用于治疗性处理的口腔粘膜纳米纤维载体的制作方法

文档序号:15746208发布日期:2018-10-23 23:16阅读:275来源:国知局

本申请要求2016年12月27日提交的美国临时申请第62/439,324号和2016年1月27日提交的美国临时申请第62/287,863号的优先权。这些申请中的每一篇申请都以其全文通过引用并入本文。

技术领域

本公开涉及使用口腔粘膜纳米纤维载体来制备和给药活性剂,该口腔粘膜纳米纤维载体是粘膜粘附的或包含粘膜粘附剂。



背景技术:

偏头痛是一种慢性和发作性头痛综合征,通常伴有恶心和呕吐,其影响发达国家的约15%至20%的人口。偏头痛有两种主要类型,分别是有先兆偏头痛和无先兆偏头痛,分别影响该人口的约15%和8%。在无先兆的类型中,头痛是单侧的、脉动的、并且强度为中等到重度,并且通常包括恶心和其他症状,持续几个小时到几天。在先兆种类中,先兆(例如,包括视觉、体感和运动症状)在偏头痛发作出现之前出现。

偏头痛药物治疗方案包括使用非处方(OTC)止痛药或仅处方药物止痛药和几种属于麦角胺及其衍生物、非甾体抗炎药(NSAID)和主要是曲普坦类的药物,上述药物单独地或组合地使用。这些活性剂(药物)主要通过口服、直肠、肠胃外(静脉内、皮下)、吸入、鼻内、透皮(包括离子电渗制剂)和口腔粘膜(口腔和舌下)途径给药。总体而言,对于具有更快起效果的抗偏头痛作用的非侵入性药物制剂仍在治疗上存在需求,其具有更高且更安全的抗偏头痛药物的功效。

另外,本领域内需要增加给药药物(包括包含大分子和小分子活性剂的高分子量部分)的生物利用度,以提高功效和减少有害的副作用。该制剂可以提供活性剂的给药而没有由于经常与口服给药相关的呕吐和/或与鼻或肺吸收相关的低功效而具有缺乏治疗效果的危险,具有短的持续滞后时间且没有与直肠栓剂给药相关的个体不适以及与侵入性肠胃外给药相关的所有并发症(不仅包括疼痛,还包括一般严格的无菌要求)以及还有药品的最终价格。本公开解决了本领域中的这个和其他相关需求。



技术实现要素:

在一个实施方式中,提供用于制备口腔粘膜载体的电纺活性层的聚合物溶液,其包含:构成聚合物溶液的约3%至5%之间、或约1%至10%之间的偏头痛药物活性剂;构成聚合物溶液的约9%至11%之间、或约5%至15%之间的水溶性和/或可生物降解的聚合物;掩味剂、pH调节剂、和/或表面活性剂;以及构成聚合物溶液的约80%至85%之间、或约70%至90%之间的水。在许多情况下,聚合物包含两种或更多种、三种或更多种、或者四种或更多种不同聚合物的混合物。在许多情况下,当包含掩味剂时,掩味剂构成聚合物溶液的约1%或小于1%,或小于约0.5%。此外在许多情况下,当包含pH调节剂时,pH调节剂构成聚合物溶液的约2%或小于2%。在许多实施方式中,掩味剂和/或pH调节剂各自分别包含两种或更多种不同试剂的组合。百分比以重量计。

还可以提供用于给药口腔粘膜剂量的偏头痛治疗的载体,其包含保护层、活性层和粘膜粘附层,其中保护层、活性层和粘膜粘附层邻近彼此且彼此共同延伸,并且其中保护层和活性层由纳米纤维构成,并且偏头痛药物存在于活性层中。在许多情况下,偏头痛药物包含曲普坦类药物(triptan)。此外偏头痛药物许多情况下包含利扎曲普坦。在许多实施方式中,偏头痛药物包含利扎曲普坦、那拉曲普坦、佐米曲普坦、依来曲普坦、阿莫曲普坦、夫罗曲普坦、阿维曲普坦和多尼曲普坦。

在许多情况下提供用于偏头痛药物的口腔粘膜递送的载体,其包含:纳米纤维活性层,含有构成纳米纤维活性层的约23%至32%之间、或约10%至45%之间的偏头痛药物活性剂;构成纳米纤维活性层的约62%至73%之间、或约50%至80%之间的水溶性和/或生物可降解性聚合物;掩味剂;和粘膜粘附层。在许多情况下,纳米纤维活性层通过无针静电纺丝(needle-free electrospinning)来生产。在许多情况下,水溶性和/或生物可降解性聚合物包含两种或更多种、三种或更多种、或四种或更多种不同聚合物的混合物。

在某些实施方式中,提供制备口腔粘膜载体活性层的方法,其包括在电纺丝过程(electrospinning process)中使用本文所述的聚合物溶液。最多情况下,活性层沉积在电纺纳米纤维保护层上。

还提供了治疗患有偏头痛的受试者的方法,所述方法包括将该载体给药至受试者的口中。给药在许多情况下包括将载体的粘膜粘附层给药至受试者的口腔粘膜表面。

在许多情况下,掩味剂选自由以下组成的组:三氯蔗糖、赤藓糖醇、异麦芽糖醇、D-麦芽糖醇、乳糖醇(mactitol)、D-甘露糖醇、纽甜、糖精、葡萄糖(dextrose)、山梨糖醇、木糖醇、莱鲍迪甙A、奇异果甜蛋白(thaumatin)、D-柠檬烯、柠檬醛、甲酸香茅酯(citronellyl formate)、甲基紫罗兰酮、薄荷醇、百里酚和丁子香酚。

此外在许多情况下,pH调节剂选自由以下组成的组:氢氧化钠(NaOH)、氢氧化钾(KOH)、碳酸钠或碳酸氢钠、磷酸一钠或磷酸二钠、三乙醇胺、柠檬酸、乳酸、乙酸、抗坏血酸、苹果酸、葡糖酸、谷氨酸、盐酸、硫酸、磷酸、琥珀酸、酒石酸、丁酸、盐酸精氨酸(arginine hydrochloride)和肌酸酐。

在许多实施方式中,表面活性剂选自由以下组成的组:阴离子表面活性剂、非离子表面活性剂、阳离子表面活性剂、脂肪酸或其衍生物、和胆汁盐。

在许多情况下,掩味剂、pH调节剂和/或表面活性剂构成聚合物溶液的约1%至5%之间、或约1%至8%之间。

在许多实施方式中,偏头痛药物包含曲普坦。在许多情况下,偏头痛药物包含利扎曲普坦。此外在许多情况下,偏头痛药物包含利扎曲普坦、那拉曲普坦、佐米曲普坦、依来曲普坦、阿莫曲普坦、夫罗曲普坦、阿维曲普坦和多尼曲普坦。

本文考虑了除偏头痛药物或替代偏头痛药物之外的活性药物。本发明的方法和装置提供并入本文所述的纳米纤维和载体中的具有各种分子量的活性剂。活性剂可以包含小分子或大分子部分。例如,在某些实施方式中,活性剂包含生物聚合物,诸如多肽、蛋白质、核酸、多糖、肽、碳水化合物、DNA、RNA或脂质。在某些实施方式中,至多约67kDa或70kDa的活性剂聚合物与水溶性和/或生物可降解性聚合物一起提供在本文所述的纳米纤维和载体中。在某些实施方式中,约269道尔顿至高达约67kDa的活性剂聚合物与水溶性和/或生物可降解性聚合物一起提供在本文所述的纳米纤维和载体中。在某些实施方式中,将约269道尔顿至高达约627道尔顿的活性剂聚合物与水溶性和/或生物可降解性聚合物一起提供在本文所述的纳米纤维和载体中。在某些实施方式中,约627道尔顿至高达约4kDa的活性剂聚合物与水溶性和/或生物可降解性聚合物一起提供在本文所述的纳米纤维和载体中。在某些实施方式中,约3.7kDa至约高达67kDa的活性剂聚合物与水溶性和/或生物可降解性聚合物一起提供在本文所述的纳米纤维和载体中。

在某些实施方式中,提供包含水溶性和/或生物可降解性聚合物以及牛血清白蛋白(BSA)或人血清白蛋白、或它们的片段、类似物或肽的纳米纤维和/或载体。在某些实施方式中,纳米纤维包含约占5%至20%之间的牛血清白蛋白和约占80%至95%之间的水溶性和/或生物可降解性聚合物。在许多情况下,BSA或其片段、类似物或肽是用于一种或多种不同的额外活性剂的药物载体。在许多情况下包括额外的活性剂的实施方式中,额外的活性剂包含苯二氮类(benzodiazepine)、青霉素、甲氨蝶呤、紫杉醇或阿霉素(doxorubicin)。此外在许多情况下,额外的活性剂包含曲普坦、甲磺酸达比加群酯(dabigatran ethexylate mesylate)或胰高血糖素样肽1类似物(glucagon-like peptide 1 analog)。包含含有BSA或其片段、类似物或肽的载体作为用于治疗或预防疾病或病症的活性药剂(例如化疗剂、抗风湿剂、抗生素等)的载体的药物也是可以考虑的(contemplated)。还提供了递送用于治疗或预防疾病或病症(例如癌症、类风湿性介导的疾病或感染)的活性药剂的方法,其包括给药包含水溶性和/或生物可降解性聚合物且包含BSA或其片段、类似物或肽作为用于活性药剂(诸如本文所提及的那些)的载体。

另外,在某些实施方式中,提供纳米纤维和/或载体,其包含水溶性和/或生物可降解性聚合物以及胰高血糖素样肽1或者其类似物或肽或片段。许多情况下在这样的实施方式中,胰高血糖素样肽1类似物包含利拉鲁肽(liraglutide)、艾塞那肽(exenatide)、利西那肽(lixisenatide)、阿必鲁肽(albiglutide)、杜拉鲁肽(dulaglutide)、他司鲁泰(taspoglutide)和/或索马鲁肽(semaglutide)。也考虑用于治疗或预防糖尿病病症的包含胰高血糖素样肽1或其类似物、肽或片段的载体的药物。此外提供治疗或预防糖尿病病症的方法,其包括给药包含水溶性和/或生物可降解性聚合物以及胰高血糖素样肽1或者其类似物(诸如本文所提及的那些)或肽或片段的载体。

此外在某些实施方式中,提供纳米纤维和/或载体,其包含水溶性和/或生物可降解性聚合物和甲磺酸达比加群酯(dabigatran ethexylate mesylate)。在许多情况下,在某些实施方式中,活性剂与掩味剂或调味剂一起掺入纳米纤维或载体中。也考虑包含用于治疗或预防中风、深静脉血栓形成或肺栓塞或另一种凝血病症的包含达比加群或其类似物的载体的药物。还提供了治疗或预防中风、深静脉血栓形成、肺栓塞或另一种凝血病症的方法,包括给药包含水溶性和/或生物可降解性聚合物和达比加群或其类似物的载体。

