起的辐射发射路径上。[0095]准直器13通过将多个辐射滤除并引导到特定方向和预定范围来帮助用户控制辐射发射方向和辐射发射范围。准直器13包括由能够吸收辐射的材料(例如,铅(Pb))形成的至少一个准直器叶片或准直器滤波器。
[0096]在一个示例中,如图2中示例性地所示,在阳极112中产生并且导向用户不期望的方向的一些辐射xl和x2被例如第一准直器13的分区131吸收从而不被导向到对象ob,而导向用户期望的方向的福射x3通过例如第一准直器13的开口 132朝着对象ob引导。
[0097]在辐射成像设备是计算机断层扫描设备的情况下,第一准直器13可允许通过辐射管11产生的辐射以扇形形状或其他形状导向对象ob。
[0098]如以上在图1中所述,辐射发射器10可在沿围绕对象ob的运动路径运动的同时向对象ob发射辐射。在这种情况下,根据示例性实施例,辐射发射器10可在一段时间内或者根据运动路径上辐射发射器10所处的位置来选择性地向对象ob发射辐射。根据另一示例性实施例,辐射发射器10可向对象Ob连续地发射辐射。
[0099]图3A至图3E是解释根据示例性实施例的辐射发射器在运动路径上的辐射发射的示图。
[0100]根据辐射成像设备的示例性实施例,辐射发射器10可仅在其运动路径的位置或区域中向对象Ob发射辐射。可以或者可不预先确定所述位置或区域。根据示例性实施例,如果辐射发射器10在如图3A中示例性地所示的位置或区域中向对象Ob发射辐射,则辐射发射器10可不在与辐射发射器10向对象ob发射辐射的位置或区域对应的位置或区域中向对象ob发射辐射。更具体地讲,与发生辐射发射的位置或区域对应的位置或区域可以是与所述位置或区域关于点、轴或参考点相反的位置或区域,其中,所述点、轴或参考点全部可被预先确定或可不被预先确定。例如,与发生辐射发射的位置或区域对应的位置或区域可以是位于关于对象ob相反方向上的位置或区域。另外,与发生辐射发射的位置或区域对应的位置或区域可以是与所述位置或区域关于轴相反的位置或区域。
[0101]例如,如图3A中所示,辐射发射器10可在辐射发射器10的运动路径上的位置(例如,在第一位置11、第三位置13和第五位置15)向对象Ob发射辐射,但是可不在与包括第一位置11、第三位置13和第五位置15的发射位置对应的位置(即,在第四位置14、第六位置16和第二位置12)向对象ob发射辐射。换言之,可控制对象ob使得不在与辐射发射方向对应的方向(例如,在辐射发射器10沿至少一个方向朝对象ob发射辐射的情况下与所述辐射发射方向相反的方向)上接收辐射。
[0102]例如,如图3B中所示,辐射发射器10可在照射区域al、a3和a5中向对象发射辐射,但是可不在非照射区域a2、a4和a6中向对象ob发射辐射。
[0103]如图3B中所示,在辐射发射器10的运动路径是围绕对象ob限定的圆形路径的情况下,可将运动路径划分为照射区域al、a3和a5以及非照射区域a2、a4和a6。照射区域al、a3和a5以及非照射区域a2、a4和a6可在运动路径上交替排列,从而不与相同的区域相邻。即,从对象ob向外看,照射区域al、a3和a5分别位于各个非照射区域a2、a4和a6的左侧,反过来说,非照射区域a2、a4和a6分别位于各个照射区域a3、a5和al的左侧。
[0104]在这种情况下,各个非照射区域a2、a4和a6以及各个照射区域al、a3和a5在如图3B中示例性地所示的圆形运动路径上相互对称。换言之,在圆形运动路径上,一个非照射区域a2、a4或a6可被呈现在一个照射区域al、a3或a5的相反侧。[0105]根据一个示例性实施例,圆形运动路径可被均等地划分。例如,如图3B中示例性地所示,运动路径可被划分为具有相同尺寸的六个区域。在这种情况下,每个划分区域可以是照射区域al、a3和a5中的任何一个或者非照射区域a2、a4和a6中的任何一个。
[0106]根据另一示例性实施例,圆形运动路径可被划分为不同尺寸的区域。同样地,每个划分区域可以是照射区域al、a3和a5中的任何一个或者非照射区域a2、a4和a6中的任何一个。在这种情况下,与照射区域al、a3和a5相应的非照射区域a2、a4和a6或者与非照射区域a2、a4和a6相应的照射区域al、a3和a5可具有相同尺寸。
