使用速度信息自动标测的制作方法

文档序号:15100193发布日期:2018-08-04 15:33阅读:177来源:国知局

本申请要求于2015年12月20日提交的临时申请号62/270,030的优先权,其通过引用整体并入本文。

技术领域

本公开的实施例涉及用于提供关于患者心脏的信息的系统和方法,并且具体涉及用于电解剖地标测患者的心脏的系统和方法。



背景技术:

使用诸如导管消融的微创手术来治疗各种心脏病、诸如室上性和室性心律失常正变得越来越普遍。通常,这些手术涉及在心内膜或心外膜表面上的各种位置处的心脏中的电活动的标测(被称为心脏标测(cardiac mapping)),以识别心律失常的机理,随后进行部位的靶向消融。为了进行心脏标测,可以将具有一个或多个电极的导管插入患者的心脏中。

心脏标测技术包括接触标测、近接触标测和非接触标测。在接触标测中,一个或多个导管行进到心脏中,并且在确定出导管远侧尖端处于稳定且与心室的心内膜表面平稳地接触之后,利用位于导管远侧尖端处的一个或多个电极来采集由心脏的电活动产生的生理信号。位置和电活动可以在心脏内表面上以例如约50至200点在逐点的基础上测量以构建心脏的电解剖描绘。

在近接触标测中,具有多个空间分布的电极的可移动导管被放置在感兴趣的心室中并且被移动到感兴趣的腔室内的一个或多个位置,其中电极在心室的心内膜表面上或附近(诸如在毫米内)。在不确定电极是否与心脏的表面接触的情况下,在导管的每个位置处自动进行测量。分析这些测量结果以检测导管附近心室的心内膜表面。导管的位置(例如由跟踪系统提供的位置)和来自电极的测量结果被用于重建腔室解剖结构,其中例如可以进行20,000次测量以构建心脏的电解剖描绘。当跟踪的导管在腔室内移动时,可以构建腔室解剖结构的部分或完整表示。

在非接触标测中,将多电极导管放置在感兴趣的心室中并且将导管部署为呈现三维形状。使用由非接触电极检测到的信号以及关于腔室解剖结构和相对电极位置的信息,系统计算并提供关于心室的心内膜表面的生理信息。在任何这些心脏标测技术中,生成的标测图(map)然后可以用作决定诸如组织消融的治疗行动方案的基础,以改变心脏电活动的传播并恢复正常心律。



技术实现要素:

如上所述,在治疗心律失常之前,需要识别心律失常,其典型地涉及在心内膜或心外膜表面上的各个位置处的心脏中的电活动的标测。许多心律失常是由激活信号的再进入(reentry)引起的,其中激活信号在固定电路周围重复传播。当激活信号包括激活信号比通常更慢地传播的通路时,可以发生激活信号的再进入。由于激活信号的缓慢传播,因此心脏组织可能具有足够的时间在周期之间恢复。通常,激活信号比正常更慢地传播的通路穿过心肌的狭窄条带。像这样,沿着通路的有限消融通常会终止再进入的心律失常,并且因此可以被用作有效的治疗策略。贯穿本公开,术语“缓慢通路”可互换地使用,指的是激活信号在特定环境集合下对特定患者以比典型传播速度更慢地传播的通路(例如,当患者处于休息或运动时,当患者受压或放松时和/或当其他生理参数具有特定水平或特性时等)。

由于再进入通常是由缓慢通路引起的,因此标测系统促进这些缓慢通路的显示可能是有利的,以便使用户的注意力集中。因此,本文公开的实施例提供了用于促进缓慢通路的显示的系统和方法。示例性实施例包括以下。

在示例1中,一种用于促进心脏标测信息的显示的系统,包括:标测探针,其被配置为感测多个心脏电信号;以及处理单元,其被配置为:接收所述多个心脏电信号;确定多个信号特征,所述多个信号特征中的每个包括所述多个心脏电信号中的一个的特征;确定多个传导特性,所述多个传导特性中的每个基于所述多个信号特征中的一个或多个;并且基于所述多个信号特征和对应的多个传导特性来生成心脏标测图,所述心脏标测图包括解剖外壳和表示所述多个信号特征的至少一部分的注释(annotation)的集合。

在示例2中,示例1的系统,其中所述处理单元还被配置为确定满足条件的多个传导特性中的传导特性的集合,其中所述注释的集合包括对应于满足所述条件的传导特性的集合中的一个传导特性的多个信号特征中的每个的表示。

在示例3中,一种用于促进心脏标测信息的显示的系统,包括:标测探针,其被配置为感测多个心脏电信号;以及处理单元,其被配置为:接收所述多个心脏电信号;确定多个信号特征,所述多个信号特征中的每个包括所述多个心脏电信号中的一个的特征;确定多个传导特性,所述多个传导特性中的每个基于所述多个信号特征中的一个或多个;确定满足条件的多个传导特性中的传导特性的集合;并且提供用于在显示装置上呈现的心脏标测图,所述心脏标测图包括:解剖外壳;以及对应于满足所述条件的传导特性的集合中的一个传导特性的多个信号特征中的每个的表示。

在示例4中,示例3的系统,其中所述心脏标测图不包括不对应于满足所述条件的传导特性的集合中的一个传导特性的信号特征的表示。

在示例5中,示例3和4中任一示例的系统,其中,当传导特性在特定范围内时,所述传导特性满足所述条件。

在示例6中,示例3和4中任一示例的系统,其中所述传导特性是传导速度,并且其中当传导特性不大于阈值时,所述传导特性满足所述条件。

在示例7中,示例3和4中任一示例的系统,其中所述传导特性是激活梯度,并且其中当激活梯度不小于阈值时,所述激活梯度满足所述条件。

在示例8中,示例3-7中任一示例的系统,其中,所述多个信号特征中的每个包括以下中的至少一个:激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频、平均周期长度和峰-峰值电压。

在示例9中,示例8的系统中,所述多个信号特征中的每个包括激活时间,并且其中所述处理单元被配置为通过以下来确定所述多个传导特性:确定与所述多个激活时间中的每个相关联的梯度;并且确定与所述多个激活时间中的每个相关联的梯度的倒数(inverse)。

在示例10中,示例9的系统,其中,所述多个信号特征中的每个包括与单个搏动相关联的激活时间。

在示例11中,示例8的系统,其中所述处理单元被配置为通过使用至少三个电极激活时间执行最小二乘计算来确定所述多个传导特性,其中所述至少三个电极激活时间中的每个与至少三个非共线电极位置中的一个相关联。

在示例12中,一种用于促进心脏标测信息的显示的方法,包括:从标测探针接收多个心脏电信号;确定多个信号特征,所述多个信号特征中的每个包括所述多个心脏电信号中的一个的特征;确定多个传导特性,所述多个传导特性中的每个基于所述多个信号特征中的一个或多个;并且致使显示装置基于所述多个传导特性来显示心脏标测图,所显示的心脏标测图包括解剖外壳以及所述多个信号特征中的至少一个的表示。

在示例13中,示例12的方法还包括:生成激活标测图,所述激活标测图包括解剖外壳、多个顶点以及在所述多个顶点的顶点处的多个激活时间中的每个的表示;确定每个顶点的激活时间差,其中基于所述激活时间差中的一个或多个来确定所述多个传导特性中的每个;确定满足条件的多个传导特性中的传导特性的集合,其中当传导特性在特定范围内时,所述传导特性满足所述条件;并且其中所显示的心脏标测图不包括不对应于满足所述条件的传导特性的集合中的一个传导特性的信号特征的表示。

在示例14中,示例13的方法,其中确定顶点的激活时间差包括使用与所述顶点和所述激活标测图的至少两个其他标测图顶点相关联的至少三个激活时间来执行最小二乘计算。

在示例15中,示例12的方法,其中确定所述多个传导特性包括:使用至少三个电极激活时间来执行最小二乘计算,其中所述至少三个电极激活时间中的每个与所述标测探针的至少三个非共线电极位置中的一个相关联。