在许多实施方式中,聚合物溶液或载体还包含钠泵抑制剂、抗惊厥药、抗抑郁药、β-受体阻滞剂、钙通道阻滞剂、非甾体抗炎药(NSAID)、5-羟色胺受体拮抗剂、5-羟色胺再摄取抑制剂、5-羟色胺去甲肾上腺素再摄取抑制剂、镇痛剂、止吐剂、麦角衍生物、神经肽拮抗剂和/或核黄素。许多情况下以聚合物溶液或载体中的活性剂的组合形式提供这些试剂。在许多情况下,聚合物溶液或载体包含曲普坦和NSAID。在某些实施方式中,聚合物溶液或载体包含曲普坦和止吐剂。在某些实施方式中,聚合物溶液或载体包含曲普坦、NSAID和止吐剂。

在许多情况下,纳米纤维保护层的纳米纤维包含水不溶性聚合物。

此外在许多情况下,电纺粘膜粘附层沉积在活性层上。在许多情况下,载体中的纳米纤维粘膜粘附层包含聚合物、pH调节剂和掩味剂。粘膜粘附层中的聚合物许多包含两种或更多种不同聚合物的组合。

在许多实施方式中,静电纺丝过程是无针静电纺丝过程。

在许多实施方式中,水溶性和/或生物可降解性聚合物包含选自由以下组成的组的两种或更多种聚合物:微分散氧化纤维素(mDOC,Loturon)、泊洛沙姆(普朗尼克(Pluronic))、聚乙烯醇(PVA),聚环氧乙烷(PEO)、聚乳酸(PLLA)和聚己内酯(PCL)。

在许多情况下,粘膜粘附层包含水溶性和/或生物可降解性聚合物纳米纤维。此外在许多情况下,水溶性和/或生物可降解性聚合物纳米纤维包含选自由以下组成的组的聚合物:壳聚糖,微分散氧化纤维素衍生物(mDOC,Loturon)、普朗尼克、PVA、PEO、PLLA和PCL。

在许多实施方式中,水溶性和/或生物可降解性聚合物包含微分散氧化纤维素衍生物(mDOC,Loturon)、普朗尼克、PVA、PEO、PLLA和PCL;并且粘膜粘附层包含壳聚糖、PVA和PEO。

在许多实施方式中,偏头痛药物包含约7mg至约44mg之间的量的苯甲酸利扎曲普坦。偏头痛药物许多情况下包含在总重量在约5mg至30mg之间的活性剂中。此外在许多情况下,载体总重量在约23mg至约184mg之间。

在许多实施方式中,纳米纤维活性层还包含非甾体抗炎药。

在许多实施方式中,纳米纤维保护层提供在载体中。在许多情况下,纳米纤维保护层包含选自由以下组成的组的聚合物:(a)水不溶性聚合物或经处理为不溶于水的聚合物;和(b)羟丙基纤维素(HPC)、羧甲基纤维素(CMC)、Kollicoat IR(聚乙烯醇-聚乙二醇共聚物)、PVA和PEO中的两种或更多种。在许多情况下,保护层不溶于唾液中并且对于唾液和偏头痛药物而言是不可渗透的。

活性层许多情况下在第一时间段内可溶于受试者的口中,并且保护层不溶于受试者的口中并且对于唾液和偏头痛药物是不可渗透的。在第二时间段内,活性层也经常溶解于受试者的口中。在许多实施方式中,保护层在第二时间段后对唾液是可渗透的。在许多情况下,保护层在第二时间段后可溶于受试者的口中。在许多情况下,偏头痛药物在第一时间段和第二时间段之间从活性层释放。

为了实现前述和相关目的,在此结合以下描述和附图来描述某些说明性方面。然而,这些方面仅指示可以采用所要求保护主题的原理的各种方式中的一些方式,并且所要求保护的主题旨在包括所有这些方面及其等同物。当结合附图考虑时,其他优点和新颖特征从下面的详细描述将变得清楚明白。

附图说明

图1A和图1B提供具有和不具有粘膜粘附层的本公开的载体的图示。

图2描绘本公开的载体的体外药物吸收浓度对时间的曲线。描绘了保湿覆盖层(HPC)和置于舌下膜上的简单层的比较。在弗兰兹扩散池(franz diffusion cell)的受体室中测量利扎曲普坦的浓度(即利扎曲普坦通过猪舌下膜渗透/吸收的浓度)。

图3描绘本公开的载体的药物吸收浓度对时间的曲线。提供由载体与溶液(无载体)提供0.7mg利扎曲普坦的渗透/吸收曲线的比较。

图4描绘从微粉化结晶物质获得的10mg达比加群的释放曲线,从pH 6.0的(勃林格殷格翰药业有限公司(Boehringer Ingelheim Pharma GmbH&Co.)、KG股份两合公司(KG GMBH&CO.KG))胶囊和聚乙烯醇纳米纤维垫获得的微丸(micropelet)。

图5描绘来自纳米纤维和溶液的体外跨粘膜渗透利拉鲁肽曲线图的比较,重新计算利拉鲁肽的供体量为1.2mg。

图6描绘牛血清白蛋白体外通过猪舌下膜的渗透。

图7提供活性剂血浆浓度曲线。

具体实施方式

本文提到的所有专利、申请、公开的申请和其他出版物以其全文通过引用和/或它们被引用的具体原因并入。

除非另外定义,否则本文使用的所有技术和科学术语具有与本公开所属领域的普通技术人员通常理解的相同的含义。在一些情况下,为了清楚和/或为了便于参考而在本文中定义了具有通常理解的含义的术语,并且在本文中包括这样的定义不应该被解释为表示与本领域中通常理解内容的实质差异。如果本部分中提出的定义与专利、申请、公开的申请和其他出版物中提出的定义相矛盾或以其他方式与本文引用作为参考的其他出版物不一致,则本部分阐述的定义优先于在此引入作为参考的定义。

如本文所使用的,“一(a)”、“一个(an)”或“另一(another)”意指“至少一个”或“一个或多个”。

如本文所使用的,术语“和/或”可以表示“和”,其可以表示“或”,其可意指“排除-或”,其可意指“一个”,其可意指“一些,但不是全部”,其可意指“既不”,和/或其可意指“两者”。

术语“实施方式”的使用意指结合该实施方式描述的特定特征、结构或特性被包括在所述主题的至少一个实施方式中。如此,贯穿本公开的短语“在一个实施方式中”或“在实施方式中”的出现不一定指相同的实施方式。此外,特定特征、结构或特性可以任何合适的方式在一个或多个实施方式中组合。

如本文所使用的,“受试者”通常指动物,包括但不限于灵长类动物(例如人)。术语“受试者”和“患者”在本文中可互换使用。

如本文所使用的,“治疗”意指改善或另外有利地改变病症、不适或疾病的症状的任何方式。治疗还包括本文的组合物和装置的任何药物用途。

如本文所使用的,“偏头痛”意指周期性出现的综合征,其特征在于头部疼痛、眩晕、恶心和/或呕吐、畏光和/或光的闪烁外观。

如本文所使用的,术语“药物”和“活性剂”意旨具有重叠范围并且经常可互换使用,并且可以是有机或无机部分,包括聚合物诸如包含核酸和/或氨基酸的生物聚合物。在许多情况下,活性剂包含活性药物成分(API)。

例如,“偏头痛药物”也可以由术语“药物”或“活性剂”包括,其中偏头痛药物可以指5-HT激动剂或曲普坦,单独地或者与其他5-HT激动剂或曲普坦或另一种药物诸如NSAID、止吐剂、或另一种药剂诸如基于多肽的偏头痛药物组合。

如本文所使用的,“5-HT激动剂”和“曲普坦”许多情况下可互换使用并且备选地并且意旨具有重叠的范围。曲普坦是指一类曲普坦分子。5-HT激动剂是指5-HT受体族,包括但不限于5-HT1D/1B/1F。

如本文所使用的,“聚合物溶液”是指用于电纺丝过程(electrospinning process)的溶液,所述聚合物溶液包含活性剂诸如偏头痛药物。

如本文所使用的,“载体”或“载体装置”是指包含具有不同官能度和活性剂的的多个层的电纺纳米纤维膜。

如本文所使用的,“药物载体”是指用于药物递送过程中的底物(例如BSA),其用于提高药物给药的选择性、有效性和/或安全性。为了清楚起见,“药物载体”并非意旨具有与本文所述的“载体”或“载体装置”相同的含义或范围,或不改变其含义。如此,“药物载体”可以用作活性剂或作为活性剂的一部分,并掺入本公开的纳米纤维或“载体”(或“载体装置”)中。

如本文所使用的,“渗透”是指物质、药剂或流体通过膜、粘膜或层的通过。渗透许多情况下可与术语“吸收”互换使用,因为“吸收”是指活性剂通过口腔粘膜诸如颊粘膜或舌下粘膜的通过。

如本文所使用的,“保护层”是指充当对唾液通过的屏障的层。保护层在本文中也可以被称为“阻挡层”,“保护侧”,“不可渗透的层”或“不可渗透的一侧”。在许多实施方式中,保护层存在于载体的单侧上,而不将载体缠绕到活性层的相对侧或粘附到粘膜粘附层例如以将载体层保持在一起。

根据本公开的纳米纤维载体例如属于旨在用于舌下和/或口腔全身药物给药的剂型的口腔粘膜粘膜粘附膜类别。这种载体确保抗偏头痛药物的跨粘膜渗透到人类受试者的体循环中以治疗偏头痛和/或其他类型的头痛(例如,经前,经期等),单独地和/或与具有抗偏头痛作用的另一种机制的治疗和化学-物理相容药物组合。本公开的载体可用于人类医疗和非人类例如兽医环境。

本公开的纳米纤维载体代表了一种新型的柔性且易于给药的口腔粘膜粘膜粘附药物制剂。当与本公开的纳米纤维载体连接时,舌下和/或口腔给药途径使得可以递送生物利用度差的药物和/或用于快速发生全身药理学作用所需的药物。在某些示例性实施方式中,这些载体使用曲普坦单一疗法或联合疗法提供偏头痛治疗。此外,本发明的载体使用单一载体制剂(例如“二合一”制剂)提供曲普坦类与其它合适的活性剂例如止吐剂的共同给药。