[0107]在运动路径被划分为多个照射区域和非照射区域的情况下,辐射发射器10在沿其运动路径运动期间进入照射区域al、a3和a5时开始向对象ob发射辐射。辐射发射器10在照射区域al、a3和a5中向对象ob持续发射辐射,然后在进入非照射区域a2、a4和a6时停止辐射发射,从而不向对象ob发射辐射。结果,在非照射区域a2、a4和a6中不向对象ob发射辐射。
[0108]根据示例性实施例,为了允许辐射发射器10仅在特定位置或区域执行辐射发射,辐射发射器10可基于辐射发射器10的位置信息选择性地执行辐射发射。
[0109]根据一个示例性实施例,为了获得辐射发射器10的位置信息,可利用辐射发射器10的角速度。即,可控制如图1或图3A中所示的辐射发射器10基于辐射发射器10在沿其圆形运动路径运动期间的角速度执行辐射发射。
[0110]通过利用辐射发射器10的角速度,可获得或计算辐射发射器10在经过预定持续时间之后的位置,即,在从参考位置开始运动之后辐射发射器10的旋转角度。可使用获得的旋转角度来计算辐射发射器10的位置,可基于所计算的位置来控制是否由辐射发射器10执行辐射发射。
[0111]另外,根据另一示例性实施例,为了获得辐射发射器10的位置信息,可使用位置传感器。
[0112]为了获得辐射发射器10的位置信息,可在辐射发射器10或辐射检测器20的运动路径上放置编码器或检测器,以检测辐射发射器10或辐射检测器20的位置。在这种情况下,为了允许编码器检测辐射发射器10或辐射检测器20的位置,辐射发射器10或辐射检测器20可设置有检测块(detection piece)。
[0113]如果辐射成像设备是计算机断层扫描设备,则可在安装辐射发射器10或辐射检测器20的台架处形成检测块,并且安装到台架的横向部分的编码器可检测台架上的检测块,以检测辐射发射器10或辐射检测器20的位置。
[0114]在另一示例性实施例中,可使用辐射发射器10或辐射检测器20的角速度和检测到的检测块的位置的组合来确定辐射发射器10或辐射检测器20的位置。
[0115]根据另一不例性实施例,福射发射器10可在一段时间内或根据模式向对象ob选择性地发射辐射,其中,所述一段时间和模式可被预先确定或者可不被预先确定。
[0116]可由用户设置或预先设置辐射发射间隔或模式。当然,为了设置辐射发射间隔或图案,可使用辐射发射器10的角速度,如上所述。
[0117]通过使用辐射发射器10的角速度的倒数,可计算辐射发射器10沿圆形运动路径的旋转运动周期,并可基于计算的周期计算辐射发射周期,即,发射辐射的周期和不发射辐射的周期。例如,可通过将计算的周期除以发射辐射的次数的2倍值来获得辐射发射周期。如此,可根据计算的辐射发射周期执行通过辐射发射器10的辐射发射。
[0118]为了确保辐射发射器10在其运动路径上的位置或区域中向对象ob发射辐射,如图1中所示,辐射成像设备可包括照射控制器40。照射控制器40可控制通过辐射发射器10的辐射发射,从而允许辐射发射器10向对象Ob选择性地发射辐射。
[0119]根据一个示例性实施例,照射控制器40可获得辐射发射器10的位置信息,从而控制辐射发射器10根据获得的辐射发射器10的位置信息来选择性地执行辐射发射。在这种情况下,如上所述,可使用辐射发射器10的角速度。此外,可使用单独的位置传感器。
[0120]根据另一示例性实施例,照射控制器40可根据周期或模式控制由辐射发射器10进行的辐射发射,其中,所述周期和模式均可被预先确定或者均可不被预先确定。即,照射控制器40可允许辐射发射器10根据周期或模式选择性地执行辐射发射,使得仅在照射区域al、a3和a5中发射辐射。
[0121]例如,当在开始辐射发射之后经过发射持续时间时,照射控制器40可控制辐射发射器10停止辐射发射,并且当在停止辐射发射之后经过持续时间(B卩,非发射持续时间)时,照射控制器40可控制辐射发射器10开启辐射发射。