在示例16中,一种用于促进心脏标测信息的显示的系统,包括:标测探针,其被配置为感测多个心脏电信号;以及处理单元,其被配置为:接收所述多个心脏电信号;确定多个信号特征,所述多个信号特征中的每个包括所述多个心脏电信号中的一个的特征;确定多个传导特性,所述多个传导特性中的每个基于所述多个信号特征中的一个或多个;并且基于所述多个信号特征和对应的多个传导特性来生成心脏标测图,所述心脏标测图包括解剖外壳和表示所述多个信号特征的至少一部分的注释的集合。

在示例17中,示例16的系统,其中所述注释的集合中的第一注释与位于解剖外壳上的第一标测图点相关联,并且其中所述处理单元被配置为通过基于向量的集合执行内插来生成第一注释,其中所述向量的集合中的每个与附加标测图点相关联,并且包括所述多个电信号特征中的一个和所述多个传导特性中的对应的一个。

在示例18中,示例16的系统,其中所述处理单元还被配置为确定满足条件的多个传导特性中的传导特性的集合,其中所述注释的集合包括对应于满足所述条件的传导特性的集合中的一个传导特性的多个信号特征中的每个的表示,并且其中所述心脏标测图不包括不对应于满足所述条件的传导特性的集合中的一个传导特性的信号特征的表示。

在示例19中,示例18的系统,其中,当传导特性在特定范围内时,所述传导特性满足所述条件。

在示例20中,示例18的系统,其中所述传导特性是传导速度,并且其中当传导特性不大于阈值时,所述传导特性满足所述条件。

在示例21中,示例18的系统,其中所述传导特性是激活梯度,并且其中当激活梯度不小于阈值时,所述激活梯度满足所述条件。

在示例22中,示例16的系统,其中,所述多个信号特征中的每个包括以下中的至少一个:激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频、平均周期长度和峰-峰值电压。

在示例23中,一种用于促进心脏标测信息的显示的系统,包括:标测探针,其被配置为感测多个心脏电信号;以及处理单元,其被配置为:接收所述多个心脏电信号;确定多个信号特征,所述多个信号特征中的每个包括所述多个心脏电信号中的一个的特征;确定多个传导特性,所述多个传导特性中的每个基于所述多个信号特征中的一个或多个;确定满足条件的多个传导特性中的传导特性的集合;并且提供用于在显示装置上呈现的心脏标测图,所述心脏标测图包括:解剖外壳;以及对应于满足所述条件的传导特性的集合中的一个传导特性的多个信号特征中的每个的表示。

在示例24中,示例23的系统,其中所述心脏标测图不包括不对应于满足所述条件的传导特性的集合中的一个传导特性的信号特征的表示。

在示例25中,示例23的系统,其中,当传导特性在特定范围内时,所述传导特性满足所述条件。

在示例26中,示例23的系统,其中所述传导特性是传导速度,并且其中当传导特性不大于阈值时,所述传导特性满足所述条件。

在示例27中,示例23的系统,其中所述传导特性是激活梯度,并且其中当激活梯度不小于阈值时,所述激活梯度满足所述条件。

在示例28中,示例23的系统,其中,所述多个信号特征中的每个包括以下中的至少一个:激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频、平均周期长度和峰-峰值电压。

在示例29中,示例28的系统,所述多个信号特征中的每个包括激活时间,并且其中所述处理单元被配置为通过以下来确定所述多个传导特性:确定与所述多个激活时间中的每个相关联的梯度;并且确定与所述多个激活时间中的每个相关联的梯度的倒数。

在示例30中,示例29的系统,其中,所述多个信号特征中的每个包括与单个搏动相关联的激活时间。

在示例31中,示例28的系统,其中所述处理单元被配置为通过使用至少三个电极激活时间执行最小二乘计算来确定所述多个传导特性,其中所述至少三个电极激活时间中的每个与至少三个非共线电极位置中的一个相关联。

在示例32中,一种用于促进心脏标测信息的显示的方法,包括:从标测探针接收多个心脏电信号;确定多个信号特征,所述多个信号特征中的每个包括所述多个心脏电信号中的一个的特征;确定多个传导特性,所述多个传导特性中的每个基于所述多个信号特征中的一个或多个;并且致使显示装置基于所述多个传导特性来显示心脏标测图,所显示的心脏标测图包括解剖外壳以及所述多个信号特征中的至少一个的表示。

在示例33中,示例32的方法还包括:生成激活标测图,所述激活标测图包括解剖外壳、多个顶点以及在所述多个顶点的顶点处的多个激活时间中的每个的表示;确定每个顶点的激活时间差,其中基于所述激活时间差中的一个或多个来确定所述多个传导特性中的每个;确定满足条件的多个传导特性中的传导特性的集合,其中当传导特性在特定范围内时,所述传导特性满足所述条件;并且其中所显示的心脏标测图不包括不对应于满足所述条件的传导特性的集合中的一个传导特性的信号特征的表示。

在示例34中,示例32的方法,其中确定顶点的激活时间差包括使用与所述顶点和所述激活标测图的至少两个其他标测图顶点相关联的至少三个激活时间来执行最小二乘计算。

在示例35中,示例32的方法,其中确定所述多个传导特性包括:使用至少三个电极激活时间来执行最小二乘计算,其中所述至少三个电极激活时间中的每个与所述标测探针的至少三个非共线电极位置中的一个相关联。

尽管公开了多个实施例,但是所公开的主题的其他实施例将从以下详细描述变得对于本领域技术人员而言显而易见,所述详细描述示出并描述了本公开的说明性实施例。因此,附图和详细描述在本质上被认为是说明性的而不是限制性的。

附图说明

图1A是示出根据本公开的实施例的电解剖标测系统的图。

图1B是根据本公开的实施例的与图1A的系统的实施例结合使用的标测探针的示意图。

图2是描绘根据本公开的实施例的用于与标测系统一起使用的说明性处理单元的框图。

图3是描绘根据本公开的实施例的用于生成心脏标测图的说明性过程的流程图。

图4是描绘根据本公开的实施例的用于促进心脏标测信息的显示的说明性方法的流程图。

图5是描绘根据本公开的实施例的用于促进心脏标测信息的显示的另一说明性方法的流程图。

图6是描绘根据本公开的实施例的用于促进心脏标测信息的显示的另一说明性方法的流程图。

尽管所公开的主题适合于各种修改和替代形式,但是具体实施例已经借由示例在附图中示出并且在下面详细描述。然而,本发明并不意图将本公开限制于所描述的特定实施例。相反,本公开旨在覆盖落入由所附权利要求限定的本公开的范围内的所有修改、等同物和替代方案。

如本文相对于测量结果的范围(诸如上面刚刚公开的那些)使用术语,“约”和“大约”可以互换地使用,指的是包括所陈述的测量结果的测量结果,并且还可以包括合理地接近所陈述的测量结果的任何测量结果,但是其可能会有相当小的差异,诸如相关领域的普通技术人员将会理解并易于确定的归因于测量结果误差、测量结果差异和/或制造设备校准、在读取和/或设置测量结果时的人为错误、鉴于与其他组件相关联的测量结果的差异而进行的优化性能和/或结构参数的调整、特定的实施场景和/或由人或机器不精确调整和/或操纵对象等。

虽然术语“框(block)”在本文中可以被用于暗示说明性地采用的不同元件,但是该术语不应该被解释为暗示在此公开的各种步骤当中的或之间的任何要求或特定顺序,除非并且除了在明确提及个别步骤的顺序时。