本文提供的某些实施方式涉及以相对于当前剂量的低剂量范围给药抗凝剂诸如甲磺酸达比加群酯(dabigatran ethexylate mesylate),但提供所给药的活性剂(相对于当通过经批准的口服途径给药时的生物可利用活性剂)的等效或增加的生物利用度。

在某些实施方式中,提供了用于糖尿病治疗的方法。在许多情况下,此类方法涉及在本文所述的载体中给药胰高血糖素样肽1类似物诸如利拉鲁肽。

在某些实施方式中,提供将BSA作为另一种活性剂的载体递送给患者的方法。虽然BSA在本文中被称为活性剂,但这仅出于提高效率的目的,因为其给药最经常被提供为活性药剂(Active pharmaceutical agent,API)诸如像苯二氮类、青霉素类、甲氨蝶呤、紫杉醇、阿霉素等等的药物载体。在许多情况下,这些方法涉及在本文所述的载体装置中给药BSA作为药物载体。

本公开的纳米纤维载体适用于例如用于急性治疗,适用于吞咽困难的患者群体(例如,不合作、恶心、插管或其他患者)、儿科患者、老年病科患者、精神上无能力的患者、与口服给药有关诸如呕吐和吞咽困难的有问题的患者、和/或兽医的患者群体。

本发明的(粘膜粘附)载体可以表征为可以附着到口腔中的口腔粘膜或舌下粘膜上的靶位点以释放药物以用于局部递送和全身作用的剂型。在许多情况下,这些载体包含完全溶解在口腔中的活性层。口腔粘膜和舌下粘膜充分供应血管血液和淋巴引流,并且对某些药物的全身给药具有潜在的弱屏障。

使用目前描述的作为粘膜粘附制剂并且将不会被吞咽的载体的药物递送代表了用于许多药物给药的有利途径。根据本公开的膜进一步扩展、改进和发展了静电纺丝技术,作为用于全身性给药活性剂诸如曲普坦类(也例如BSA、胰高血糖素样肽1、达比加群等)和/或共同给药活性剂(例如,用于偏头痛和其他头痛治疗,以及止吐剂诸如昂丹司琼、甲氧氯普胺等)的药物载体。

目前主要的抗偏头痛药物包含选择性5-HT1B/1D激动剂(例如曲普坦类)。曲普坦类具有三种主要的作用机制:颅内血管收缩、外周三叉神经抑制、和通过三叉神经颈复合体的二级神经元传播的抑制(Goadsby,神经生物学进展(Prog.Neurobiol)62:509-25,(2000))。此外,拉司米地坦(lasmiditan)(一种5-HT/1F激动剂,形式上是一种二啶(diptane))正处于开发和III期临床试验中,并且显示有希望成为本文所预期的另一种偏头痛药物。参见Reuter等人,神经系统疾病的治疗进展(Ther Adv Neurol Disord)8(1):46-54(2015)。

5-HT1B/1D激动剂化合物是本公开的示例性活性剂,并且可以通过已知方法制备,例如在以下中公开的那些方法:美国专利号5,290,520、5,567,819、5,567,824、7,279,581、7,777,049;EP0313397、EP0573221、UK2124210、UK2162522、WO9118897、GB2315673、WO9532197、EP497512、WO06082598、WO07054979、WO06137083;美国专利公开号20090062550;Chen等人,四面体快报(Tetrahedron Lett.)35:6981-4(1994);和Street等人,药物化学杂志(J.Med.Chem.)38:1799-1810(1995)。自1993年以来,曲普坦类作为最初的活性5-HT1D激动剂化合物已被广泛用于治疗偏头痛(舒马曲普坦)。目前在治疗中有七种口服曲普坦类,这些示例还包括利扎曲普坦(例如苯甲酸利扎曲普坦(rizatriptan benzoate))、那拉曲普坦、佐米曲普坦、依来曲普坦、阿莫曲普坦、夫罗曲普坦、阿维曲普坦和多尼曲普坦,包括其药学上可接受的盐和酯。这些药物以各种品牌名称销售(随国家不同而不同)。

尽管不希望受任何特定理论的限制,但5-HT1B/1D/1F激动剂(本文统称为5-HT激动剂)具有全身性作用机制。例如,5-HT激动剂减少感觉神经信号。具体地,它们对5-羟色胺5-HT1B和5-HT1D受体亚型显示出高激动剂活性。5-HT1B激动剂收缩扩张的颅内大脑外动脉并机械地降低血管的压力,从而减少对血管周围的感觉神经的刺激信号。5-HT1D激动剂也减少血管活性肽的释放,血管活性肽是血管舒张和无菌炎症中的信使。5-HT1D激动剂也减少三叉神经感觉通路中的中枢伤害性神经传递,因此减少发送到神经节的冲动。

如上所述,大部分患者在偏头痛发作期间遭受严重的恶心或呕吐。由于首过代谢高导致的口服生物利用度低(15%),这通常使口服治疗不令人满意。参见Dechant K.L,Clissold,S.P.药物(Drugs)43:776-798(1992)。在许多情况下,舒马曲普坦效率降低,并且就此而言,确保所需作用所必需的剂量必须增加,这导致不期望的副作用、患者依从性和最终治疗成本的增加。参见Ryan等人,神经学(Neurology)49:1225-1230(1997);Tfelt-Hansen等人,药物60(6):1259-1287(2000)。鼻腔途径和皮下途径各有其局限性,包括鼻腔给药的起效作用和保留时间的变化以及与肠胃外给药相关的问题,包括自我给药可注射制剂的高价格。

开发了较宽范围的曲普坦类以增加治疗成功的可能性。目前可用的曲普坦类仅具有较小的药效学,并且具有除了其他之外的稍微主要的药代动力学差异。对七种口服曲普坦类的首次荟萃分析于2001年出版。参见Ferrari等人,柳叶刀(Lancet)358:1668-1675(2001);还参见Spierings,头痛(Headache)948(2002);Pascual等人,头痛47:1152-1168(2007);Cameron等,头痛55(增刊4):221-35(2015)。

在许多实施方式中,在本载体中提供利扎曲普坦(苯甲酸利扎曲普坦)作为活性剂,用于通过口腔粘膜舌下途径使用粘膜粘附载体进行给药。在许多情况下,利扎曲普坦以5mg或10mg剂量或5mg或10mg等效剂量提供。如果偏头痛复发,则可以给予第二剂量,例如在第一剂量后2小时。在24小时内,每日最大剂量许多情况下不超过30mg。对于接受普萘洛尔的患者,利扎曲普坦的一个示例初始剂量是5mg,在24小时内至多的最大剂量是示例性的3倍剂量(15mg)。

基于其他作用机制的其它活性剂可带来协同抗偏头痛作用,并且可被封装在根据本公开的载体内。不同试剂可以组合在活性层的层中或活性层的分离层中。药物相容性或治疗紧迫性许多情况下决定将药剂分离成活性层的不同层以允许从载体的变化定时的释放。静电纺丝过程中的可制造性也可能影响不同试剂是否结合在聚合物溶液中以静电纺丝到单层载体中。

此外,本发明的载体提供了直接吸收物质进入体循环而没有肝脏首过效应;并且快速发生足够的全身药物浓度。使用本载体与典型的口服给药相比,药物到达患者体内活性部位(受体)所需的滞后时间更短。

由于牙龈或腭粘膜的相对较高的屏障性能-与非常强的可渗透性且良好血管化的舌下粘膜相比,当将药物口腔粘膜给药到口腔粘膜的其他部分上时,不能充分使用上述药物递送性质。此外,舌下(和/或口腔)给药途径的有利特性不能在药物给药时使用,但随后被唾液洗掉并吞入胃中。药物的命运许多情况下与使用没有足够粘膜粘附性的快速口腔分散制剂相关。

最多情况下,保护层直接附着于活性层并经常通过静电纺丝产生。在许多情况下,当在口腔环境中时,当暴露于唾液时(或者例如在约唾液的pH的预定pH下),保护层在结构上会受到影响,从而产生膜或凝胶而不允许唾液接近活性层或不允许流体从活性层通过保护层逸出。可以控制保护层的溶解度。例如,溶解度可以从延迟溶解度(例如,从具有唾液暴露的电纺纳米纤维产生的膜或凝胶结构)到非溶解形式。形成保护层的材料和目标环境的pH影响溶解性。保护层许多情况下对唾液具有抗性(受到或不受到时间限制)。

在某些实施方式中,活性层和保护层在单个生产步骤中生产。在某些实施方式中,活性层和保护层在两个或更多个生产步骤中生产。在某些实施方式中,使用涂布或喷雾系统制造保护层,然后与活性层接触或粘附。在某些实施方式中,活性层形成在保护层上。在某些实施方式中,保护层形成在活性层上。如本文所述,可以通过静电纺丝形成一层或两层。在许多实施方式中,两个层均使用静电纺丝工艺来生产。保护层的关键目标包括确保药物的最大浓度梯度,以及在允许唾液进入或离开之前有足够的时间让药物从活性层释放到粘膜中。在某些实施方式中,保护层可溶于受试者的口中,但覆盖活性层的唾液屏障的完整性是未受影响的,直到活性层已降解和/或活性剂已被吸收。在相关的实施方式中,载体可以在保护层开始降解时或之后由受试者摄取,然后在活性层降解之前允许唾液进入活性层或存在活性层的区域。

尽管不希望受任何特定理论的束缚,但5-HT1D/1B/1F激动剂(本文统称为5HT激动剂)具有全身性作用机制。例如,5-HT激动剂减少感觉神经信号传导。5-HT1D/1B激动剂化合物在本公开的范围内,并且可以通过已知方法制备,例如在以下中公开的方法:美国专利号5,290,520、5,567,819、5,567,824、7,279,581、7,777,049;EP0313397、EP0573221、UK2124210、UK2162522、WO9118897、GB2315673、WO9532197、EP497512、WO06082598、WO07054979、WO06137083;美国专利公开号20090062550;Chen等人,四面体快报35:6981-4(1994);和Street等人,药物化学杂志38:1799-1810(1995)。可用于该治疗方法和该制剂的5-HT1D/1B化合物的实例包括舒马曲普坦、利扎曲普坦(苯甲酸利扎曲普坦)、那拉曲普坦、佐米曲普坦、依来曲普坦、阿莫曲普坦、夫罗曲普坦、阿维曲普坦和多尼曲普坦,包括其药学上可接受的盐和酯。拉司米地坦(Lasmiditan)是5HT1F化合物的一个示例,也可用于偏头痛治疗。苯甲酸利扎曲普坦已知化学名称为N,N-二甲基-5-(1H-1,2,4-三唑-1-基甲基)-1H-吲哚-3-乙胺苯甲酸盐(N,N-dimethyl-5-(1H-1,2,4-triazol-1-ylmethyl)-1H-indole-3-ethanamine benzoate)。苯甲酸利扎曲普坦是一种选择性5-HT受体激动剂,并作为用于偏头痛急性治疗的口服制剂销售。