[0122]与以上描述类似,照射控制器40可利用辐射发射器10的角速度确定辐射发射周期,并基于确定的辐射发射周期控制辐射发射。可选地,照射控制器40可使用由用户输入的周期或模式来控制辐射发射。
[0123]在示例性实施例中,辐射发射的控制可基于时间、空间或其他因素。在其他示例性实施例中,辐射发射器10的位置的计算不是必要的,并且仅辐射发射器10对多个元件之一的接近将控制辐射发射。可选择性地将元件控制在两种状态之一下,使得辐射发射器10对一种状态下的元件的接近将开启辐射发射,并且辐射发射器10对另一状态下的另一元件的接近将关闭辐射发射。如果辐射发射器10比其他元件更接近那个元件或者与那个元件接触,则辐射发射器10将接近受那个元件控制的元件。
[0124]为了控制是否通过辐射发射器10执行辐射发射,具体地讲,照射控制器40可控制辐射发射器10的电源12,以允许电源12将电压施加到或不施加到辐射管11。
[0125]例如,在确定辐射发射器10进入照射区域al、a3和a5时,照射控制器40可产生并发送用于将电压施加到辐射管11的控制指令。可选地,照射控制器40可控制在一段时间内对辐射管11的电压的施加,使得仅在照射区域al、a3和a5中执行辐射发射。
[0126]根据用于电压施加的控制指令或者根据电压施加周期,在辐射管11的阳极112中产生辐射。辐射发射器10仅在照射区域al、a3和a5中向对象ob发射辐射。
[0127]辐射发射器10的状态或施加到辐射管11的电压如图3C中所示变化。即,辐射发射器10的状态或施加的电压具有脉冲形状。可通过上述照射控制器40执行所述状态或电压的改变。
[0128]例如,如图3C中所示,照射控制器40可将发射指令或发射停止指令发送到辐射发射器10,或者可基于每个周期控制由辐射发射器10进行的辐射发射,从而允许电压被施加到辐射发射器10 (接通)或者不被施加到辐射发射器10 (关闭)。由于辐射发射器10在被施加电压时发射辐射,因此在接通状态下执行辐射发射,在关闭状态下停止辐射发射。
[0129]可根据如上所述的照射控制器40的控制指令或周期来执行开启/关闭状态的变化。[0130]可如图3D中示出用接通/关闭状态变化替代圆形运动路径的结果。即,如图3D中所示,辐射发射器10根据控制指令或周期在辐射发射器10的接通状态下向对象Ob发射辐射,并在关闭状态下停止辐射发射。
[0131]虽然图3A至图3D示出辐射发射器10的运动路径被划分为三个或更多个区域的情况,但是如图3E中示例性地所示运动路径可被划分为两个相等区域。即,如图3E中示例性地所示,在圆形运动路径的情况下,辐射发射器10在圆形运动路径的一半中发射辐射,并且在圆形运动路径的另一半中不发射辐射。
[0132]图4A至图4C是解释根据另一示例性实施例的辐射发射器在运动路径上的辐射发射的示图。[0133]根据辐射成像设备的另一示例性实施例,如图4A中示例性地所示,辐射发射器10可朝对象ob连续产生并发射辐射。即,辐射发射器10可向对象ob连续发射辐射,而非如上所述经由反复的接通/关闭状态变化向对象选择性地发射辐射。
[0134]根据辐射成像设备的示例性实施例,当辐射发射器10连续发射辐射时,滤波器14可被设置在辐射发射器10的辐射发射路径上,即,沿发射辐射的方向。
[0135]当辐射发射器10位于特定位置或区域中时,滤波器14可通过传输或阻挡从辐射发射器10发射的辐射来控制朝着对象Ob的辐射的发射。
[0136]具体地讲,滤波器14被构造为:当辐射发射器10在围绕对象ob运动的同时位于特定位置(发射位置)或区域(照射区域)时,使从辐射发射器10发射的辐射通过。相反,当辐射发射器10位于关于对象Ob的相反位置(非发射位置)或区域(非照射区域)时,滤波器14阻挡从辐射发射器10发射的辐射,从而控制朝着对象ob的辐射的发射。
[0137]在滤波器14被设置在从辐射发射器10起的辐射发射方向上的情况下,与图3C的示例不同,辐射发射器10可在如图4C中所示的开始成像之后连续产生并发射辐射。换言之,电压被持续施加到辐射管11。
[0138]在示例性实施例中,对滤波器14的控制遵循与控制由辐射发射器10进行的辐射发射的上述方式相同或相似的方式。