具体实施方式

图1A示出了根据本公开的实施例的电解剖标测系统100的示例性实施例的示意图。标测系统100可以被用于标测患者104的心脏结构102,并且可以由一个或多个用户106、诸如医生和/或技术人员操作。贯穿本公开,术语“心脏结构”可以意指对象心脏的任何部分和/或相邻特征,诸如例如心内膜、心外膜、整个心脏、心室、心室的一部分、瓣膜、冠状窦和/或其分支(tributaries)、冠状窦的一部分和/或其分支的一部分、肺动脉和/或其他周围脉管系统等。像这样,虽然本文讨论的实施例主要关于心内膜标测进行了讨论,但是实施例也可以被用于心外膜标测中。尽管本公开讨论了使用标测系统来标测心脏结构102,但标测系统100的实施例还可以或可替代地被用于标测其他器官和生物组织,包括但不限于肾、肺、脑、胆囊、肝、脾和肠。

如图1A中示出的,标测系统100包括一个或多个导管106,每个导管106具有位于导管106的远端处或朝向导管106的远端和/或沿着导管106的本体的一个或多个电极。一个或多个导管106可以位于患者104的心脏结构102中或其附近。系统100可以被配置为从一个或多个导管106上的一个或多个电极获得心内电图(EGM)信号。在实施例中,一个或多个导管106包括一个或多个参考导管,其中所述参考导管中的每个包括一个或多个电极并且可以以稳定位置被适当地固定在心脏结构102或被标测的其他结构中或附近。在实施例中,一个或多个导管106可以包括多达五个参考导管,其中每个具有一个或多个电极并且以稳定位置被适当地固定在被标测的结构中或附近。在一些实施例中,一个或多个参考导管包括至少一个冠状窦导管。

在实施例中,导管106可以包括具有一个或多个电极的一个或多个标测探针。例如,标测探针可以包括被布置在柔性导管本体的远端处的多个空间分布的电极。在心脏标测程序期间,标测探针被移位到标测探针被插入到的心室内的多个位置。在实施例中,标测探针的远端装配有些许均匀地散布在导管的远端上的多个电极。例如,可以遵循3D橄榄形和/或篮状等将电极安装在标测探针上。电极被安装在能够将电极部署成所期形状(在心脏内部时)的装置上,并且当导管从心脏移除时缩回电极。为了允许在心脏中部署成3D形状,可以将电极安装在气球、诸如镍钛诺的形状记忆材料和/或可致动的铰接结构等上。

在标测探针移动到的每个位置处,多个电极采集心脏电信号。心脏电信号可以例如在心脏的心内膜表面上和/或在心室中远离表面的点处被感测到。如本文所使用的,在心室内部的点处被感测到的心脏电信号特征的标测表示被称为在心内膜表面下方。也就是说,例如,因为心脏标测图包括表示心内膜表面的解剖外壳,并且从观察者的视角,位于腔室内而不在心内膜表面上的点将似乎在标测表面“下方”。

如本文使用的术语,感测到的心脏电信号可以指的是一个或多个感测到的信号。每个心脏电信号可以包括在患者心脏内感测到的多个心内电图(EGM),并且可以包括可以由系统100的方面确定的任何数量的特征。心脏电信号特征的示例包括但不限于:激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频和/或峰-峰值电压等。心脏电信号特征可以指的是从一个或多个心脏电信号提取的一个或多个特征和/或根据从一个或多个心脏电信号提取的一个或多个特征导出的一个或多个特征等。另外,心脏电信号特征在心脏和/或表面标测图上的表示可以表示一个或多个心脏电信号特征和/或多个心脏电信号特征的内插等。

每个心脏信号还可以与对应于在该处感测到心脏电信号的位置的相应位置坐标的集合相关联。感测到的心脏信号的相应位置坐标中的每个可以包括三维笛卡尔坐标和/或极坐标等。在实施例中,可以使用其他坐标系。在实施例中,使用任意的原点并且相应位置坐标是指相对于任意原点的空间中的位置。在实施例中,由于可以在心内膜表面上、在由心内膜表面包围的腔室中及在心内膜表面外感测心脏信号,所以相应位置坐标可以在患者心脏的心内膜表面上、在心内膜表面下方以及/或在心外膜表面上。

因此,重建(reconstruct)并向用户108(诸如医生和/或技术人员)呈现与心脏电活动有关的生理数据可以基于在多个位置处采集的信息,由此提供心内膜表面的生理行为的更精确和忠实的重建。在包括一个或多个标测探针的实施例中,标测探针中的至少一个可以被移位到心脏内的多个位置,其中心室中的多个探针位置处的心脏电信号的采集使能一个或多个标测探针有效地充当“大型导管(mega-catheter)”,其电极的有效数量和电极跨度与其中执行信号采集的位置的数量与一个或多个标测探针上的电极的数量的乘积成比例。在实施例中,一个或多个标测探针可以被配置为用于接触标测、近距离接触标测和/或非接触标测。

为了提高心内膜表面处重建的生理信息的质量,在一些实施例中,可以将标测探针移动到心室内的多于三个位置(例如多于5、10或甚至50个位置)。此外,标测探针移动的空间范围可以大于心腔的直径的三分之一(1/3)(例如,大于心腔的直径的35%、40%、50%或甚至60%)。另外,在一些实施例中,重建的生理信息是基于在心室内的单个位置处或者在若干位置上的若干心脏搏动上测量出的信号来计算的。在重建的生理信息基于若干心脏搏动上的多次测量的情况下,测量可以彼此同步,使得测量在心脏周期的大致相同相位(phase)处被执行。可以基于从诸如表面ECG和/或心内EGM的生理数据检测到的特征来同步多次搏动上的信号测量。

标测系统100还包括处理单元110,其执行与标测程序有关的若干操作,包括重建程序以确定心内膜表面处(例如,如上面描述的)和/或在心室内的生理信息。处理单元110也可以执行导管注册程序。处理单元110可以是,包括电处理器、软件处理器、通用微处理器和/或专用微处理器,或被包括在其中,并且可以包括唯一处理器或多个处理器或核。

可以使用感测和跟踪系统112来确定被插入心室中的导管106的位置,所述感测和跟踪系统112提供导管106和/或其多个电极相对于导管106的坐标系的3D空间坐标,如由感测和跟踪系统112建立的那样。系统100的实施例使用将阻抗位置与磁定位技术相结合的混合定位技术。这种结合可以使能系统100精确地跟踪连接到系统100的标测探针和/或其他导管106。磁定位技术使用由被定位在患者检查台下方的定位发生器生成的磁场来跟踪具有磁传感器的导管。阻抗定位技术可以被用于跟踪可能没有配备磁定位传感器的导管,并且可以利用表面ECG贴片(patch)。

在实施例中,为了执行标测程序并重建关于心内膜表面的生理信息,处理单元110可以将标测探针(例如,导管106)的坐标系与心内膜表面的坐标系对准。处理单元110(或系统100的一些其他处理组件)可以确定将导管106位置的3D空间坐标转换成就心内膜表面的坐标系而言表示的坐标(并且/或者反之亦然)的坐标系转换函数。在实施例中,这样的转换可能不是必需的。处理单元110还可以对生理信息执行后处理操作以将信息的有用特征提取并显示给系统100的用户108和/或其他人(例如医生)。

根据实施例,由导管106的多个电极(例如,标测探针)采集的信号经由电模块114传递到处理单元110,电模块114可以包括例如信号调节组件。电模块114可以被配置为接收从导管106传送的信号并且在信号被转发到处理单元110之前对该信号执行信号增强操作。电模块114可以包括信号调节硬件、软件和/或固件,其可以被用于放大、滤波和/或采样由一个或多个电极测量出的心内电位。在实施例中,电模块114还可以被配置为接收来自任何数量的其他导管的信号和/或向导管提供信号等。

心脏电信号典型地具有60mV的最大幅值,其中平均值为几毫伏。在实施例中,信号在频率范围(例如0.5-500Hz)中被带通滤波并且使用模数转换器(例如,在1kHz处具有15位分辨率)进行采样。为了避免干扰房间中的电气设备,可以对信号进行滤波以移除对应于电源的频率(例如,60Hz)。其他类型的信号处理操作、诸如光谱均衡、自动增益控制等也可能发生。例如,在实施例中,心脏电信号可以是相对于参考(其可以是虚拟参考)诸如例如冠状窦导管或威尔逊的中央终端(WCT)测量出的单极信号,信号处理操作可以根据其计算差值以生成双极性信号。在生成双极性信号之前和/或之后可以另外处理信号(例如,滤波、采样等)。所得到的处理后的信号由电气模块114转发给处理单元110以进行进一步处理。