在某些实施方式中,利扎曲普坦的硫酸盐(例如N,N-二甲基-2-[5-(1,2,4-三唑-1-基-甲基)-1H-吲哚-3-基]乙胺)用作5-HT激动剂,并且载体中所提供的剂量为约0.01mg至约100mg的苯甲酸利扎曲普坦。在许多情况下,药物以约0.1mg至约30mg提供。许多情况下还提供约1mg至约15mg或约5mg至约10mg的药物。当药物以最大日剂量水平浓度提供时,可以提供药物从纳米纤维层的延长释放。苯甲酸利扎曲普坦口服历史上一直被用于成人患者的有先兆或无先兆偏头痛的急性治疗。推荐的利扎曲普坦起始剂量为5mg或10mg。如果偏头痛复发,则可在第一次剂量后2小时给药第二次剂量。许多情况下而言,24小时内每日最大剂量不应超过30mg。对于接受普萘洛尔的患者,利扎曲普坦的初始剂量为5mg,24小时内至多的最大剂量为3倍的剂量(15mg)。尚未建立在30天内治疗4次以上头痛的安全性和有效性。

总的来说,本发明人已经提供了本文的配方和载体,其解决了本领域的多种需求。具体地,目前描述的载体包含以例如在偏头痛领域为特征的药物制剂,其比现有药物或递送系统具有更快和/或更强开始的抗偏头痛作用。本发明的载体和制剂也提供了适当剂量的更安全的抗偏头痛药物给药方式,从而避免了过量给药以克服当前口服、鼻内和肺部药物的低生物利用度问题。此外,本文提供了载体,其可安全且有效地给药于患有以恶心和呕吐为特征的偏头痛的受试者。鉴于这些益处,改善患者对偏头痛治疗或管理方案的依从性是可能的。

在许多实施方式中,掺入载体中的曲普坦活性剂选自由以下组成的组:利扎曲普坦、那拉曲普坦、佐米曲普坦、依来曲普坦、阿莫曲普坦、夫罗曲普坦、阿维曲普坦和多尼曲普坦。

还在许多情况下,活性剂包含小分子或大分子部分。例如,在某些实施方式中,活性剂包含生物聚合物,例如多肽、蛋白质、核酸、多糖、肽、碳水化合物、DNA、RNA或脂质。在某些实施方式中,提供至多约67kDa或70kDa的活性剂聚合物。此外,在某些实施方式中,活性剂选自由以下组成的组:曲普坦、BSA、胰高血糖素样肽1或达比加群。

装置

根据目前描述的方法、材料和装置,可以使用多种载体用于活性剂(例如,舌下曲普坦或其他5-HT激动剂、BSA、胰高血糖素样肽1、达比加群等)递送。含有活性剂诸如曲普坦或另一种5-HT激动剂(还例如BSA、胰高血糖素样肽1、达比加群等)、载体、缓冲剂和/或其他生物相容性和生理学无活性或活性物质的纳米纤维层许多情况下形成本公开的至少一部分载体。许多情况下使用各种赋形剂,包括其混合物,以确保最终产品的所有需要的性质用于活性剂,诸如舌下曲普坦或其他5-HT激动剂(例如BSA、胰高血糖素样肽1、达比加群等)递送。在本发明的载体中,使用复合的聚合物基质作为药物释放平台,其可以由若干组分组成以实现良好设计的药物递送特性、粘膜粘附性和溶解性,并且,本发明的载体许多情况下使用亲水性聚合物作为活性剂层(或赋形剂芯)。

聚合物大多不单独使用,然而它们的混合物许多情况下用于获得最终产品的最佳可加工性、静电纺丝性和最佳性质。从另一个角度来看,明显的是一种赋形剂具有几种不同和重要的性质,给定类型聚合物的浓度、液体溶解度、吸液性、润湿性、粘度、电导率、离解度、相互混溶性和其他性质之间的关系许多情况下是典型的,使得它可以用于几种完全不同的功能。

含有活性剂诸如曲普坦或其他5-HT激动剂(也例如BSA、胰高血糖素样肽1、达比加群等)、赋形剂、缓冲剂和/或其他生物相容性和/或生理非活性剂或活性剂的载体的纳米纤维层许多情况下形成本公开的(剂型、最终产品)载体的至少一部分。在某些实施方式中,苯甲酸利扎曲普坦制剂由具有可调节的药物释放曲线的两个或更多个纳米纤维层组成。这些层中的每一层都具有纤维平均直径小于约550nm的纳米纤维。最多情况下,纤维直径小于400nm,或者在约50nm至约400nm之间。

在许多实施方式中使用无针(needle free)(也称为无喷嘴(nozzle-less)或无针(needleless))静电纺丝,例如辊电纺丝以生产本公开的纳米纤维。例如,可以从爱尔玛科有限公司(Elmarco Ltd.)(例如,利贝雷茨,捷克共和国)购得的静电纺丝设备经常用于生产必需的纳米纤维层。使用聚合物与药物和所有其他组分一起的溶液的静电纺丝工艺生产纳米纤维。技术是一种静电纺丝工艺,其无针、使用高电压,并可从自由液体表面处理。例如参见美国专利申请公开号2012177767、WO2012139533(A1)、EP2565302(B1)。该技术基于聚合物溶液或聚合物熔体,其中在应用高电压后,泰勒锥(Taylor cone)由薄聚合物膜制成,并生产出更多纳米纤维。整个过程在高电压下进行,泰勒锥/纳米纤维在集电极和旋转电极之间形成。许多类型的分子量范围很宽的聚合物和聚合物盐或衍生物可以溶解在各种已知的溶剂中(取决于聚合物的溶解度)并用于在此过程中形成纳米纤维。最近的技术采用连续运动线系统(endless motion wire system),其中线由聚合物溶液薄膜润湿,通过旋转头的特定运动在线上平稳地输送。在此聚合物膜的厚度许多情况下通过使用根据聚合物溶液粘度选择的狭缝来控制。这些静电纺丝技术被认为是对环境友好的,例如,由于这些工艺中使用的主要是含水溶剂和水混溶性共溶剂。

在某些实施方式中,提供保护层和活性层。活性层许多情况下掺入活性剂诸如5-HT激动剂或曲普坦(也是例如BSA、胰高血糖素样肽1、达比加群等)。虽然不希望受到任何具体操作理论的束缚,但保护层在活动层与受试者口中的环境之间提供了屏障。口服可吸收药物中的一个重要因素是唾液对活性剂中的一种或两种的作用,或者将活性剂吞入胃肠道的远端部分而不通过粘膜而洗掉活性剂。如果含药制剂可溶于或可分散于口腔中,则用含有活性药物的任何物质吞咽唾液可将药物从口腔粘膜吸收表面移至胃部。当使用舌下口腔分散片剂代替传统片剂时,这种情况造成药物效应开始延迟的矛盾结果。使用可分散或可溶于口腔唾液但在粘膜吸收表面上不固定段最短时间的任何口腔粘膜制剂在逻辑上可预期相同的结果。用本发明描述的载体及其用途已经解决了口腔粘膜给药的这些问题。如本文进一步描述的,本发明的载体例如通过使用保护层来防止唾液渗入和/或携载药物从含有掺入的活性剂诸如5-HT激动剂或曲普坦(也是例如BSA、胰高血糖素样肽1、达比加群等)的活性层逸出。存在于本发明载体活性层中的药物当置于受试者口中并与粘膜物质(例如特别是舌下粘膜)接触时,穿过上皮并被递送到受试者体循环中,从而避免肝脏对药物的首过效应。参见例如Rowland,M等人,药学科学杂志(J.Pharm.Sci.)61(1):70-74(1972);Pond,S.M.&Tozer,T.M.,临床药物动力学(Clin.Pharmacokinetics)9(1):1-25(1984)。

许多情况下优选药学上可接受的聚合物和/或其衍生物以形成本发明描述的载体的层。聚合物衍生物是指具有不同分子量或官能团改性的聚合物,包括共聚物、交联聚合物或它们的组合。这样的聚合物可以是市售的,或者可以使用已知技术制备。

亲水聚合物包括例如以下聚合物中的一些,包括它们的衍生物和盐:聚乙二醇(polyethylene glycols,PEG)、聚环氧乙烷(PEO)、聚环氧乙烷与其它环氧烷的共聚物(特别是PEG和聚环氧丙烷或聚环氧丁烷的嵌段共聚物)、聚乙烯醇(polyvinyl alcohol)、聚乙烯吡咯烷酮(PVP)、白蛋白、葡聚糖(dextran)、透明质酸、藻酸盐(alginate)、角叉菜胶、壳聚糖、明胶、胶原蛋白、玉米醇溶蛋白、及它们的衍生物、聚丙烯酸、纤维素衍生物(如羧甲基纤维素钠、羟乙基纤维素(HEC)、羟丙基纤维素(HPC)、羟丙基甲基纤维素(HPMC)、苯二甲酸羟丙基甲基纤维素(Hydroxypropyl methyl cellulose phthalate)、邻苯二甲酸乙酸纤维素、氧化纤维素(例如微分散形式(microdispersed form)))。亲水聚合物许多情况下是水溶性聚合物。

疏水聚合物包括例如以下聚合物中的一些,包括它们的衍生物和盐:纤维素衍生物(乙酰纤维素、甲基纤维素、乙基纤维素、非结晶纤维素);基于(甲基)丙烯酸酯(即丙烯酸酯,甲基丙烯酸酯,烷基丙烯酸酯及其共聚物)的聚合物,包括(甲基)丙烯酸、(甲基)丙烯酰胺、羟乙基(甲基)丙烯酸酯;聚(α-羟基酸)及其共聚物如聚(ε-己内酯)、聚(丙交酯-共-乙交酯)、聚(α-氨基酸)及其共聚物;聚氨酯(均已获准用于医疗/制药领域)。在某些实施方式中,亲水性聚合物被处理成具有疏水性和/或变得不溶于水或部分不溶于水,例如当用于保护层时。

生物可降解性聚合物可以包括某些亲水或疏水聚合物,但许多情况下具有某些疏水性质。一些示例性的生物可降解性聚合物包括聚己内酯、聚乳酸、聚(丙交酯-共-乙交酯)、聚乙醇酸等等。