[0139]图5A至图是示出滤波器14的示例性实施例的示图。
[0140]根据示例性实施例,如图5A至图5C中所示,滤波器14具有圆盘形状,并且在圆盘的部分中形成用于辐射的通路的开口 141。根据示例性实施例,开口 141可具有半圆形或扇形形状。另外,为了实现圆盘形状的滤波器14的旋转,例如,可在圆盘的中心处设置旋转轴143。旋转轴143可位于除了中心位置之外的圆盘上的另一位置,并可围绕圆盘而存在。
[0141]滤波器14通过围绕旋转轴143旋转来传输或阻挡沿着自辐射发射器10起的辐射发射方向的辐射。当滤波器14的开口 141在滤波器14的旋转期间处于辐射发射器10的辐射发射路径中时,如图5B中所示,开口 141传输辐射。相反,如图5C中所示,如果滤波器14的另一部分(即,辐射阻挡部分142)而非开口 141在滤波器14的旋转期间处于辐射发射器10的辐射发射路径上,则从辐射发射器10发射的辐射被滤波器14阻挡或吸收。如此,从辐射发射器10发射的辐射被滤波器14控制,从而被选择性地发射到对象ob。
[0142]滤波器14的操作(例如,滤波器14的运动速度,即,滤波器14的角速度)被设置为使得对象ob仅接收特定区域内(即,照射区域内)的发射,不接收其他区域内(即,非照射区域内)的辐射,如图3B中所示。[0143]具体地讲,可根据辐射发射器10的速度(例如,根据当辐射发射器10沿圆形运动路径运动时的辐射发射器10的角速度),根据照射区域和非照射区域的大小和布置,并根据滤波器14的开口 141的形状或大小,来调整滤波器14的旋转角速度。
[0144]例如,假设如图中所示存在三个照射区域和三个非照射区域并且开口 141占据滤波器14的一半且阻挡部分142占据另一半,则滤波器14的旋转角速度被设置为辐射发射器10的角速度的三倍。即,如下面的等式I所示设置滤波器14的旋转角速度。
[0145]等式I
[0146]滤波器的旋转角速度ω?=辐射发射器的角速度ω2Χ3
[0147]即,如果辐射发射器10沿圆形运动路径运动一次,则滤波器14可旋转三次。[0148]一旦已经如上所述设置了滤波器14的旋转角速度,就如图中所示,当辐射发射器10进入照射区域(图的(a))时,滤波器14的开口 141位于辐射发射器10的辐射发射路径上,从而允许从辐射发射器10发射的辐射到达对象ob。在照射区域(图的(b))内,福射连续到达对象ob。
[0149]当辐射发射器10进入非照射区域(图的(C))时,除了开口 141之外的圆盘的阻挡部分142位于辐射发射器10的辐射发射路径上,从而阻挡辐射以防止辐射到达对象ob。在非照射区域(图的(d))内,辐射被连续阻挡。然后,当辐射发射器10再次进入照射区域时,福射通过开口 141到达对象ob (图的(e))。
[0150]如上所述,可基于辐射发射器10的角速度设置滤波器14的旋转角速度。当辐射发射器10的角速度改变时,滤波器14的旋转角速度被调整为与改变的角速度对应。
[0151]可根据照射区域或非照射区域的大小或范围来调整滤波器14的旋转角速度。虽然滤波器14的旋转角速度可被保持不变,但是这在必要时可以改变。
[0152]例如,如果非照射区域长于照射区域,即,如果图3B的非照射区域的弧长度长于照射区域的弧长度,则在控制下,非照射区域上滤波器14的旋转角速度可大于照射区域上滤波器14的旋转角速度。相反,如果图3B的非照射区域的弧长度短于照射区域的弧长度,则在控制下,照射区域上滤波器14的旋转角速度可大于非照射区域上滤波器14的旋转角速度。
[0153]可基于滤波器14的开口 141的大小设置滤波器14的旋转角速度。例如,如果如图中所示滤波器14的开口 141具有大约圆盘大小的一半,则如上所述滤波器14的旋转角速度可以是辐射发射器10的角速度的三倍。
[0154]图6A和图6B是示出滤波器的另一示例性实施例的示图。
[0155]如图6A中所示,圆盘形状的滤波器14可具有多个开口,例如,两个开口 141a和141b。在这种情况下,滤波器14可与开口 141a和141b的数量成比例地进行较小旋转。因此,可减小滤波器14的角速度。