如图1A进一步示出的,心脏标测系统100还可以包括诸如打印机116、显示装置118和/或输入装置120的外围装置,所有这些装置可以互连到处理单元110。另外,标测系统100包括存储装置122,其可以被用于存储由各种互连模块采集的数据,包括:体积图像、由电极测量出的原始数据和/或由此计算出的合成心内膜表示、被用于加速标测程序的部分计算出的转换和/或对应于心内膜表面的重建的生理信息等。根据实施例,存储装置还可以或可替代地被用于存储用于促进本文描述的程序的实施例的方面的计算机可执行指令。

图1A中示出的说明性标测系统100并不意图对本公开的实施例的使用范围或功能提出任何限制。说明性标测系统100也不应被解释为具有与其中示出的任何单个组件或组件的组合有关的任何依赖性或要求。另外,在实施例中,图1A中描绘的各种组件可以与其中描绘的其他组件中的各种组件(和/或未示出的组件)集成,所有这些都被认为是在本公开的范围内。例如,电气模块114可以与处理单元110集成和/或存储装置120可以与处理单元110集成。

图1B是根据本公开的实施例的标测探针130的示意图,该标测探针130可以例如与图1A的系统100的实施例相关联地使用。标测探针130具有柔性导管本体132,其远端承载包括标测电极136的三维篮状结构134。如上所述,标测电极136感测心脏电信号;并且感测到的信号经由有线和/或无线连接被发送到处理单元110。处理单元110处理感测到的信号并创建心脏标测图。所创建的心脏标测图的类型可以包括但不限于以下:电压标测图、激活标测图、分级标测图(fractionation map)和/或速度标测图等。

篮状结构134包括基部构件138和端帽140,柔性样条142大体上以周向间隔的关系在基部构件138和端帽140之间延伸。在实施例中,篮状结构134采取限定开放式内部空间144的篮状形式。在实施例中,样条142由弹性惰性材料制成,诸如镍钛诺金属或硅橡胶,并且以弹性拉紧前(pre-tensed)状态被连接在基部构件138和端帽140之间,以弯曲并且符合它们接触的组织表面。在其他的实施例中,诸如导管在题为“CARDIAC MAPPING CATHETER”的美国专利号8,103,327、8,447,377和8,755,861中进行了描述,并且在此通过引用将其全部内容并入本文,导管的样条可以不弯曲并且符合它们接触的组织表面。在示出的实施例中,八个样条142形成三维结构134。在其他实施例中可以使用附加或更少的样条142,并且三维结构134可以根据任何数量的不同形状来配置,诸如例如大致球形、大致椭圆形和/或大致泪滴形等。如示出的,每个样条142承载八个标测电极136。在三维结构134的其他实施例中,可以在每个样条142上布置附加的或更少的标测电极136。在示出的实施例中,三维结构134相对较小(例如,直径为40mm或更小)。在实施例中,三维结构134较大(例如,直径40mm或更大)。

在实施例中,可滑动护套146沿着导管本体132的主轴是可移动的。向前(即朝向远端)移动护套146导致护套146在三维结构134上移动,由此将结构134折叠成适合于引入内部空间中(诸如例如引入心脏中)的紧凑的低姿态(profile)状态。相反,向后(即朝向近端)移动护套146暴露出三维结构134,以允许结构134弹性地扩展并呈现图1B中示出的拉紧前位置。三维结构134的实施例的进一步细节在例如题为“MULTIPLE ELECTRODE SUPPORT STRUCTURES”的美国专利号5,647,870中被公开,其通过引用整体并入本文。

另外,根据本公开的实施例,可以与图1A的系统100的实施例相关联地使用的标测导管的进一步细节例如在公开美国专利号8,103,327、8,447,377和8,755,861中被公开,并且通过引用将其以上全部内容并入本文。

在标测探针130使用有线连接的实施例中,信号线(未示出)可以被电耦接到每个标测电极136。该线可以延伸通过标测导管130的本体132进入手柄148中,其中它们可以被耦接到外部连接器150,该外部连接器150可以是例如多引脚连接器。连接器150将标测电极136电耦接到处理系统110。关于用于处理由标测导管生成的信号的标测系统和方法的进一步细节在例如题为“SYSTEMS AND METHODS FOR GUIDING MOVABLE ELECTRODE ELEMENTS WITHIN MULTIPLE-ELECTRODE STRUCTURE”的美国专利号6,070,094、题为“CARDIAC MAPPING AND ABLATION SYSTEMS”的美国专利号6,233,491以及题为“SYSTEMS AND PROCESSES FOR REFINING A REGISTERED MAP OF A BODY CAVITY”的美国专利号6,735,465中进行讨论,其公开内容通过引用将其全部内容并入本文。

另外,例如,用于处理由标测导管生成的信号的标测系统和方法的进一步细节在题为“Impedance Based Anatomy Generation”的美国专利号8,103,338、题为“Catheter Tracking and Endocardium Representation Generation”的美国专利号8,615,287和题为“Electroanatomical Mapping”的美国专利号9,107,599中进行讨论,其公开内容通过引用并入本文。

应该注意的是,其他电极结构可以被部署在标测探针130的远端上。进一步注意的是,多个标测电极136可以布置在多于一个结构上,而不是例如图1B中示出的单个标测探针130上。例如,如果在左心房内与多个标测结构进行标测,则可以使用包括承载多个标测电极的冠状窦导管和承载被定位于左心房中的多个标测电极的篮状导管的布置。作为另一示例,如果在右心房内与多个标测结构进行标测,则可以使用包括承载用于在冠状窦中定位的多个标测电极的十极(decapolar)导管和承载用于在三尖瓣环状物周围定位的多个标测电极的环形导管的布置。另外,在实施例中,标测电极136可以通过绝缘间隙152彼此分离。

尽管标测电极136已被描述为由诸如标测探针130的专用标测探针来承载,但标测电极136可以被承载在非标测专用探针或多功能探针上。例如,消融导管可以被配置为包括一个或多个标测电极。

图2是根据本公开的实施例的说明性处理单元200的框图。处理单元200可以是、类似于、包括图1A中描绘的处理单元110或被包括在其中。如图2中示出的,处理单元200可以在包括处理器210和存储器220的计算装置上被实施。虽然处理单元200在此以单数形式被引用,但是处理单元200可以在多个实例中被实施(例如,作为服务器集群)、跨多个计算装置被分布和/或在多个虚拟机内被实例化等。用于促进心脏标测的一个或多个组件可以被存储在存储器220中。在实施例中,处理器210可以被配置为实例化一个或多个组件以生成心脏标测图230,其可以被存储在存储器220中。

如在图2中进一步描绘的,处理单元200可以包括接受器240,该接受器240被配置为接收来自标测探针(例如,图1A中描绘的导管106,和/或图1B中描绘的标测探针130)的心脏电信号。感测到的心脏电信号可以包括在患者心脏内感测到的多个心内电图(EGM)。接受器240还可以接收对应于每个电信号的测量位置的指示。在实施例中,接受器240可以被配置为确定是否接受已经被接收到的心脏电信号。接受器240可以利用任何数量的不同组件和/或技术来确定哪些电信号或搏动要接受,诸如滤波、搏动匹配、形态分析、位置信息(例如导管运动)和/或呼吸门控等。在实施例中,例如,接受器240可以基于速度信息来接受和拒绝心脏电信号(例如,EGMS)、信号特征和/或搏动等,如下面进一步详细描述的那样。