活性层、保护层或粘膜粘附层(以及用于制备这些层的溶液)可以在层或溶液中包含聚合物的混合物,包括水溶性或亲水性聚合物和水不溶性疏水性聚合物或生物可降解性聚合物一起。许多情况下,本文论述了每层(或由层其制备的溶液)的主要成分聚合物类型,但不排除其他聚合物。

许多情况下至少一个活性层具有润湿剂和/或渗透促进剂,例如:阴离子表面活性剂(例如月桂酸钠、月桂基磺酸钠(sodium lauryl sulfate)、十二烷基硫酸钠(sodium dodecyl sulfate)、琥珀酸二辛酯磺酸钠(dioctyl sodium sulfosuccinate)、甘氨胆酸钠)、非离子表面活性剂(聚山梨酸酯、壬基苯氧基聚氧乙烯、聚氧化烯、聚氧乙烯烷基衍生物)或阳离子表面活性剂(氯化十六烷基吡啶、聚-L-精氨酸);脂肪酸和衍生物(如油酸、月桂酸、亚油酸)、乙酰胆碱、酰基肉碱、甘油单酯、甘油二酯和甘油三酯和/或辛酸;亚砜(例如二甲基亚砜和/或十二烷基亚砜);醇(包括乙醇、异丙醇、丙二醇(propylene glycol)、甘油、丙二醇(propanediol))和/或薄荷醇;螯合剂诸如EDTA、柠檬酸和/或水杨酸盐;胆汁盐和衍生物以及其他化合物如环糊精、聚乙烯吡咯烷酮、乳糖、甘油三乙酸酯(triacetin)和/或薄荷醇。在某些实施方式中,亲水性聚合物被处理成具有疏水性和/或变得不溶于水或部分不溶于水。

至少一层许多情况下设置有掩味化合物。示例性的掩味剂许多情况下包括甜味剂或调味化合物,例如三氯蔗糖、赤藓糖醇、异麦芽糖醇、D-麦芽糖醇、乳糖醇(lactitol)、D-甘露糖醇、纽甜、糖精、葡萄糖(dextrose)、山梨醇、木糖醇、莱鲍迪甙A和/或奇异果甜蛋白、L-里哪醇(L-linalol)、橙花醇(nerol)、柠檬醛、甲酸香茅酯、茴香醇(anisyl alcohol)、甲酸茴香酯(anisyl formate)、水杨酸异戊酯、邻氨基苯甲酸异丁酯,戊酸异丙酯、邻氨基苯甲酸芳樟酯、甲基紫罗兰酮、薄荷醇、百里酚和/或丁子香酚。

至少一个层许多情况下设置有含有具有不同颜色的颜料或染料的至少一层。许多情况下提供着色以容易区分双侧载体,其中第一侧具有一种颜色(或白色),而第二侧具有不同的颜色(或者如果第一侧不是白色,则第二侧为白色)。第一侧和第二侧分别指活性侧和保护侧,以便于受试者、使用者或保健专业人员将载体适当放置在口腔中。在一个示例性实施方式中,具有独特着色的第一侧被识别为旨在直接与口腔生物学接触放置的载体的活性侧。在另一个示例性实施方式中,具有不同着色的第二侧被识别为旨在面对口腔开口或否则不粘附到口腔生物学的载体的保护侧。在一个实施方式中,保护层或保护侧是蓝色的并且活性侧或活性层是白色的。染料或颜料许多情况下是生物相容性的,并且可以掺入聚合物溶液中并且例如在静电纺丝过程中与纳米纤维一起形成。示例性的染料或颜料可以单独使用或用于批准用于食品或制药工业的涂覆或染色系统的混合物中。

在某些实施方式中,掩味剂和渗透剂被提供在同一层中。在相关的实施方式中,掩味剂许多情况下被提供在活性层和/或粘膜粘附层中。此外在相关的实施方式中,渗透剂许多情况下被提供在活性层和/或粘膜粘附层中。

在某些实施方式中,提供第一侧和第二侧,每侧具有不同的触觉感受,以允许受试者确定哪一侧是活性侧以及哪一侧是保护层而不必直接观察载体。可以使用凸起、编织图案、纺织品类型(textile type)、印记、涂层、粘附剂以及其他选项来提供第一侧和第二侧之间的触觉感受的期望差异。图1A和图1B表示示例性载体的侧视图,其包括两层或三层,但没有边缘(rim)。具体而言,图1A提供具有三层的载体,包括保护层、包含活性剂(诸如5-HT激动剂或曲普坦)的活性层以及粘膜粘附层(也例如BSA、胰高血糖素样肽1、达比加群等)。图1B提供类似于图1A的视图,但是载体没有粘膜粘附层。尽管活性层被描绘为比图1A和图1B中的保护层和粘膜粘附层中的任一者或两者更厚,但是该相对厚度仅仅是代表性的,并不旨在是限制性的。该厚度可以基于期望的应用、已铺设的纳米纤维层的量或数目、生理活性剂的类型和量、和/或在活性层上沉积生理活性物质的方式、或其它因素而变化。

最多情况下采用本发明的载体,其没有包括载体活性侧上的保护层或不可渗透层材料的重叠的边缘(例如固定边缘)。如此,在一个实施方式中,载体在载体的与活性侧相同的一侧上不包括保护层边缘。

粘膜粘附层与口腔中的粘液层(mucuslayer)相互作用,覆盖粘膜上皮表面和粘蛋白分子以便例如增加活性剂剂量在放置位置处的停留时间。如本文所使用的,术语“粘膜粘附层”是指能够使药物预期的药剂通过到达粘膜表面的环境。该层许多情况下由各种物质中的任何一种形成。例如,多糖(例如壳聚糖果胶、透明质酸等)单独地或与其它粘膜粘附聚合物诸如微分散氧化纤维素衍生物、卡波普(carbopols)、聚丙烯酸等一起使用。在某些实施方式中,粘膜粘附层是第一接触层,其使用细纺或由上述合适的粘膜粘附聚合物制成的纳米纤维薄层覆盖活性层。粘膜粘附层许多情况下是生物可蚀性的/可生物降解的或水溶性的粘膜粘附层。

许多情况下在变成、形成或包含保护层的纺织品背衬材料上提供纳米纤维形成。纺织品背衬材料可以涂覆或衬有保护层,其中纺织品在纳米纤维形成后被去除以显现保护层。在某些实施方式中,使用本文所述的技术通过使用静电纺丝使得纤维在纤维背衬上形成。许多情况下在静电纺丝之前测试聚合物溶液的粘度和稠度以确保在一个或多个预定义参数内的最佳纤维一致性。已经发现纳米纤维形成中的一致性对于允许可预测的活性剂加载和释放是重要的,并且经常在载体按照指导使用之后减少载体中的残留活性剂。静电纺丝过程中纺织品进料的速度经常变化以影响纳米纤维沉积和纳米纤维层厚度。

在一个实施方式中,利用以下示例性参数通过静电纺丝提供含有活性层的苯甲酸利扎曲普坦:180mm的线电极距离;约27-31%之间的相对湿度入口和约21-24.5℃之间的温度;在约26-32%之间的相对湿度出口以及在约21-24.5℃之间的温度;约61.6/-18kV(电流0.2-0.3mA)的电压。在这样的实施方式中,以约21mm/min的示例性速度提供聚丙烯纺粘物(polypropylene spunbond)。在这样的实施方式中,聚合物溶液在22℃下的粘度通常为约462±46mPa.s,在22℃下的导电率为约2190±210μS/cm。

本发明设计的静电纺丝条件和材料已被确定为对制备纳米纤维层有用,所述纳米纤维层能够可靠且可重复地保持预定量的活性剂(例如曲普坦、BSA、胰高血糖素样肽1、达比加群等),其提供严格控制的剂量参数。载体在形成过程中不需要活性剂过载,从而避免了当被包含在载体中时生产损失和活性剂从溶液中脱出。所得的纳米纤维载体具有其他以前未见过的有益性质,例如在口腔粘膜给药方案和装置中。例如,在本公开的载体的许多实施方式中,使用后载体中基本上不存在残留活性剂这一众所周知的问题。

尽管不希望受到任何特定理论的束缚,但是当载体如指导在受试者的口腔中使用时,活性剂从活性层完全释放。均匀分布的纳米纤维层一致地保持并一致地释放夹带的活性剂。已经研发了载体中的纳米纤维直径和/或长度以有助于这种一致性。纳米纤维在载体的纳米纤维层内的这种均匀分布还允许纳米纤维层在结构上完整无损的柔性程度,这是以前在口腔粘膜装置中看不到的。这种柔性有助于载体的放置,并允许载体保持或粘附在适当的口腔粘膜位置一段必要的时间以允许释放活性剂。此外,在偏头痛患者于偏头痛发作期间的情况下,放置的方便性对于治疗效果和依从推荐的给药参数都是非常有益的。

药物释放动力学

通过调节载体形成中的一个或多个因素,可以在期望的范围内严格控制本公开的载体的动力学。例如,纳米纤维形成的方式、聚合物溶液的组分和稠度、pH变化、织物速度、电压和电流、活性层厚度、凝胶性质变化、使用的药物、润湿性变化、纳米纤维直径变化、粘膜粘附层的选择、活性剂加载以及其他变化。例如,为了快速释放活性剂,常常使用在所需pH值(例如,唾液中的pH)下快速溶解的聚合物,例如可溶于水的纤维素衍生物,包括微分散氧化纤维素的HPMC、Ca2+或Na+盐以及与PEO混合的PVP、PVA以及其他。为了实现更长时间的释放曲线,选择形成活性层的聚合物,其使用例如CMC钠盐、pH敏感性卡波姆(carbomers)(卡波普(carbopols))、聚卡波菲(polycarbophiles)、果胶或非交联形式可膨胀的交联聚合物以及其他选项在所需pH下开始凝胶化,所述pH可以不同于唾液的典型pH。发明人已经确定,pH变化对聚合物溶解具有很大的影响。本发明人还确定了用于调节聚合物体系(即活性层)的pH溶解值接近预期pH值的手段。

例如,在某些实施方式中,使用选择具有期望的pH溶解特性的特定聚合物类型或混合物将pH调节至接近预期的pH值,包括使用HPC,其通常可溶于水但在高pH值下是不溶的。载体具有响应于pH级联的多个纳米纤维层,其中调节每一层以在所需pH下具有特定的并且通常不同的溶解特性,以控制随着时间和特定条件的药物释放。例如,在一个实施方式中,粘膜粘附层对于粘液去除具有低的解离pH,并且活性层的层在更高的pH值下(例如,在唾液的典型pH或其附近的pH值或药物的优化生物利用度的另外的pH值下)溶解。在相关的实施方式中,保护层设置有载体材料或层的最高pH值以承受(即,保持完整无损和未溶解)与唾液的延长接触。