[0156]例如,如图6A中所示,假设存在滤波器14的两个开口 141a和141b,并且每个开口的大小是圆盘大小的四分之一。
[0157]然后,如图6B中所示,如果辐射发射器10进入照射区域,则滤波器14的开口 141a和141b中的任何一个位于辐射发射器10的辐射发射路径上以传输辐射。在这种情况下,由于开口 141a小于如以上图中所述的滤波器14的开口 141,因此在照射区域具有相同大小的假设下减小滤波器14的角速度会是必需的。即,在图的情况下,滤波器14从点(a)到点(c)旋转180度,但是在图6B的情况下,滤波器14从点(f)到点(g)旋转90度。
[0158]从滤波器14进入下一照射区域的点h开始,另一开口 141b位于辐射发射器10的辐射发射路径上以传输辐射。
[0159]如此,如图6B中所示,假设滤波器14具有两个开口 141a和141b,并且每个开口的大小是圆盘大小的四分之一,则滤波器14的旋转角速度仅是辐射发射器10的角速度的
1.5倍。即,滤波器14旋转在图中示出的示例性实施例中的旋转角速度的一半。
[0160]例如,如果非照射区域长于照射区域,即,如果图3B的非照射区域的弧长度长于照射区域的弧长度,则滤波器14的开口 141的大小可小于阻挡部分142的大小。在这种情况下,如上所述,在不要求滤波器14的角速度改变的情况下,滤波器14可以以相同角速度旋转。
[0161]因此,可基于滤波器14的开口 141的数量、大小或形状来设置滤波器14的旋转速度。
[0162]图7A至图7C是示出滤波器14的多种示例性实施例的示图。如图7A中所示,滤波器14可以是半圆形盘,使得半圆形阻挡部分142阻挡辐射。与以上描述类似,滤波器14围绕旋转轴143旋转。
[0163]如图7B中所示,滤波器14可采用多个扇形形状的阻挡部分142的组合的形式。在这种情况下,所述多个扇形形状的阻挡部分142可彼此间隔开,使得在各个阻挡部分142之间存在用于辐射的通路的多个开口 141。所述多个开口 141也可具有扇形形状。与以上描述类似,包括所述多个扇形形状的阻挡部分142的滤波器14可围绕旋转轴143旋转。
[0164]如图7C中所示,至少一个叶片142可围绕与叶片142水平的旋转轴143旋转,以传输或阻挡辐射。
[0165]在其他示例性实施例中,滤波器可不具有完整的旋转运动,而可具有来回运动、往复运动或振荡运动。例如,图5A中的滤波器14和任何其他滤波器将在小于360度的弧内旋转或来回运动,以用作打开或关闭发射的辐射将通过的路径的快门。
[0166]如上所述,滤波器14可具有各种形状,并且可基于滤波器14的形状设置滤波器14的角速度。
[0167]在情况需要时,用于传输或阻挡辐射的其他形状的滤波器14可应用于辐射成像设备。
[0168]根据示例性实施例,辐射成像设备还可包括托架61,如图1中所示对象ob可被放置在托架61上。根据示例性实施例,托架61可采用可放置人体的检查台的形式。如果辐射成像设备是计算机断层扫描设备,则托架61可沿线性路径移动。
[0169]如果辐射被发射到放置在托架61上的对象ob,则辐射可根据对象ob的内部组织或材料的性质(例如,根据内部材料的衰减系数)被对象ob的内部组织或材料吸收或减小透射率。穿过了对象Ob的辐射或者经过了对象Ob周围而非到达对象Ob的辐射被辐射检测器20接收。
[0170]图8是解释根据示例性实施例的到对象的辐射的发射的示图。
[0171]如图8中所示,在与辐射发射方向相反的方向上,放置在托架61上的对象ob可不
暴露于福射。
[0172]即,如图8中所示,如果辐射(例如,X射线)沿第一方向导向对象ob,则没有辐射沿相反方向(即,沿第四方向)导向对象ob。类似地,如果辐射沿第三方向或第五方向导向对象0b,则没有辐射沿与第三方向或第五方向相反的方向(B卩,沿第六方向或第二方向)导向对象。
[0173]在辐射沿给定方向被发射到对象ob的情况下,为了确保沿与给定方向相反的方向没有辐射被发射到对象ob,可如上所述控制电压被施加到辐射发射器10的辐射管11,并且使用安装在辐射发射器10的辐射发射路径上的滤波器14控制辐射的通路。