接受的心脏电信号由特征提取器250接收,特征提取器250被配置为从每个心脏电信号提取一个或多个特征。根据实施例,特征可以包括例如从心脏电信号提取的和/或从其他特征导出的特征,诸如例如激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频和/或峰-峰值电压等。接受器240和/或特征提取器250可以从采集的心脏电信号生成标测图数据集260。

如图2中示出的,处理单元200包括标测图生成器270,其被配置为基于标测图数据集260生成对应于心脏结构的标测图230并且促进其呈现。例如,标测图生成器270可以被配置为通过基于心脏信号特征和/或速度信息等执行内插、外插和/或拟合来促进对应于心脏结构的标测图230的呈现。在实施例中,标测图230可以包括电压标测图、激活标测图、分级标测图、速度标测图和/或置信度标测图等。

如在图2中进一步示出的,处理单元200包括速度组件280,其可以被配置为确定与激活传播相关联的一个或多个传导速度。例如,在实施例中,速度组件280可以被配置为确定与由特征提取器250提取的信号特征相对应的多个传导速度。以这种方式,标测图生成器270可以被配置为基于提取的信号特征和由速度组件280确定出的传导速度来生成心脏标测图230。在其他实施例中,确定出的传导速度可以对应于由标测图生成器270生成的标测图特征而不是由特征提取器250提取的个别信号特征。在实施例中,标测图230可以包括解剖外壳和表示提取的信号特征的至少一部分的注释(annotation)集合。

在实施例中,例如,处理单元100(例如,使用速度组件280和/或标测图生成器270)可以被配置为确定满足条件的多个传导速度中的传导速度集合,其中标测图230中的注释的集合包括对应于满足条件的传导速度集合中的一个传导速度的信号特征的表示。

在实施例中,速度组件280可以被配置为基于“预滤波(pre-filter)”方法或“后滤波(post-filter)”方法来确定传导速度。

在实施例中,预滤波传导速度可以包括使用来自单个周期(或“搏动”)的电描记图来确定传播速度。具体而言,可以使用标测导管的相邻电极的相对激活时间结合它们的电极的相对位置来估计局部传导速度。在实施例中,标测图230中的注释的集合可以包括对应于满足条件的预滤波传导速度的信号特征的表示。基于估计的局部传导速度,预滤波对于拒绝来自标测图的电描记图(或整个搏动)可能是有用的。

在实施例中,后滤波传导速度可以包括构建激活标测图并通过使用附近顶点的激活值确定标测图顶点处的梯度来估计每个标测图顶点处的速度。在实施例中,标测图230中的注释的集合可以包括在后滤波的传导速度满足条件的标测图位置处的信号特征的表示。

后滤波和预滤波将分别在下面的图5和图6中更详细地解释。

图2中示出的说明性处理单元200并非旨在对本公开的实施例的使用范围或功能提出任何限制。说明性处理单元200也不应被解释为具有与其中示出的任何单个组件或组件的组合有关的任何依赖性或要求。另外,在实施例中,图2中描绘的任何一个或多个组件可以与其中描绘的其他组件中的各种组件(和/或未示出的组件)集成,所有这些都被认为是在本公开的范围内。例如,接受器240可以与特征提取器250集成。另外,处理单元200可以(单独地和/或与图1中描绘的系统100的其他组件和/或未示出的其他组件结合)执行与心脏标测(例如触发、消隐(blanking)、场标测等)相关联的任何数量的不同功能和/或过程,诸如例如在题为“ELECTROANATOMICAL MAPPING”的美国专利8,428,700;题为“ELECTROANATOMICAL MAPPING”的美国专利8,948,837;题为“CATHETER TRACKING AND ENDOCARDIUM REPRESENTATION GENERATION”的美国专利8,615,287;题为“ESTIMATING THE PREVALENCE OF ACTIVATION PATTERNS IN DATA SEGMENTS DURING ELECTROPHYSIOLOGY MAPPING”的美国专利公开2015/0065836;题为“SYSTEMS AND METHODS FOR GUIDING MOVABLE ELECTRODE ELEMENTS WITHIN MULTIPLE-ELECTRODE STRUCTURE”的美国专利6,070,094;题为“CARDIAC MAPP ING AND ABLATION SYSTEMS”的美国专利6,233,491;以及题为“SYSTEMS AND PROCESSES FOR REFINING A REGISTERED MAP OF A BODY CAVITY”的美国专利6,735,465中描述的那些,其公开内容在此通过引用明确地并入本文。

根据实施例,可以在一个或多个计算装置上实施图1A和图1B中示出的标测系统100和/或图2中示出的处理单元200的各种组件。计算装置可以包括适用于实施本公开的实施例的任何类型的计算装置。计算装置的示例包括专用计算装置或通用计算装置,诸如“工作站”、“服务器”、“膝上型电脑”、“台式机”、“平板电脑”、“手持装置”和“通用图形处理单元(GPGPU)”等,所有这些都在图1A和图2的范围内参考系统100和/或处理单元200的各种组件而被考虑。

在实施例中,计算装置包括直接和/或间接地耦接以下装置的总线:处理器、存储器、输入/输出(I/O)端口、I/O组件和电源。计算装置中还可以包括任何数量的附加组件、不同组件和/或组件的组合。总线表示可以是一个或多个总线(诸如例如地址总线、数据总线或其组合)。类似地,在实施例中,计算装置可以包括多个处理器、多个存储器组件、多个I/O端口、多个I/O组件和/或多个电源。另外,可以跨多个计算装置分布和/或复制任何数量的这些组件或其组合。

在实施例中,存储器(例如,图1A中描绘的存储装置120和/或图2中描绘的存储器220)包括以易失性和/或非易失性存储器形式的计算机可读介质,并且可以是可移除的、不可移除的或其组合。介质示例包括随机存取存储器(RAM);只读存储器(ROM);电可擦除可编程只读存储器(EEPROM);闪速存储器;光学或全息介质;磁带盒、磁带、磁盘存储器或其他磁存储装置;数据传输;和/或可以被用于存储信息并可由计算装置访问的任何其他介质(诸如例如量子状态存储器)等。在实施例中,存储器120和/或220存储用于导致处理器(例如,图1中描绘的处理单元110和/或图2中描绘的处理器210)实施本文讨论的系统组件的实施例的方面和/或执行本文讨论的方法和程序的实施例的方面的计算机可执行指令。

计算机可执行指令可以包括例如计算机代码和机器可用指令等,诸如例如能够由与计算装置相关联的一个或多个处理器执行的程序组件。这样的程序组件的示例包括标测图230、接受器240、特征提取器250、标测图数据集260、标测图生成器270和速度组件280。可以使用任何数量的不同编程环境来对程序组件进行编程,所述编程环境包括各种语言、开发套件和/或框架等。此处考虑的一些或全部功能还可以或可替代地以硬件和/或固件来实施。

图3是根据本公开的实施例的用于自动电解剖标测的说明性过程300的流程图。方法300的实施例的方面可以例如由处理单元(例如,图1A中描绘的处理单元110和/或图2中描绘的处理单元200)来执行。包含多个信号的数据流302首先被输入到系统(例如,图1中描绘的标测系统100)中。在自动电解剖标测过程期间,数据流302提供用作至标测过程的输入的生理信号和非生理信号的收集。信号可以由标测系统直接收集,和/或使用模拟或数字接口从另一系统获得。数据流302可以包括心脏电信号,诸如单极和/或双极心内电图(EGM)、表面心电图(ECG)、源自各种方法(磁性、阻抗、超声波、实时MRI等)中的一种或多种的电极位置信息、组织邻近信息、从各种方法(力弹簧感测、压电感测、光学感测等)中的一种或多种获得的导管力和/或接触信息、导管尖端和/或组织温度、声学信息、导管电耦接信息、导管部署形状信息、电极属性、呼吸相位、血压和/或其他生理信息等。