活性层的厚度也可以变化以调节活性层内的活性剂(即,5-HT激动剂或曲普坦、BSA、胰高血糖素样肽1、达比加群等)的量。尽管不希望受任何特定理论的束缚,但改变活性层的厚度允许相应改变活性剂,其可以例如在介质过饱和之前掺入和/或在活动剂加载期间使活性剂从溶液中脱出。在某些实施方式中,纳米纤维活性层中的纤维的直径可以变化。另外在许多情况下,通过使用例如本文所述和预期的静电纺丝方法包括更多或更少的纳米纤维层来调节活性层的厚度。例如,在一个实施方式中,提供包含活性剂的单个纳米纤维层。许多情况下提供一起形成活性层的包含活性剂的两个纳米纤维层。在某些实施方式中,提供一起形成活性层的包含活性剂的三至八个纳米纤维层。在某些实施方式中,提供一起形成活性层的包含活性剂的两个或更多个纳米纤维层。

当在本文中提及时,纳米纤维层可以指单一头/线的输出或一致工作的多个头/线的输出。纳米纤维层在本文中是指在单个生产周期中生产的层,而不是具有单个纳米纤维厚度的层的定位。实际上,每个生产周期都在基底(诸如织物)上提供重叠的纳米纤维网。在多个生产周期中生产的多个纳米纤维层许多情况下包含活性层。

载体各层的层数取决于所使用的静电纺丝技术。在许多实施方式中,在载体的活性层中提供具有药物的两层,这增强了均匀性。然而,许多情况下在本发明的载体中提供在活性层中包含药物的单个纳米纤维层。但是,通常而言,层数没有限制。

活性剂加载量是指药物与载体系统重量的比例(例如除去溶剂的全部干物质含量)。本发明发明人已经发现监测活性剂加载量许多情况下是重要的,因为加载浓度的选择对生产成本、材料或活性剂损失以及活性剂在载体中的均匀性或一致性具有影响。活性剂加载程序和浓度例如取决于活性剂本身。例如,活性剂在特定溶剂体系中的溶解度对加载程序、条件或材料有影响。在某些溶剂体系下,活性剂可以完全或部分溶解;部分溶解常常使加载复杂化。活性层聚合物材料(包含纳米纤维)的选择也经常影响加载量。

当根据本发明方法生产包含活性剂的纳米纤维时,各种参数得到评估和调节,因为每种聚合物在静电纺丝过程期间具有不同的行为,所述行为必须被优化以提供本公开的载体。具体地,本公开的载体包含均匀的纳米纤维直径(例如,400nm或更小,或约200nm至约400nm之间)和均匀的沉积定位,其允许可预测的溶出特性和活性剂释放。

例如,不同的聚合物具有不同的分子量,范围从几百道尔顿到几百万道尔顿。用于溶解聚合物的分子量和溶剂与粘度密切相关。尽管不希望受任何特定理论的束缚,但每种聚合物具有不同的粘度曲线,其至少部分取决于其一级化学结构和二级化学结构、聚合物的类型(例如交替共聚物)、聚合度、其取代、溶剂的使用、混合的手段以及其他因素。在本文所述的许多实施方式中,包含活性剂或具有分子量至多约70kD的活性剂的组合的聚合物在本文中特别考虑用于在本公开的载体中整合和使用。

具体地,所得的高粘度产物许多情况下提供相对于低粘度或非常稀的聚合物溶液相对较细的纳米纤维。由于存在缺陷和均匀性降低,因此非常稀的溶液还提供降低的药物释放动力学预测。与较低粘度的溶液相比,高粘度溶液还经常提供降低的产量或生产能力。溶液的表面张力也与静电纺丝过程相关,因为它影响溶液产生泰勒锥的倾向,并且常常使用表面活性剂来调节溶液的表面张力以提供所需的表面张力。在某些实施方式中,用于保护层、活性层或粘膜粘附层的静电纺丝的聚合物溶液的粘度以(SI)单位等同于本文所述的示例性聚合物溶液的粘度。

静电纺丝溶液的电导率也是一个重要因素,因为与电导率更高的溶液相比,非导电溶液或低导电溶液经历静电纺丝更复杂或可能不能进行静电纺丝。高电导率聚合物溶液许多情况下优选用于制造本发明载体的活性层。许多情况下利用盐来增加电导率至一定程度。当盐被大量掺入时,它们可能对活性剂的释放以及活性剂在给药时的生物利用度有影响。溶液的pH值也经常与活性剂生物利用度密切相关。关于保护层,根据与唾液/粘膜接触后的溶解度来选择pH值。

在确定的pH下,活性剂可以具有保持不变的生物利用度,其将随着pH的变化而增加或减少。在许多情况下,包含在纳米纤维中的活性剂的最佳生物利用度的pH值是已知的。许多情况下使用pH调节剂来提供期望的溶液pH。如本文所使用的,pH调节剂是指不改变活性剂的物理化学性质的任何酸性或任何碱性试剂。所述试剂(包括多种不同的试剂)许多情况下选自于氢氧化钠(NaOH)、氢氧化钾(KOH)、碳酸钠或碳酸氢钠,磷酸一钠或磷酸二钠、三乙醇胺、柠檬酸、乳酸、乙酸、抗坏血酸、苹果酸、葡糖酸、谷氨酸、盐酸、硫酸、磷酸、琥珀酸、酒石酸、丁酸、盐酸精氨酸和肌酸酐。优选地,根据本公开的制剂的pH在4.0和9.0之间。

因此,最经常地,基于活性剂和期望的药物释放曲线来改变用于生成载体纳米纤维的聚合物的选择。许多情况下根据本发明的方法调节最佳的药代动力学和释放速度或条件(例如,在特定pH水平下的释放)以适合治疗应用,以适应活性剂的速度和总剂量递送。在某些实施方式中,药物负载量在过饱和下立即得到优化。

当加载活性剂时,其许多情况下直接沉积在活性层或载体中的纳米纤维上或位于其之间的空间中。通过同轴和乳液静电纺丝的涂覆、浸没或封装是用于生产本公开的纳米纤维、纳米纤维层和/或载体的常用方法。许多情况下使用溶液或其他分散体来沉积活性剂。在某些实施方式中,用活性剂加载活性层或载体根据美国专利申请公开号20130323296中阐述的方法来实现。

本文所述的静电纺丝方法对制备包含具有各种分子量的各种活性剂的纳米纤维有用。小分子和大分子-化学部分、肽、多肽、蛋白质、糖类、多糖以及其他都被认为是本文中的活性剂。例如,活性剂可以包含至多约750kDa的分子。在口腔粘膜制剂中,在许多情况下活性剂通常约为66kDa、67kDa或70kDa或小于约66kDa、67kDa或70kDa。

联合给药

在一些实施方式中,偏头痛药物(例如5-HT 1/B、1/D、1/F激动剂)与一种或多种其它抗偏头痛药、止吐剂和/或其他药剂联合给药。在此还描述了其他组合。如本文所使用的,术语“抗偏头痛药剂”包括可用于治疗或预防偏头痛发作的任何药理学试剂(即,可用于治疗或预防偏头痛的任何药理学试剂)。例如,曲普坦可与以下任何一种联合给药:钠泵抑制剂、抗惊厥药、抗抑郁药(例如阿米替林、去甲替林、地昔帕明等)、β-受体阻滞剂、钙通道阻滞剂、非甾体抗炎药(NSAID)、5-羟色胺受体拮抗剂、5-羟色胺再摄取抑制剂、5-羟色胺去甲肾上腺素再摄取抑制剂、镇痛剂、止吐剂、麦角衍生物、神经肽拮抗剂和/或核黄素。

示例性的NSAID可以包括萘丁美酮、萘普生、萘普生钠、托美丁钠(tolmetin sodium)、伐地考昔和/或它们的组合。

在一个实施方式中,提供载体,其包含利扎曲普坦和NSAID。在这样的实施方式中,活性层许多情况下用包含利扎曲普坦试剂或NSAID试剂部分的不同或有区别的纳米纤维层配制。在某些实施方式中,利扎曲普坦和NSAID包含在活性层的相同纳米纤维层中。

根据以下详细描述和权利要求,本公开的其他特征和优点将清楚明白。

通过以下示例性实施方式进一步描述本公开。提供实施方式仅用于说明本公开。这些示例虽然示出了本公开的某些具体方面,但并非描述成限制或限制本公开的范围。

在一个实施方式中,保护层使用例如本文如上所述的方法和条件使用以下所述的材料通过静电纺丝形成:

a)在制备的溶液中以重量%(wt%)计数:

b)干物质含量:

聚合物 96.44重量%

pH调节剂 3.56重量%

在一个实施方式中,含有苯甲酸利扎曲普坦的活性层使用例如以上所述的方法和条件使用以下所述的材料通过静电纺丝形成:

a)在制备的溶液中以重量%计数:

b)干物质含量:

聚合物 65.86重量%

掩味化合物 2.63重量%

活性剂 31.51重量%

在一个实施方式中,含有苯甲酸利扎曲普坦的活性层使用例如以上所述的方法和条件使用以下所述的材料通过静电纺丝形成:

a)在制备的溶液中以重量%计数:

b)干物质含量:

在一个实施方式中,含有苯甲酸利扎曲普坦的活性层使用例如本文上述的方法和条件使用以下所述的材料通过静电纺丝形成:

a)在制备的溶液中以重量%计数:

b)干物质含量:

关于上述活性层形成示例,除了控制苯甲酸利扎曲普坦的加载之外,可以通过调节或控制纳米纤维层的厚度来控制苯甲酸利扎曲普坦的含量。活性剂沉淀是不太期望的,因此通过控制提供对加载的谨慎控制,使得已经监测到溶液超载有活性剂。因此,许多情况下通过改变活性层的厚度来控制活性剂的含量,包括通过调节活性层中的纳米纤维层的数量。如本文进一步详细解释的,药物释放和递送动力学已经并可以通过许多调节参数来控制,诸如聚合物溶液组成(例如,聚合物和它们各自的pH溶解特性、胶凝性质、润湿性、层厚度、纳米纤维直径、活性剂含量以及其他参数的选择)。

载体中利扎曲普坦的含量许多情况下根据一个条带(strip)中所需的剂量而变化。在一个实施方式中,已经生产含有5mg利扎曲普坦(+/-15%)的载体。在这样的实施方式中,使用7.27mg利扎曲普坦苯甲酸盐(rizatriptan benzoate salt)作为起始活性剂的量。在一个相关的实施方式中,含有5mg利扎曲普坦的载体的重量在约23mg至约31mg之间。在某些实施方式中,NSAID剂被掺入这种载体中。