[0174]利用根据示例性实施例的辐射成像设备,辐射沿给定方向(例如,沿第一方向、第三方向或第五方向)被发射到托架61上的对象ob,并且没有辐射沿相反方向(例如,沿第四方向、第六方向或第二方向)被发射到对象ob。因此,与辐射沿所有方向被发射到对象ob的情况相比,对象ob被暴露于一半的福射。
[0175]图9是示出根据示例性实施例的辐射检测器20的示图。
[0176]如图9中所示,辐射检测器20可被划分为用于接收辐射的多个像素21。为了接收辐射并将辐射转变为电信号,每个像素21可包括诸如闪烁体211的光接收元件、光电二极管212和存储元件213。
[0177]闪烁体211接收辐射并输出光子,具体地讲,根据接收的辐射的可见光子。光电二极管212接收从闪烁体211输出的光子,并将光子转变为电信号。存储元件213电连接到光电二极管212,并存储从光电二极管212输出的电信号。在一个例性实施例中,存储兀件存储由电信号表示的信息。这里,例如,存储元件213可以是电容器。如图1和图9中所示,在每个像素21的存储元件213中存储的电信号被图像处理器30读出。由于图像处理器30基于读出的电 信号产生放射图像,因此辐射检测器20可获得与接收的辐射对应的放射图像。
[0178]在经历期望的图像处理之后,如图1中所示,产生的放射图像可经由无线或有线通信网络(诸如线缆)连接到辐射成像设备,或者可经由安装到辐射成像设备的显示装置D被显示给用户。
[0179]图10A至图10C是安装到辐射检测器的准直器的透视图和说明性示图。
[0180]如图10A中所示,可安装第二准直器22,使得穿过了对象的辐射在到达辐射检测器20之前到达第二准直器22。在穿过对象ob的同时,如图10B的x4和x5所指定的,辐射可被散射。辐射的散射致使像素接收错误位置的散射的辐射,这可使最终产生的放射图像的准确性劣化。
[0181]如图10C中所示,第二准直器22吸收被对象ob散射的辐射,并使适当的辐射到达辐射检测器20,这提高了图像的准确性。
[0182]辐射成像设备可包括如图1中所示的图像处理器30。图1IA和图1lB是示出根据几个示例性实施例的图像处理器的构造的示图。
[0183]如图1lA中所示,根据一个示例性实施例的图像处理器30可包括图像产生器31、图像组合器33和效果处理器34。
[0184]图像处理器30同时或依次读出在辐射检测器20的像素的各个存储元件213中存储的电信号,从而获得产生放射图像所需的原始图像数据i。读出的电信号(即,原始图像数据i)可被暂时存储在单独的存储空间中。
[0185]如以上参照图3A至图8所述,原始图像数据i不从沿所有方向发射的辐射转变,但是从仅在特定位置或区域(即,在照射区域内)发射的辐射转变。即,原始图像数据i仅包括沿所有方向中的一些方向(例如,在照射区域中)的图像数据,而不包括沿其他方向(例如,在非照射区域中)的图像数据i,。
[0186]如果每当发射辐射时辐射检测器20的存储元件213可暂时存储从光电二极管212发送的电信号,或者可不反复存储电信号,即,如果必需从存储元件213删除先前存储的电信号以存储新产生的电信号,则每当发射辐射时图像处理器30可从存储元件213读出电信号。如果每当发射辐射时辐射检测器20的存储元件213可单独存储产生的电信号,则对于图像处理器30而言每当发射辐射时读出电信号可能不是必要的。
[0187]读出的电信号(B卩,原始图像数据i)可由图像处理器30的图像产生器31处理。
[0188]图像产生器31可基于原始图像数据i产生放射图像。在这种情况下,图像产生器31可产生放射图像,使得与存储了各个电信号的存储元件213对应的像素对应于构成放射图像的像素。
[0189]如果如上所述每当发射辐射时从存储元件213读出电信号,则每当读出电信号时图像产生器31可产生放射图 像。
[0190]如果辐射发射器10向对象ob发射具有不同能带的辐射,则图像产生器31可产生与所述不同能带对应的多个放射图像。通过将权重施加到各个放射图像或者经由放射图像的组合或减法,可产生多能放射图像。
[0191]如以上在图3A至图8中所述,由图像产生器31产生的放射图像不是沿所有方向捕获的,而是当辐射发射器10位于特定位置或区域(即,照射区域)时捕获的放射图像。