为了生成特定类型的标测图,在触发/对准过程304期间,一个或多个信号可以被用作一个或多个参考以触发和对准相对于心脏、其他生物周期和/或导致搏动数据集的异步系统时钟的数据流302。另外,对于每个传入(incoming)的搏动数据集,在搏动度量确定过程306期间计算多个搏动度量。搏动度量可以使用来自在同一搏动内跨越多个信号的单个信号和/或来自跨越多个搏动的信号的信息来计算。搏动度量提供关于特定搏动数据集的质量和/或搏动数据有利于包含在标测图数据集(例如,图2中描绘的标测图数据集260)中的可能性的多种类型的信息。

搏动接受过程308聚集标准并确定哪些搏动数据集将构成标测图数据集310。如本文所解释的,在实施例中,可以包括整个搏动、整个心脏电信号(例如,EGM)和/或提取的特征的搏动数据集可以在搏动接受过程308期间基于确定出的传导速度(例如,在预滤波过程中)被接受和/或拒绝。

表面几何图形(surface geometry)数据可以在同一数据采集过程期间使用采用表面几何图形构造过程312的相同和/或不同触发和/或搏动接受度量同时生成。该过程使用诸如被包含在数据流中的电极位置和导管形状的数据来构建表面几何图形。另外地或可替代地,先前收集的表面几何图形316可以被用作至表面几何图形数据318的输入。这种几何图形可以先前已经使用不同的标测图数据集和/或使用不同的模态(诸如CT、MRI、超声波和/或旋转血管造影术等)在同一程序中被收集,并且被登记到导管定位系统。该系统执行源选择过程314,其中它选择表面几何图形数据的源并将表面几何图形数据318提供给表面标测图生成过程320。采用表面标测图生成过程320以从标测图数据集320和表面几何数据318生成表面标测图数据322。

表面几何图形构造算法生成其上显示电解剖标测图的解剖表面。例如,可以使用如题为“Impedance Based Anatomy Generation”并且于2008年5月8日提交的美国专利申请序列号12/437,794和/或题为“Electroanatomical Mapping”并且于2015年2月3日发布的美国专利8,948,837描述的系统的方面来构建表面几何图形,其每个的内容通过引用整体并入本文。另外或可替代地,可以通过将由用户或自动地确定出的电极位置上的表面拟合到腔室的表面上而由处理单元构建解剖外壳。另外,表面可以被拟合在腔室内的最外面的电极和/或导管位置上。

如所描述的,从其构建表面的标测图数据集310可以采用与被用于电标测图和其他类型标测图的那些相同或不同的搏动接受标准。用于表面几何图形构造的标测图数据集310可以与电子数据同时被收集或分开被收集。表面几何图形可以被表示为网格,其包含顶点(点)的收集以及它们之间的连接性(例如三角形)。可替代地,表面几何图形可以由不同的函数来表示,诸如高阶网格、非均匀有理基础样条(non-uniform rational basis spline,NURBS)和/或曲线形状。

生成过程320生成表面标测图数据322。表面标测图数据322可以提供关于以下的信息:心脏电激励、心脏运动、组织邻近信息、组织阻抗信息、力信息和/或临床医生需要的任何其他收集到的信息。标测图数据集320和表面几何图形数据318的结合允许表面标测图生成。表面标测图是感兴趣腔室的表面上的值或波形(例如,EGM)的收集,而标测图数据集可包含不在心脏表面上的数据。一种用于处理标测图数据集320和表面几何图形数据318以获得表面标测图数据集322的方法在于2006年6月13日提交的题为“NON-CONTACT CARDIAC MAPPING,INCLUDING MOVING CATHETER AND MULTI-BEAT INTEGRATION”的US 7,515,954中进行描述,其内容通过引用整体并入本文。

可替代地,或者与上述方法结合,可以采用将接受标准应用于个别电极的算法。例如,可以拒绝超过距表面几何图形的设定距离(例如3mm)的电极位置。另一种算法可以使用阻抗合并组织邻近信息以被包括在表面标测图数据中。在这种情况下,可能只包括其邻近值小于3mm的电极位置。基础数据(underlying data)的附加度量也可用于此目的。例如,可以基于每个电极来评估类似于搏动度量(诸如例如传导速度)的EGM属性。在这种情况下,可以使用诸如远场重叠和/或EGM一致性的度量。应该理解,可以存在对从标测图数据集320向表面投影点和/或选择适当点的方法的变化。

一旦被获得,表面标测图数据322就可以被进一步被处理以从基础数据注释所期特征,过程被定义为表面标测图注释324。一旦数据被收集到表面标测图数据322中,与收集到的数据有关的属性就可以自动呈现给用户。这些属性可以由计算机系统自动确定并被应用于数据,并且在这里被称为注释。示例性注释包括激活时间、双激活或分级的存在、电压幅值和/或频谱内容等。由于在自动标测(例如,通过计算机系统以与传入数据有关的最少人力输入完成的标测)中可用的数据丰富,操作员手动审查和注释数据是不实际的。但是,人力输入可以是对数据有价值的补充,并且因此当提供用户输入时,计算机系统必须自动传播并将其一次应用于多于一个的数据点。例如,在题为“ELECTROANATOMICAL MAPPING”的美国专利号8,948,837中公开了注释所期特征的进一步细节,其通过引用整体并入本文。

可以使用计算机系统来自动注释个别EGM的激活时间、电压和其他特性。激活时间检测可以使用类似于前面描述的那些的方法来检测触发,并且可以类似地受益于使用消隐和供电的触发操作器(operator)。所期注释可以包括信号的瞬时电位、激活时间、电压幅值、主频、平均周期长度和/或其他属性。一旦被计算出来,注释就可以叠加显示在腔室几何图形上。在实施例中,可以在基于速度的滤波过程325中对标测图进行后滤波。也就是说,例如,该系统可以生成激活标测图并通过查找附近的标测图值的梯度来估计激活标测图的每个顶点处的速度。然后,可以仅在速度在特定范围内的位置处注释心脏标测图。

在实施例中,可以采用间隙填充表面标测图内插326。例如,在实施例中,在表面上的点与测量出的EGM之间的距离超过阈值的情况下,可以采用间隙填充内插。显示的标测图328可以分开被计算和显示和/或在彼此的顶部重叠。如所示出的,上面描述的基于速度的滤波可以可替选地恰好在显示标测图328之前(或者例如作为其过程的一部分)被应用。在实施例中,例如,它们的系统可以通过生成具有与对应于所生成和注释的心脏标测图的顶点的顶点相关联的传导速度值的分离的速度标测图(例如,基于生成的激活标测图)来生成速度掩膜。当标测图被显示时328,仅显示与满足特定条件的速度对应的标测图几何图形和/或注释的那些部分。

图4是描绘根据本公开的实施例的用于促进心脏标测信息的显示的说明性方法400的流程图。方法400的实施例可全部或部分地由标测系统(例如,图1A中描绘的标测系统100)来执行。方法400的实施例包括从标测探针接收多个心脏电信号(框402)并确定多个信号特征,每个信号特征包括感测到的心脏信号之一的特征(框404)。感测到的心脏电信号中的每个(以及相应地,每个信号的特征)对应于在该处感测到心脏电信号的相应点(例如,空间中的位置)。

感测到的心脏电信号可以包括多个心内EGM。心脏电信号的特征的示例包括但不限于:激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频和/或峰-峰值电压等。在该处感测到心脏电信号的相应点的每个具有对应的三维位置坐标的集合。例如,点的位置坐标可以以笛卡尔坐标来表示。也可以使用其他坐标系。在实施例中,使用任意原点并且相对于该任意原点定义相应位置坐标。在实施例中,对应于每个感测到的心脏电信号的点可以位于心脏的心内膜表面上和/或心脏的心内膜表面下。