在一个实施方式中,生产含有6mg利扎曲普坦(+/-15%)的载体。在这样的实施方式中,使用8.72mg利扎曲普坦苯甲酸盐作为起始活性剂的量。在一个相关的实施方式中,含有6mg利扎曲普坦的载体的重量在约27mg至约37mg之间。在某些实施方式中,NSAID剂被掺入这种载体中。

在一个实施方式中,生产含有7mg利扎曲普坦(+/-15%)的载体。在这样的实施方式中,使用10.18mg利扎曲普坦苯甲酸盐作为起始活性剂的量。在一个相关的实施方式中,含有7mg利扎曲普坦的载体的重量在约32mg至约43mg之间。在某些实施方式中,NSAID剂被掺入这种载体中。

在一个实施方式中,生产含有8mg利扎曲普坦(+/-15%)的载体。在这样的实施方式中,使用11.63mg利扎曲普坦苯甲酸盐作为起始活性剂的量。在一个相关的实施方式中,含有8mg利扎曲普坦的载体的重量在约36mg至约49mg之间。在某些实施方式中,NSAID剂被掺入这种载体中。

在一个实施方式中,生产含有9mg利扎曲普坦(+/-15%)的载体。在这样的实施方式中,使用13.09mg利扎曲普坦苯甲酸盐作为起始活性剂的量。在一个相关的实施方式中,含有9mg利扎曲普坦的载体的重量在约41mg至约56mg之间。在某些实施方式中,NSAID剂被掺入这种载体中。

在一个实施方式中,生产含有10mg利扎曲普坦(+/-15%)的载体。在这样的实施方式中,使用14.53mg利扎曲普坦苯甲酸盐作为起始活性剂的量。在一个相关的实施方式中,含有10mg利扎曲普坦的载体的重量在约46mg至约62mg之间。在某些实施方式中,NSAID剂被掺入这种载体中。

在一个实施方式中,生产含有15mg利扎曲普坦(+/-15%)的载体。在这样的实施方式中,使用21.81mg利扎曲普坦苯甲酸盐作为起始活性剂的量。在一个相关的实施方式中,含有15mg利扎曲普坦的载体的重量在约69mg至约92mg之间。在某些实施方式中,NSAID剂被掺入这种载体中。

在一个实施方式中,生产含有20mg利扎曲普坦(±+/-15%)的载体。在这样的实施方式中,使用29.07mg利扎曲普坦苯甲酸盐作为起始活性剂的量。在一个相关的实施方式中,含有20mg利扎曲普坦的载体的重量在约92mg至约123mg之间。在某些实施方式中,NSAID剂被掺入这种载体中。

在一个实施方式中,生产含有30mg利扎曲普坦(+/-15%)的载体。在这样的实施方式中,使用43.61mg利扎曲普坦苯甲酸盐作为起始活性剂的量。在一个相关的实施方式中,含有30mg利扎曲普坦的载体的重量在约138mg至约184mg之间。在某些实施方式中,NSAID剂被掺入这种载体中。

在一个实施方式中,使用例如本文上述的方法和条件使用下面列出的材料制备粘膜粘附剂:

a)在制备的溶液中以重量%计数:

b)干物质含量:

聚合物 83.20重量%

pH调节剂 14.22重量%

掩味化合物 2.58重量%

如上所述使用上述实施方式中所述的材料制备了由保护层和活性层形成的载体。使用上述实施方式中所述的材料也制备了由保护层、活性层和粘膜粘附层形成的载体。

在某些实施方式中,形成保护层,然后形成活性层,并且在某些实施方式中,粘膜粘附层也通过静电纺丝形成在保护层上。在其他实施方式中,通过静电纺丝形成保护层,随后通过静电纺丝形成活性层,并在活性层上涂覆粘膜粘附层。

上述实施方式中描述的载体中的活性剂的生物利用度可以通过任何足够的模型系统或在活受试者中评估。

一个模型系统涉及在供体室中使用pH值为6.8的人造唾液中固定在弗兰兹扩散池(franz diffusion cell)中的猪舌下组织和在受体室中pH7.4的等渗缓冲液(isotonized buffer)(作为血液类似物)。随时间评估扩散到受体介质中的活性剂的浓度。图2提供来自这种评估的示例性结果。图2示出当将载体(具有包含HPC聚合物的保护层)通过人造唾液湿润时,随后将载体应用于测试介质,与将先前施用的载体暴露于唾液相比,透过的利扎曲普坦的量更高。这些数据与HPC(含有)保护层有效地抑制或防止唾液渗透到口中的载体粘附位置有关。

在另一种评估中,制备了在模型系统中“吸收”的活性剂的所得(生理)浓度的比较。在比较中,与通过本公开的载体(如上所述形成)引入利扎曲普坦相比,将利扎曲普坦溶液直接应用于介质。两者均在人造唾液的存在下施用。两种应用均使用相同量的利扎曲普坦。图3示出随时间推移的介质中活性剂的曲线图。图3示出与直接施用相比,含有利扎曲普坦的载体提供了利扎曲普坦改善的渗透(例如通过猪舌下膜)。

在一个示例中,设计了利用本文描述的载体对利扎曲普坦定量给药受试者的临床研究。一个研究目标是评估包括活性剂在内的载体的药代动力学性质,并比较禁食条件下健康志愿者中测试载体与参比产品的生物利用度。参比产品是(苯甲酸利扎曲普坦,默克(Merck))5mg片剂。

该方案是两治疗两周期交叉比较生物利用度研究。在研究中提供至少2天作为清除期以在交叉给药之前从受试者中清除活性剂。试验中最多包含约12名或更多的受试者。

计划18个采样点:给药前;以及在给药后的15分钟、30分钟、45分钟、1小时、1.25小时、1.5小时、1.75小时、2小时、2.5小时、3小时、4小时、6小时、8小时、10小时、14小时、20小时以及24小时。

分析并统计评估完成该方案的每个受试者。基于利扎曲普坦的AUC(0-t)和Cmax作为主要生物标志评估生物利用度。计算基于AUC(0-t)和Cmax的转化数据的利扎曲普坦LSM的T/R比率的90%置信区间。使用GLM程序进行转化的AUC(0-t)和Cmax的方差分析。进行tmax治疗效果的非参数威尔科克森(Wilcoxon)和中位数检测。

然而,更重要的是,该情况具体显示了纳米纤维膜用作适于以下药物的载体的真实可能性,所述药物确实具有有希望的治疗可能性,但通常溶解很差,特别是在水性环境中。

我们主要考虑所获得和证明的结果是一个很好的示例,即使用纳米纤维制剂可以允许给药较小量的药物以在中央隔室中实现相同水平的药物,这带来了较低的毒性风险并且降低了对人体的负担。

作为另一个示例性实施方式,将抗凝剂甲磺酸达比加群酯(dabigatran ethexylate mesylate)掺入载体中,并与微粉和(达比加群,勃林格殷格翰药业有限公司(Boehringer Ingelheim))微丸进行比较。介绍

甲磺酸达比加群酯(dabigatran ethexylate mesylate)(BCS II类)(DG)是新批准的抗凝剂类型。DG用于预防由于心脏瓣膜疾病以外的其他原因和中风(充血性心力衰竭、高血压、年龄、糖尿病和既往中风)的至少一种其他风险因素导致的心房颤动中风,并用于防止例如进行髋关节或膝关节置换手术的成人静脉血栓的形成。其口服给药后的生物利用度低,仅约4%至7%。因此,许多情况下需要相对高剂量的药物来达到足够的血浆浓度。在这些情况下,DG的最佳日剂量在100mg至300mg的范围内。

目的

该实施方式的目的是获得10mg微粉化DG物质溶解的数据,并将其与从微丸的溶解/释放的DG以及载有相同量DG的电纺聚乙烯吡咯烷酮纳米纤维垫进行比较。

方法

进行体外溶解,在小容量溶出容器中测量具有10.0mg含量API的测试样品,pH为6.0的50ml磷酸盐缓冲液作为37±0.5℃的溶出介质,并进行DG的HPLC测定和在320nm的UV检测。所有样品都重复测试(n=4至5)。

结果与讨论

图4种所呈现的结果示出测得的溶解的DG数据。评估药物释放的原始制剂由富马酸和瓜尔豆胶芯微丸组成,其被主要由HPMC(羟丙甲纤维素(hypromellose))与二甲聚硅氧烷(dimethicon)组成的中间隔离层包围,并且API外部活性层使用HPC(羟丙基纤维素)中的API悬浮液被喷射到“预制丸剂”表面。API悬浮液的浓度约为15%。与常用的固体分散体的简单喷雾干燥相比,原始微丸制剂的制造方法使用复杂的过程。然而,原则上,该方法具有与DG的非晶化(amorphization)相似的特征,并且也与最终微丸的API/聚合物涂层的分散类型有关。由于口服给药后微丸周围的水性介质中的pH降低,富马酸增强了DG依赖pH的溶解。

DG物质的溶解度在胃酸性pH下非常好。然而,药物吸收问题发生在小肠中,其中在PH大约6至8下DG从PRADAXA胶囊中释放。随后DG沉淀显著降低肠吸收,从而降低全身生物利用度并具有不希望的副作用。

图4呈现来自微粉化晶体物质、从胶囊获得的微丸和pH为6.0的聚乙烯醇纳米纤维垫的10mg达比加群的释放曲线。

就纳米尺寸和非晶化而言,纳米纤维膜许多情况下提供高得多的药物溶解。在微酸性pH值6.0下测得的DG的溶解速率出乎意料地快于纳米纤维样品,溶解药物的浓度与微晶或微丸形式相比较量级更高。我们认为取决于DG在小肠中吸收的机理,DG负载纳米纤维载体的使用是有利的。

作为另一个示例性实施方式,评估来自示例性载体的利拉鲁肽的舌下透粘膜渗透。

介绍

利拉鲁肽是胰高血糖素样肽1(GLP-1)的长效类似物并且其用于治疗2型糖尿病和肥胖症。单独的GLP-1从肠内分泌L细胞释放,并以葡萄糖依赖性方式调节胰岛素分泌、肠道蠕动和食欲。在动物模型中也已经证明,由于中枢作用(central effect),促进对帕金森病和阿尔茨海默病的神经保护作用。GLP-1的基本问题是其非常短的生物半衰期(几分钟内),因此不能用于治疗。与GLP-1相比,利拉鲁肽具有两种结构修饰,基于在C16处添加棕榈酰部分并且在位置34处用精氨酸与赖氨酸交换。这些修饰带来了与白蛋白非共价结合的机会,这延迟了蛋白水解失活和肾清除率。

