神经调节的经改进反馈控制的制作方法

文档序号:16635753发布日期:2019-01-16 07:00阅读:275来源:国知局
神经调节的经改进反馈控制的制作方法

本发明涉及控制对刺激的神经反应,并且更具体地涉及通过使用植入在神经通路附近的一个或多个电极测量复合动作电位以便提供反馈来控制随后施加的刺激。



背景技术:

存在一系列期望施加神经刺激以便引起诱发复合动作电位(ecap)的情况。例如,使用神经调节来治疗各种疾病,包括慢性神经性疼痛、帕金森病和偏头痛。神经调节系统向神经组织施加电脉冲以便产生治疗效果。

当用于缓解源自躯干和四肢的神经性疼痛时,将电脉冲施加到脊髓的背柱(dc),被称为脊髓刺激(scs)。这种系统通常包括植入式电脉冲发生器以及如电池等可通过经皮感应传输进行再充电的电源。电极阵列连接至脉冲发生器并且被定位在(多条)靶神经通路附近。由电极施加到神经通路的电脉冲引起神经元的去极化以及传播动作电位的生成。以此方式刺激的纤维阻止疼痛从脊髓中的所述分段传递到大脑。为了维持疼痛缓解效果,基本上连续地(例如,以范围为30hz到100hz的频率)施加刺激。

为了有效且舒适的操作,有必要将刺激振幅或递送电荷维持在募集阈值之上。低于募集阈值的刺激将无法募集任何动作电位。还有必要施加低于舒适阈值的刺激,高于所述舒适阈值时,由于对aβ纤维的增加的募集而出现不舒适或疼痛的感知,当募集太大时所述纤维产生不舒适感觉并且在高刺激水平下所述纤维可以甚至募集与剧烈疼痛、冷觉和压觉相关联的感觉神经纤维。在几乎所有神经调节应用中,虽然期望单一类别的纤维反应,但是所采用的刺激波形可能在其他类别的纤维上募集引起不想要副作用的动作电位。电极迁移和/或植入体受体的姿势变化使维持适当神经募集的任务更加困难,所述电极迁移和姿势变化中的任一项都可能显著改变由给定刺激引起的神经募集,这取决于刺激是在电极位置或用户姿势变化之前还是之后施加的。硬膜外腔中存在使电极阵列移动的空间,并且这种阵列移动改变电极到纤维的距离以及因此给定刺激的募集效果。此外,脊髓本身可以在脑脊液(csf)中相对于硬脑膜移动。在姿势变化期间,csf量以及脊髓与电极之间的距离可以显著变化。这种影响非常大使得姿势变化可能单独地使之前舒适且有效的刺激方案变得或者无效或者疼痛。

所有类型的神经调解系统面临的另一个控制问题是以治疗效果所需的充足电平但以最小的能量消耗实现神经募集。刺激范式的电力消耗对电池要求有直接影响,其进而影响设备的物理尺寸和生存期。对于可再充电系统,增加的电力消耗导致更频繁的充电,并且假设电池仅允许有限数量的充电周期,则这最终减小设备的植入生存期。

已经尝试通过反馈来解决这种问题,如通过本申请人的国际专利申请号wo2012155188中阐述的方法。反馈试图通过控制递送的刺激以便维持恒定的ecap振幅来补偿神经和/或电极移动。

本说明书中已包括的文件、行为、材料、设备、物品等的任何讨论仅用于为本发明提供上下文的目的。不应被认为是承认这些事项中的任何或所有事项形成现有技术基础的一部分或为与本发明相关领域内的公共常识(当其在本申请的每项权利要求的优先权日之前存在时)。

贯穿本说明书,词语“包括(comprise)”、或变化(如“包括(comprises)”或“包括(comprising)”)应被理解成暗示包括陈述的元件、整数或步骤、或者元件、整数或步骤组,但不排除任何其他元件、整数或步骤、或者元件、整数或步骤组。

在本说明书中,陈述元件可以是选项列表中的“至少一项”将被理解为元件可以是所列出的选项中的任何一项,或者可以是所列出的选项中的两个或更多个的任何组合。



技术实现要素:

根据第一方面,本发明提供了一种控制神经刺激的自动化方法,所述方法包括:

将所述神经刺激施加到神经通路,以便在所述神经通路上引起诱发动作电位,所述刺激由至少一个刺激参数限定;

测量由所述刺激诱发的神经复合动作电位反应,以及根据所测量的诱发反应导出反馈变量;

通过使用所述反馈变量来控制所述至少一个刺激参数值从而完成反馈回路;以及

通过将补偿传递函数应用于所述反馈变量来自适应地补偿所述反馈回路的由相对于所述神经通路的电极移动引起的增益变化,所述补偿传递函数被配置成补偿以下两者:(i)刺激的距离相关传递函数;以及(ii)测量的不同于(i)的距离相关传递函数。

根据第二方面,本发明提供了一种用于可控制地施加神经刺激的植入式设备,所述设备包括:

多个电极,所述多个电极包括一个或多个标称刺激电极以及一个或多个标称感测电极;

刺激源,所述刺激源用于提供将从所述一个或多个刺激电极递送到神经通路以便在所述神经通路上引起诱发动作电位的刺激;

测量电路系统,所述测量电路系统用于记录在所述一个或多个感测电极处感测到的神经复合动作电位信号;以及

控制单元,所述控制单元被配置成:

控制对如由至少一个刺激参数限定的神经刺激的施加;

通过所述测量电路系统测量由所述刺激诱发的神经复合动作电位反应;

根据所测量的诱发反应确定反馈变量;

通过使用所述反馈变量来控制所述至少一个刺激参数值从而完成反馈回路;并且

通过将补偿传递函数应用于所述反馈变量来自适应地补偿所述反馈回路的由相对于所述神经通路的电极移动引起的增益变化,所述补偿传递函数被配置成补偿以下两者:(i)刺激的距离相关传递函数;以及(ii)测量的不同于(i)的距离相关传递函数。

根据第三方面,本发明提供了一种用于可控制地施加神经刺激的非暂态性计算机可读介质,所述非暂态计算机可读介质包括供由一个或多个处理器执行的以下指令:

用于将所述神经刺激施加到神经通路以便在所述神经通路上引起诱发动作电位的计算机程序代码装置,所述刺激如由至少一个刺激参数所限定那样被施加;

用于测量由所述刺激诱发的神经复合动作电位反应并且根据所测量的诱发反应导出反馈变量的计算机程序代码装置;

用于通过使用所述反馈变量来控制所述至少一个刺激参数值从而完成反馈回路的计算机程序代码装置;以及

用于通过将补偿传递函数应用于所述反馈变量来自适应地补偿所述反馈回路的由相对于所述神经通路的电极移动引起的增益变化的计算机代码装置,所述补偿传递函数被配置成补偿以下两者:(i)刺激的距离相关传递函数;以及(ii)测量的不同于(i)的距离相关传递函数。

本发明认识到:(i)由给定刺激对神经通路上的诱发复合动作电位的募集将基于(多个)刺激电极离神经通路的距离而变化;以及(ii)从神经通路观察到的给定ecap的波形将基于(多个)感测电极离神经通路的距离而变化,并且此外针对(i)的传递函数不同于针对(ii)的传递函数,从而使得如可能由患者移动、姿势变化、心跳等引起的电极移动将影响使用对刺激的反馈控制的系统的募集行为。

一些实施例可以提供用于通过使用单一i&v测量结果(其中,i是刺激电流的度量,并且v是观察到的ecap电压的度量)而不是必须估计或测量刺激阈值或反应增长曲线来影响恒定募集的控制方法。在这种实施例中,传递函数优选地包括反映募集参数n和测量参数m两者的单个参数k,因为刺激传递函数与测量传递函数不同,因此m和n不相等。例如,当所募集的纤维的总数n随距离x变化为x并且所测量的ecap电压振幅v近似为v∝nx-m时,则在一些实施例中k=m/n。重要的是,本发明认识到反馈参数k不等于1,因为刺激传递函数与测量传递函数不同。反馈参数k优选地被选择为取适合于使用中的刺激和记录配置的值,如取决于从(多个)刺激电极到(多个)记录电极的距离和/或取决于刺激电极到参考电极配置和/或取决于是双极刺激还是三极刺激的刺激配置等的值。例如,在使用scs引线的第一到第三电极递送三极刺激并且使用同一引线的第六电极获得记录的一个这种配置中,反馈参数k优选地被选择为处于0到0.8的范围内,更优选地0.1到0.7,更优选地0.16到0.61,更优选地0.22到0.53,更优选地0.3到0.43,最优选地约0.37。

在本发明的一些实施例中,k是使用募集数据在临床上确定的。募集数据可以包括以下各项中的一项或多项:患者的感知阈值、不适阈值、某个区域或身体部位的覆盖范围、患者对刺激的感知的定性特性如最佳舒适、电生理学度量如肌肉反应/抽搐的发作或神经活动的度量。这种度量可以使用由刺激诱发的反应的振幅、等待时间或(多个)其他特性,所述刺激可以出现在脊柱、外周神经、大脑或身体内的其他地方。在这种实施例中,对k的临床确定可以包括患者采取一系列姿势;在每个姿势中调节刺激强度直到实现所需募集数据;以及在不同姿势中根据恒定募集数据通过合适的拟合或近似估计k。

在本发明的一些实施例中,k是通过在多个姿势中使用记录电极测量对外周刺激(如恒定tens刺激)的神经反应以获得每个姿势中的vi数据而在临床上确定的。然后可以移除外周刺激,并且然后植入物的刺激电极可以在每个姿势中递送被调节为产生对应vi的电流电平ii的刺激并且因此已知具有姿势的独立实现的恒定募集。然后恒定募集的(ii,vi)对的集合可以被拟合或近似以产生k。