方法400的实施例还包括确定多个传导特性,每个传导特性基于多个信号特征中的一个或多个(框406)。在实施例中,传导特性可以是激活梯度或传导速度。根据上面关于图2描述的后滤波方法和/或预滤波方法,传导特性可以“基于”多个信号特征中的一个或多个。也就是说,术语“基于”暗示在某个程度上的推导,但并不意味着暗示直接计算或其他确定。任何数量的计算和/或其他类型的确定、转换和/或聚合等可以在特性(例如,值、分类等)和它所基于的事实之间内插。例如,可以通过使用与标测图顶点相关联的一个或多个值(例如,激活时间、激活时间之间的差等)执行计算来确定传导特性,其中这些值可以从一些其他信息(例如,激活时间可能是信号的特征)导出。在“后滤波”方法的实施例中,可以基于两个激活时间之间的差来确定传导特性,所述两个激活时间中的每个可以实际上通过聚合来自多个心脏信号和/或信号特征的信息来确定。作为另一个示例,基于一个或多个信号特征的传导特性可以包括对应于激活信号的传播向量的传导特性,其使用对应于由三个电极感测到的电信号的激活时间来确定(即,使用预滤波方法来确定传导特性)。除了上面给出的描述之外,这些方法中的每个下面分别还在图5和图6中更详细地描述。

方法400的实施例还包括导致显示装置基于传导特性显示一个或多个心脏结构的至少一部分的心脏标测图(框408)。在实施例中,心脏标测图可以至少部分地基于心脏电信号特征来生成,并且可以包括解剖外壳和至少一个信号特征的表示。在实施例中,心脏标测图也可以至少部分地使用任何数量的其他信号和/或技术等来生成。例如,实施例可以利用阻抗标测技术来生成心脏标测图的一个或多个部分,诸如例如,其上表示电信号特征的解剖外壳。在实施例中,可以将表面拟合在与心脏电信号相关联的一个或多个点上以生成表示一个或多个心脏结构的心内膜表面的外壳。在实施例中,表面也可以被拟合在与心脏电信号相关联的一个或多个点上以生成表示心外膜表面或其他易兴奋心脏组织的外壳。在实施例中,对应点处的一个或多个心脏电信号特征可被包括在外壳上以生成一个或多个心脏结构的心脏标测图。例如,实施例可以包括在心脏标测图上显示表示从心脏电信号提取的和/或从其他特征导出的特征的注释,所述特征诸如例如激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频和/或峰-峰值电压等。

图5是描绘根据本公开的实施例的用于促进心脏标测信息的显示的另一说明性方法500的流程图。方法500的实施例可全部或部分地由标测系统(例如,图1A中描绘的标测系统100)来执行。方法500的实施例包括从标测探针接收多个心脏电信号(框502)并确定多个信号特征,每个信号特征包括感测到的心脏信号之一的特征(框504)。感测到的心脏电信号中的每个(以及相应地每个信号的特征)对应于在该处感测到心脏电信号的相应点(例如,空间中的位置)。

感测到的心脏电信号可以包括多个心内EGM。心脏电信号的特征的示例包括但不限于:激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频和/或峰-峰值电压等。在该处感测到心脏电信号的每个相应点具有对应的三维位置坐标的集合。例如,点的位置坐标可以以笛卡尔坐标来表示。也可以使用其他坐标系。在实施例中,使用任意原点并且相对于该任意原点定义相应位置坐标。在实施例中,对应于每个感测到的心脏电信号的点可以位于心脏的心内膜表面上和/或心脏的心内膜表面下。

方法500的实施例还包括生成心脏标测图(框506)。在实施例中,心脏标测图可以至少部分地基于心脏电信号特征来生成并且可以包括解剖外壳和至少一个信号特征的表示。在实施例中,心脏标测图也可以至少部分地使用任何数量的其他信号和/或技术等来生成。例如,实施例可以利用阻抗标测技术来生成心脏标测图的一个或多个部分,诸如例如,其上表示电信号特征的解剖外壳。在实施例中,可以将表面拟合在与心脏电信号相关联的一个或多个点上以生成表示一个或多个心脏结构的心内膜表面的外壳。在实施例中,表面也可以被拟合在与心脏电信号相关联的一个或多个点上以生成表示心外膜表面或其他易兴奋心脏组织的外壳。在实施例中,外壳的表面几何图形可以被表示为包含顶点(点)的收集和它们之间的连接性(例如三角形)的网格。可替选地,表面几何图形可以由不同的函数来表示,诸如高阶网格、非均匀有理基础样条(NURBS)和/或曲线形状。

在实施例中,在对应点处的一个或多个心脏电信号特征可以被包括在外壳上以生成一个或多个心脏结构的心脏标测图。例如,实施例可以包括在心脏标测图上显示表示从心脏电信号提取的和/或从其他特征导出的特征的注释,所述特征诸如例如激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频和/或峰-峰值电压等。如果除激活标测图之外的心脏标测图作为框506的一部分被产生,则方法500的实施例还包括生成具有顶点的集合的激活标测图(框508)。

方法500的实施例包括基于从心脏电信号提取的激活时间来确定传导特性(框510)。如上所述,在实施例中,传导特性可以是激活梯度或传导速度。基于激活时间的梯度确定传导特性在本文中可互换地被称为用于确定传导特性的“后滤波”方法。

在实施例中,为了基于激活时间的梯度来确定传导特性,可以计算激活标测图的每个顶点的两个或更多个激活时间差。可以相对于周围顶点的激活时间来计算顶点的激活时间差。顶点的位置差也可以相对于周围顶点的位置来计算。使用两个或更多个激活时间差和对应的位置差,可以使用最小二乘拟合(least-squares fit)来估计顶点的激活时间梯度。术语“最小二乘梯度(least-squares gradient)”可以互换地使用,指的是使用最小二乘来从两个或更多个激活时间差和位置差计算单个梯度。激活传播的方向将是最小二乘梯度的方向。此外,当比较两个不同顶点的最小二乘梯度时,具有拥有较大大小(magnitude)的最小二乘梯度的顶点将是具有较慢传导速度的顶点。这是因为在第一顶点和相邻顶点之间具有缓慢传播的第一顶点周围的激活时间的差将大于在第二顶点和相邻顶点之间具有快速传播的第二顶点周围的激活时间的差。

在实施例中,可以通过计算激活时间梯度的倒数而从激活时间梯度确定顶点的传导速度。在这些实施例中,当比较两个不同顶点的最小二乘梯度时,具有拥有较小大小的最小二乘梯度的顶点将是具有较慢传导速度的顶点。

方法500的实施例包括确定满足条件的传导特性的集合(框512)。在实施例中,可以基于传导特性是传导速度还是激活时间梯度以及医生和/或技术人员将希望看到心脏标测图的什么部分来选择条件。例如,如上面描述的,可能导致心律失常的激活信号的再进入(reentry)可能是由于较慢的通路。像这样,传导特性的条件可以被设置为在作为健康心脏组织典型的传播速度和作为不健康心脏组织典型的传播速度之间进行区分。为了区分传播速度,作为不健康心脏组织典型的传导特性值的范围可以满足条件并且/或者高于或低于阈值的传导特性值可以满足条件。

例如,当传导特性是激活时间梯度时并且当比较两个不同顶点的激活时间梯度时,具有拥有较大大小的激活时间梯度的顶点将是具有较慢传导速度的顶点。因此,在实施例中,当激活梯度不小于阈值时,激活梯度可以满足条件。并且相反,当传导特性是传导速度时并且当比较两个不同顶点的传导速度时,具有拥有较小大小的传导速度的顶点将是具有较慢传导速度的顶点。相应地,在实施例中,当传导速度不大于阈值时,传导速度可以满足条件。作为另一个示例,健康的心脏激活可以以每毫秒(ms)大约0.5毫米(mm)的速度传播;并且不健康的心脏激活可能以大约一半的速度传播,例如大约0.25mm/ms。像这样,在使用传导速度的实施例中,低于0.4mm/ms和/或在0.25mm/ms的0.15mm/ms内的传导速度可以满足该条件。然而这些仅仅是示例,并不意味着限制。