目的

迄今为止,几乎不知道利拉鲁肽的非侵入性给药。这项工作的目的包括:(1)确定组成和工艺参数,以利用大规模静电纺丝技术配制封装在药学上批准的赋形剂的纳米纤维载体中的利拉鲁肽;和(2)估计利拉鲁肽从纳米纤维载体体外释放的可能性和这些GLP-1类似物进一步通过猪舌下粘膜渗透的可能性。

方法

该实施例中的纳米纤维包含HPMC(羟丙基甲基纤维素)和PEO(聚环氧乙烷)(西格玛奥瑞奇(Sigma Aldrich))的混合物和利拉鲁肽(得自多肽(PolyPeptide),US)。使用本文描述的静电纺丝技术和参数来生产纳米纤维。使用各种放大倍数来进行SEM评估。

将含有利拉鲁肽的纳米纤维载体样品或参比溶液样品施用到固定在弗兰兹扩散池(franz diffusion cell)中的厚度约为0.4mm的新鲜猪舌下粘膜上。用于渗透的暴露的粘膜面积为1.0cm2,并且搅拌的受体相为在37℃±0.5℃下温热的pH为7.4的磷酸盐缓冲液。将测试的溶液(Victoza预填充的皮下注射笔,6mg/mL和利拉鲁肽溶液,缓冲液pH为6.80,0.4mg/mL)以400μL体积施加到舌下膜上。供体纳米纤维样品含有0.5mg多层纳米纤维盘(mutilayered nanofiber disc)形式的利拉鲁肽,并且分别在400uL的pH为6.8或8.15的缓冲液中充满供体空间。

利拉鲁肽的测定在Agilent 1200仪器上进行。参数如下:柱Poroshell 120 EC-C18(4.6×150mm,粒度:5.0μm)恒温在35℃。样品保持在10℃下,注射5.00μL。流动相A:Na2HPO4(pH 7.75)∶ACN(85∶15)与流动相B:ACN以梯度混合并以1.200mL/min的速度泵送。检测器波长:215nm。由此产生的利拉鲁肽保留时间约为3.4分钟。

来自受体样品的HPLC分析的主要数据进一步校正以用于取样和取代受体相以及计算图5中呈现的值。所有样品都重复测试(n=4至5)。

结果与讨论

我们优化了组合物和静电纺丝变量以产生承载有高含量利拉鲁肽并具有适合于在人中容易舌下给药的操作性能的纳米纤维膜。

掺入纳米纤维中的利拉鲁肽的量为干重的约10%,然而,使用本文所述的方法可以预期和可能的是高于10%的更高的负载浓度。

通过SEM评估的本发明静电纺丝技术生产的膜显示具有规则纳米纤维直径和规则孔隙率的均匀分布的纳米纤维。

利用所得到的载体,我们发现利拉鲁肽能够穿过舌下膜渗透穿过粘膜。

该发现可以在可能的利拉鲁肽附聚成更复杂和更大的单元(例如六聚体,七聚体)的背景下进行讨论。

本发明的静电纺丝技术能够很好地重现性地大规模生产纳米纤维,其含量至多为干重的约10%的利拉鲁肽。纳米纤维膜具有非常好的形态学(SEM)和宏观质量。

利拉鲁肽在与舌下膜上的水性液体接触后立即从测试的纳米纤维载体释放,并且其可在体外条件下进一步舌下渗透约1小时。

参考文献:

Jang,H.-J.等人,国家科学研究院学报(Proc.Natl.Acad.Sci.USA.)104,(2007),15069-15074。

Moran-Ramos,S.等人,营养学进展国际评论杂志(Adv.Nutr.Int.Rev.J.),3,(2012),8-20。

Christian 内分泌学杂志(J.Endocrinology)221,(2014),T31-T41。McClean,P.L.,现代神经药理学(C.Neuropharmacology.)76,(2014),57-67。

Ahren,B.,实验细胞研究(Exp.Cell Res.)317(2011).:1239-1245。

Tasyurek,H.M.等人,糖尿病代谢研究与评论(Diabetes Metab.Res.Rev.)30:354-371。

Madsbad,S.糖尿病肥胖与代谢(Diabetes Obes.Metab.),16(2014),9-21。

Vrbata,P.等人,国际药剂学杂志(Int.J.Pharm.),457(2013)168-176。

作为另一个示例性实施方式,评估来自示例性载体的牛血清白蛋白(BSA)的舌下透粘膜渗透。

介绍

白蛋白是一种有吸引力的大分子载体,已被证明其是可生物降解的、无毒的、在体内代谢产生无毒的降解产物、非免疫原性的、易于纯化并溶于水。

人血清白蛋白(HSA)及其牛类似物(BSA)是非糖基化的单链(one chain)血浆蛋白(分别为66.5kDa和69.3kDa的相对MW),其平均半衰期为19天。这两种白蛋白都是极易溶解的球状蛋白质,它们对pH值(在4-9的pH范围内稳定)、温度(可以在60℃加热至多10小时)和有机溶剂都非常稳健。它们在水中的等电点(pI)约为4.7(25℃)。

HSA和BSA的生理功能和性质是多重的。它们具有非凡的配体结合能力,为各种各样的化合物提供了储存处(depot),可供使用的量可远远超过它们在血浆中的溶解度。因此,白蛋白作为大量药物API(例如苯二氮类、青霉素等)的载体已被广泛研究。白蛋白在实体瘤中的积累导致开发基于白蛋白的药物递送系统用于肿瘤靶向。例如,甲氨蝶呤-白蛋白缀合物、阿霉素的白蛋白结合前药或白蛋白紫杉醇纳米颗粒已被临床使用,尽管总是肠胃外给药。

目的

该研究的目的是使用BSA作为模型载体蛋白,以获得关于以下的数据:(1)静电纺丝技术产生优质的可用于制药目的的含有白蛋白的纳米纤维垫的能力;(2)获得的载体纳米纤维产品以体外可透过舌下(SL)粘膜的形式释放BSA的能力;并评估(3)作为舌下药物递送载体的BSA的明显上限渗透极限。

方法

本实施例中的纳米纤维由5份(按重量计)BSA、5份在PEO(聚环氧乙烷)和PVA(聚乙烯醇)的聚合物混合物中的FITC-BSA(荧光异硫氰酸酯-BSA)组成。所有物质均购自西格玛奥瑞奇。使用本文描述的静电纺丝技术和参数来生产纳米纤维。

体外渗透实验

之前已经描述了许多技术细节,但总而言之,将距离新鲜猪舌下侧约0.4mm厚度的小切片猪舌下粘膜安装到改良的弗兰兹扩散池(franz diffusion cell)中。提供1.0cm2的用于渗透的暴露区域。多层纳米纤维膜或参比FITC-BSA溶液的供体样品含有约4.8mg总白蛋白,搅拌的受体相(37°±0.5℃)是pH为7.4的磷酸盐缓冲液。所有样品都重复测试(n=4至5)。

HPLC测定

在具有FLD检测器(安捷伦科技(Agilent Technologies),USA)的Agilent 1200仪器上进行FITC-BSA的测定。FLD检测器波长设置为在495nm下激发和在523nm下发射。对受体样品的HPLC分析的主要数据进一步校正以用于取样和替换受体相。渗透曲线[透过的总白蛋白对时间的μg]在图6中呈现。

结果与讨论

我们发现用于生产具有相当高BSA含量(至多约30%干重)的纳米纤维膜的合适组成和制造条件。这表明可以使用本发明的方法使用大规模生产静电纺丝技术将白蛋白掺入纳米纤维中。

所得的含有FITC-BSA的纳米纤维垫在光学上不出现任何团块并具有合适的直径均匀性,并因此提供该物理-化学材料状态的独特性质。在进一步预期的示例性实施方式中,白蛋白的纳米纤维加载能力可以进一步提高并且产生另外的纳米纤维载体。

FITC-BSA通过舌下猪膜的透粘膜体外渗透可以很好地测量,并且显示在图6中。所获得的渗透曲线意味着成功地从纳米纤维中释放白蛋白,并且随后产生白蛋白的这种空间排列,这种空间排允许其穿过粘液扩散并且进一步渗透通过SL膜。此外,例如在将供体样品加载到粘膜上20分钟后检测到BSA渗透。

尽管不受任何特定理论的束缚,但血清白蛋白在血管内循环而没有通过外部内皮屏障泄漏(进入细胞外空间)的倾向,因此在舌下粘膜渗透后直接进入血流的白蛋白概率较低。尽管如此,可以预期大的白蛋白样分子通过淋巴管进一步吸收,最终使大分子颗粒通过淋巴管连通至锁骨下静脉(vena subclavia)(左侧或右侧)。

白蛋白作为药物载体的性质已被很好地讨论,因此本发明人预期在许多实施方式中,较小的椭圆体白蛋白样体将携载封闭且非共价(可逆地)保留在核心中的疏水API,而这种颗粒的表面被亲水蛋白质部分覆盖。因此,提供API不仅要通过SL屏障,还要达到系统循环。

使用本文所述的大规模静电纺丝技术和参数的静电纺丝支持产生具有非常好的形态学(SEM)质量的含白蛋白的纳米纤维。发现白蛋白容易从所产生的载体中释放,并以高水平在舌下渗透。

参考文献

Langer,K.等人,国际药剂学杂志(Int.J.Pharm.),347(2008)109-117。

Kratz,F.,控释杂志(J.Control.Release)132(2008)171-183。

Vrbata,P.等人,国际药剂学杂志,457(2013)168-176。

Elzoghby Ahmed O.等人,控释杂志157(2012)168-82。

研究了使用本发明载体的活性剂递送的生物利用度。在临床试验中,将本文所述载体中包含的5mg活性剂(利扎曲普坦)与目前市场上的参比口腔分散性冻干片产品进行比较。该试验涉及12名接受载体的经过几天的竞争性产品之后的志愿者。从肘静脉采集血浆,然后分析并检查显著的药代动力学参数Cmax、AUC。图7提供了来自该研究的活性剂血浆浓度曲线。载体达到了药物血浆浓度(Cmax)和曲线下的测量面积(AUC),其显著高于参比产品,例如如下表所示。

包括的上述实施例仅用于说明的目的,并非旨在限制本公开的范围。上述的许多变化都是可能的。由于上述示例的修改和变化对于本领域技术人员来说将是清楚明白的,所以本公开旨在仅由所附权利要求的范围来限定。

上述出版物或文献的引用并非旨在承认上述任何内容是相关的现有技术,也不构成对这些出版物或文献的内容或日期的任何承认。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1