[0192]图12A至图12C是分别示出沿不同方向的辐射发射和通过辐射发射获得的放射图像的示图。
[0193]参照图12A,如果辐射被发射到对象ob的单位材料e,则辐射在穿过单位材料e时衰减。更具体地讲,假设福射xll沿给定方向被发射到单位材料e,则根据单位材料e的构成,辐射中的一些将被单位材料e吸收,辐射中的一些将穿过单位材料e。如此,穿过单位材料e的辐射xl2与辐射xll相比以一定比率衰减。在这种情况下,根据材料的种类或密度确定衰减率。同样地,如果辐射x21沿与以上辐射发射方向不同的方向(例如,沿与图12Α中示例性地所示的以上辐射发射方向相反的方向)发射,则穿过单位材料e的辐射x22根据单位材料e以一定比率衰减。在这种情况下,如果沿给定方向发射的福射xll和沿不同方向发射的辐射x21具有相同的幅度,则由于相同的衰减率,沿不同方向发射并穿过相同单位材料e的辐射xl2和χ22可具有相同或非常相似的幅度。以这种方式,如果具有相同幅度的辐射xll和x21被发射到相同的单位材料,则上述辐射检测器20获得相同的辐射x21和 x22。
[0194]参照图12B,对象ob可由多个单位材料构成。在这种情况下,各个单位材料(例如,第一单位材料el至第四单位材料e4)具有相同性质,从而穿过各个单位材料el至e4的福射具有相同衰减率。例如,如图12B中示例性地所示,由于沿给定方向发射到对象ob的辐射xll穿过多个单位材料el至e4所获得的福射xl2等于由于沿与所述给定方向对应的方向发射的(例如,沿相反方向发射的)福射x21穿过多个单位材料el至e4所获得的福射x22。以这种方式,可使用沿不同方向(例如,沿相反的方向)发射的辐射xll和x21获得相同的图像。[0195]例如,如图12C中示例性地所示,通过在特定位置(例如,在第十一位置111)发射辐射所获得的第十一放射图像ill可等同于通过在与所述特定位置对应的位置(例如,在第二十一位置121)发射辐射所获得的第二十一放射图像。在这种情况下,所述特定位置(即,第十一位置111)和与所述特定位置对应的位置(即,第二十一位置121)可关于对象ob彼此相对。
[0196]同样地,例如,通过在第十二位置112至第十四位置114发射辐射所获得的第十二放射图像Π2至第十四放射图像il4可等同于通过在与第十二位置112至第十四位置114对应的第二十二位置至第二十四位置发射辐射所获得的第二十二放射图像i22至第二十四放射图像i24。
[0197]因此,即使没有在第二十一位置121至第二十四位置124发射辐射,也可使用通过在第十一位置111至第十四位置114发射辐射所获得的放射图像来获得沿所有方向的对象ob的放射图像。
[0198]因此,如图3A或图4B中示例性地所示,即使当辐射仅在特定位置或区域被发射到对象ob (而非在所有位置或区域被发射到对象ob)时,也可获得与通过在所有位置或区域向对象Ob发射辐射所获得的放射图像基本相同的放射图像。
[0199]因此,图像处理器30的图像产生器31可仅利用特定位置或区域中的放射图像来充分获得沿所有方向的对象ob的图像。
[0200]现在将参照图12D 至图12F对此进行更详细的描述。图12D和图12E是分别示出通过辐射成像设备获得的空间域和频域的示图。
[0201]根据来自辐射成像设备(例如,计算机断层扫描设备)的辐射发射的空间域如图12D中所示。
[0202]在图12D中,如果辐射发射器10在位置Θ发射辐射,则穿过对象ob的辐射到达辐射检测器20。辐射发射器10和辐射检测器20分别沿其运动路径运动。在这种情况下,辐射发射器10仅在特定范围内(B卩,在-β至+β的范围或弧内)发射辐射。即,获得了 - β < θ的关系。通过上述方法,可获得对象ob的在特定范围内(B卩,在X射线照射区域内)的图像数据。
[0203]还可使用如图12Ε中所示的频域对此进行表示。