方法500的实施例还包括致使具有对应于满足条件的传导特性的集合的信号特征的表示的心脏标测图的显示(框514)。所显示的心脏标测图可以如上面在框506中所描述的那样生成。然而,在实施例中,可以仅显示对应于满足条件的传导特性的集合的信号特征。像这样,医生和/或技术人员可以更容易地识别心脏标测图的特别相关部分(例如,缓慢通路),其可以导致对患者的更快和更精确的治疗。在实施例中,心脏标测图可以被显示在显示装置上,例如,上面图1中示出的显示装置118。

图6是描绘根据本公开的实施例的用于促进心脏标测信息的显示的另一说明性方法的流程图。方法600的实施例可全部或部分地由标测系统(例如,图1A中描绘的标测系统100)来执行。方法600的实施例包括从标测探针接收多个心脏电信号(框602)并确定多个信号特征,每个信号特征包括感测到的心脏信号之一的特征(框604)。感测到的心脏电信号中的每个(以及相应地每个信号的特征)对应于在该处感测到心脏电信号的相应点(例如,空间中的位置)。

感测到的心脏电信号可以包括多个心内EGM。心脏电信号的特征的示例包括但不限于:激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频和/或峰-峰值电压等。在该处感测到心脏电信号的相应点的每个具有对应的三维位置坐标的集合。例如,点的位置坐标可以以笛卡尔坐标来表示。也可以使用其他坐标系。在实施例中,使用任意原点并且相对于该任意原点定义相应位置坐标。在实施例中,对应于每个感测到的心脏电信号的点可以位于心脏的心内膜表面上和/或心脏的心内膜表面下。

方法600的实施例包括使用对应于由三个电极感测到的电信号的激活时间来确定传导特性(框606)。在实施例中,传导特性可以是激活梯度或传导速度。在实施例中,使用最小二乘拟合计算,可以使用从一个或多个心脏信号提取的相对激活时间和位置来确定激活信号的传播向量。与以上类似,传播向量的方向是激活信号的传播方向,并且传播向量的大小的倒数对应于激活信号的传导速度。在实施例中,被用于确定激活时间梯度和/或传导速度的信号可以来自信号周期(或“搏动”)。基于对应于由三个电极感测到的心脏电信号的激活时间来确定传导特性在本文中可以互换地被称为用于确定传导特性的“预滤波”方法。

在实施例中,使用预滤波方法确定传导特性可能具有优势。例如,通常,根据从多个搏动感测到的信号生成心脏标测图。这些信号中的一个或多个可以被用作一个或多个参考,并且感测到的其他信号可以相对于一个或多个参考信号对准。在此对准过程期间,可能会引入噪声,这是因为由于从不同搏动感测到的信号中的轻微像差(aberration)而引起信号的对准可能不准确。然而,使用预滤波器方法,由于从其提取激活时间的心脏信号可能来自单个心跳,所以不引入该对准噪声。

预滤波方法的另一个优点可以是在生成心脏标测图时。例如,当构建激活标测图时,代替仅确定特定点(或顶点)的最普遍的激活时间并且使用该激活时间来生成激活标测图,可以将如使用预滤波传导特性确定出的方向与每个激活时间相关联。像这样,如果在大致相同的频率和位置处从多次搏动上的心脏信号提取两个不同的激活时间,则基于与激活时间和所期激活传播相关联的方向,消除激活时间中的一个可能更容易做到。例如,假定从顶点处的心脏信号提取10ms(相对于参考时间)的第一激活时间和20ms(相对于参考时间)的第二激活时间。进一步假定第一激活时间相对于参考角度具有45度的方向,并且第二激活时间相对于参考角度具有90度的方向。如果围绕顶点的激活信号相对于参考角度具有45的方向,则可以丢弃第二激活时间,这是因为它具有与围绕顶点的激活信号的方向不匹配的方向。因此,可以使用预滤波方法来通过拒绝不与其他提取的特征对准的一些提取的特征来改进某些心脏标测图。

方法600的实施例包括确定满足条件的传导特性的集合(框608)。在实施例中,可以基于传导特性是传导速度还是激活时间梯度以及医生和/或技术人员将希望看到心脏标测图的什么部分来选择条件。例如,如上面描述的,可能导致心律失常的激活信号的再进入可能是由于缓慢的通路。像这样,传导特性的条件可以被设置为在作为健康心脏组织典型的传播速度和作为不健康心脏组织典型的传播速度之间进行区分。为了区分传播速度,作为不健康心脏组织典型的传导特性值的范围可以满足条件和/或高于或低于阈值的传导特性值可以满足条件。

例如,当传导特性是激活时间梯度时并且当比较两个不同顶点的激活时间梯度时,具有拥有较大大小的激活时间梯度的顶点将是具有较慢传导速度的顶点。因此,在实施例中,当激活梯度不小于阈值时,激活梯度可以满足条件。并且相反,当传导特性是传导速度时并且当比较两个不同顶点的传导速度时,具有拥有较小大小的传导速度的顶点将是具有较慢传导速度的顶点。因此,在实施例中,当传导速度不大于阈值时,传导速度可以满足条件。作为另一个示例,健康的心脏激活可以以每毫秒(ms)大约0.5毫米(mm)的速度传播;并且不健康的心脏激活可能以大约一半的速度传播,例如大约0.25mm/ms。像这样,在传导特性是传导速度的实施例中,低于0.4mm/ms和/或在0.25mm/ms的0.15mm/ms内的传导速度可以满足该条件。然而,这些仅仅是示例,并不意味着限制。

方法600的实施例还包括生成心脏标测图(框610)。在实施例中,心脏标测图可以至少部分地基于心脏电信号特征来生成并且可以包括解剖外壳和至少一个信号特征的表示。在实施例中,基于确定出的预滤波传导特性可以拒绝一些信号特征,如上面在框606的讨论中所描述的,并且因此不用于生成心脏标测图。在实施例中,心脏标测图也可以至少部分地使用任何数量的其他信号和/或技术等来生成。例如,实施例可以利用阻抗标测技术来生成心脏标测图的一个或多个部分,诸如例如,电信号特征在其上被表示的解剖外壳。在实施例中,可以将表面拟合在与心脏电信号相关联的一个或多个点上以生成表示一个或多个心脏结构的心内膜表面的外壳。在实施例中,表面也可以被拟合在与心脏电信号相关联的一个或多个点上以生成表示心外膜表面或其他易兴奋心脏组织的外壳。在实施例中,外壳的表面几何图形可以被表示为包含顶点(点)的收集和它们之间的连接性(例如三角形)的网格。可替代地,表面几何图形可以由不同的函数表示,诸如高阶网格、非均匀有理基础样条(NURBS)和/或曲线形状。

在实施例中,在对应点处的一个或多个心脏电信号特征可被包括在外壳上以生成一个或多个心脏结构的心脏标测图。例如,实施例可以包括在心脏标测图上显示表示从心脏电信号提取的和/或从其他特征导出的特征的注释,所述特征诸如例如激活时间、最小电压值、最大电压值、电压的最大负时间导数、瞬时电位、电压幅值、主频和/或峰-峰值电压等。

方法600的实施例还包括致使具有对应于满足条件的传导特性的集合的信号特征的表示的心脏标测图的显示(框614)。所显示的心脏标测图可以如上面在框610中所描述的那样生成。然而,在实施例中,可以仅显示与满足条件的传导特性的集合对应的信号特征。像这样,医生和/或技术人员可以更容易地识别心脏标测图的特别相关部分(例如,缓慢通路),其可以导致对患者的更快和更精确的治疗。在实施例中,心脏标测图可以被显示在显示装置上,例如,上面图1中示出的显示装置118。

在不背离本公开的范围的情况下,可以对所讨论的示例性实施例进行各种修改和添加。例如,虽然上面描述的实施例涉及特定特征,但是本公开的范围还包括具有特征的不同组合的实施例和不包括所有描述的特征的实施例。因此,本公开的范围旨在涵盖落入权利要求范围内的所有这些替代、修改和变化以及其所有等同物。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1