[0204]在图12D的位置Θ捕获的图像可由图12Ε的扇形内的虚线(采样区域)表示。由于辐射发射器10仅在特定范围内(B卩,在-β至+β的范围内)发射辐射,因此即使在频域的情况下,也仅获得在具有2β的夹角的扇形形状的区域内的数据。在这种情况下,如图12D中示例性地所示,可从频域获得多个对称的扇形形状的图像数据。
[0205]空间域和频域之间的关系可由下面的等式2至4表示。
[0206]首先,通过在空间域中沿给定方向发射辐射所获得的数据可由下面的等式2定义。
[0207]等式2
【权利要求】
1.一种辐射成像设备,包括: 辐射发射器,被构造为朝对象发射辐射并且同时围绕对象运动; 辐射检测器,被构造为检测从辐射发射器发射的辐射,将检测到的辐射转变为信号,并存储所述信号; 照射控制器,被构造为控制辐射发射器,使得在围绕对象的第一位置或区域中朝对象发射辐射,并使得在与第一位置或区域对应的第二位置或区域中不朝对象发射辐射。
2.根据权利要求1所述的设备,其中,照射控制器控制辐射发射器,使得辐射发射器在位于围绕对象的第一位置或区域中时朝对象发射辐射,并且在位于与第一位置或区域关于对象相反的第二位置或区域中时停止辐射发射。
3.根据权利要求1所述的设备,还包括:图像处理器,从由辐射检测器产生的电信号产生放射图像,并基于在辐射发射方向上捕获的单个放射图像产生在与辐射发射方向相反的方向上捕获的至少一个放射图像。
4.根据权利要求1所述的设备,其中,辐射发射器以预定角速度围绕对象运动。
5.根据权利要求4所述的设备,其中,照射控制器基于辐射发射器的角速度确定是否由辐射发射器执行辐射发射以产生确定结果,并基于确定结果控制由辐射发射器进行的辐射发射。
6.根据权利要求5所述的设备,其中,当在开始辐射发射之后经过照射持续时间时,照射控制器停止由辐射发射器进行的辐射发射,并且在停止辐射发射之后经过非照射持续时间后,照射控制器开启由辐射发射器进行的辐射发射。
7.根据权利要求1所述的设备,其中,当辐射发射器进入照射区域时,照射控制器开启辐射发射,并且当辐射发射器进入非照射区域时,照射控制器停止辐射发射。
8.根据权利要求1所述的设备,还包括:滤波器,安装在照射路径中以传输或阻挡从辐射发射器发射的辐射,其中,辐射发射器沿所述照射路径发射辐射。
9.根据权利要求8所述的设备,其中,当辐射发射器在围绕对象运动期间位于给定位置或区域中时,滤波器传输从辐射发射器发射的辐射,并且当辐射发射器位于与所述给定位置或区域关于对象相反的位置或区域中时,滤波器阻挡从辐射发射器发射的辐射。
10.根据权利要求8所述的设备,其中,滤波器包括用于传输辐射的至少一个开口。
11.根据权利要求8所述的设备,其中,滤波器围绕位于滤波器的内部或外部的旋转轴旋转。
12.根据权利要求8所述的设备,其中,滤波器以与辐射发射器沿圆形或螺旋形运动路径运动的角速度对应的角速度旋转。
13.根据权利要求12所述的设备,其中,基于在滤波器中形成的用于传输辐射的开口的数量、辐射发射器的角速度、在辐射发射器旋转一次时发射辐射的次数、或者照射区域或非照射区域的大小,来确定滤波器的角速度。
14.一种使用计算机断层扫描设备的放射图像获得方法,所述方法包括: 通过在辐射发射器到达照射区域时向对象发射辐射来获得照射区域中的图像数据; 当辐射发射器到达与照射区域相对的非照射区域时,停止辐射发射; 通过反复进行所述图像数据的获得和所述辐射发射的停止,来获得多个照射区域中的多个图像数据;基于获得的所述多个图像数据中的在至少一个照射区域中获得的至少一个图像数据,计算在非照射区域中捕获的至少一个图像数据。
15.根据权利要求14所述的方法,其中,所述计算在非照射区域中捕获的至少一个图像数据的步骤包括: 产生多个照射区域中的图像数据中的经由相同方向的辐射发射所获得的至少两个图像数据之间的中间图像数据; 基于产生的至少一个中间图像数据,计算在与辐射发射方向相反的方向上捕获的至少一个图像数据。
【文档编号】A61B6/00GK103829960SQ201310585689
【公开日】2014年6月4日 申请日期:2013年11月19日 优先权日:2012年11月19日
【发明者】赵敏局 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1