在本发明的一些实施例中,特别对于涉及具有窄范围的纤维直径的纤维群的应用,k可以通过将患者置于一系列姿势i中并且在每个姿势中扫掠刺激强度并记录增长曲线而在临床上确定。根据每个对应姿势的增长曲线,线拟合到曲线的线性部分以确定阈值ti和增长斜率mi。绘制针对logtimi的logti的值;并且将线拟合到这些点给出了斜率-m/n=-k。

在一些实施例中,在整个操作域内,n和m被视为近似适用于对应传递函数的幂次定律的常数。然而,替代性实施例可以提供变量n和/或变量m,例如以便反映在较大募集的情况下n和m可以在不同程度上轻微减小。可以实施n和m的这种自适应性以便提供更精确的补偿,取决于设备在低募集还是高募集状态下操作。

因此,本发明的一些实施例可以如下实施反馈回路:将ecap的传入测量结果(v)与用于生成所述测量结果的刺激电流(i)的取幂版本(i-k)相乘。相对于设定值生成误差信号并将所述误差信号馈送到确定下一个刺激强度的控制器g中。因此,i-v控制可以被实施为反馈回路,用根据选择的设定值导出的误差信号控制f=ikv形式的项。

在一些实施例中,反馈变量可以是以下各项中的任一项:振幅;能量;功率;积分;信号强度;或以下任何一项的导数:完整的诱发复合动作电位;例如在刺激之后在测量窗口0ms到2ms内快速的神经反应;例如在刺激之后在测量窗口2ms到6ms内慢速的神经反应;或者反应的滤波版本。在一些实施例中,反馈变量可以是在多个刺激/测量周期内确定的任何这种变量的平均值。在一些实施例中,反馈变量可以是ecap振幅对变化的刺激电流的响应的线性部分的零截距或斜率。在一些实施例中,反馈变量可以根据多于一个前述度量导出。

在一些实施例中,控制变量或刺激参数可以是总刺激电荷、刺激电流、脉冲振幅、相持续时间、相间间隙持续时间或脉冲波形中的一个或多个,或者这些的组合。

因此,本发明认识到使用反馈回路维持恒定ecap是困难的任务,因为患者姿势的变化产生信号输入并改变以下两者的回路特性:(i)刺激电极到神经传递函数以及(ii)神经到感测电极传递函数。

反馈回路的设定值可以被配置以便寻求ecap振幅的恒定值,并且可以被配置以便寻求随时间变化的目标ecap振幅,例如如由本申请人的国际专利申请公开号:wo2012155188中描述的治疗图限定的,所述申请的内容通过引用并入本文。

附图说明

现在将参照附图对本发明的示例进行描述,在附图中:

图1示意性地展示了植入式脊髓刺激器;

图2是植入式神经刺激器的框图;

图3是示意图,展示了植入式刺激器与神经的交互;

图4展示了电诱发复合动作电位的典型形式;

图5是观察到的ecap的峰到峰振幅的曲线图;

图6是作为电流的函数的募集的曲线图;

图7展示了作为记录振幅的函数的募集;

图8展示了每个距离x的相应刺激电流;

图9示出了根据ecap模型计算的电压-距离曲线;

图10展示了ikv值与募集之间的关系;

图11a和图11b展示了之前恒定电流方法、之前恒定ecap电压方法和i-v方法的性能;

图12展示了跨一系列期望募集值的i-v方法的性能;

图13展示了针对每个k值的总误差;

图14展示了k在电极之间的变化;

图15示出了在两相刺激的情况下并且在不同电极上不同k值对i-v技术的性能的影响;

图16示出了在两相刺激的情况下i、v和i-v控制的性能;并且

图17展示了用于使用i-v控制维持恒定募集的反馈回路。

具体实施方式

图1示意性地展示了植入式脊髓刺激器100。刺激器100包括电子设备模块110,所述电子设备模块植入在患者的下腹部区域或后上臀肌区域中的适当位置中;以及电极组件150,所述电极组件植入在硬膜外腔内并通过适当引线连接至模块110。植入式神经设备100的操作的许多方面可通过外部控制设备192重新配置。此外,植入式神经设备100扮演着数据采集角色,其中,采集数据被传达至外部设备192。

图2是植入式神经刺激器100的框图。模块110包含电池112和遥测模块114。在本发明的实施例中,遥测模块114可以使用任何适当类型的经皮通信190(如红外(ir)传输、电磁传输、电容性传输和感应传输)来在外部设备192与电子设备模块110之间传输电力和/或数据。

模块控制器116具有存储患者设置120、控制程序122等的相关联存储器118。控制器116根据患者设置120和控制程序122来控制脉冲发生器124以便生成电流脉冲形式的刺激。电极选择模块126将所生成的脉冲切换到电极阵列150的(多个)适当电极,以便将电流脉冲递送至(多个)所选电极周围的组织。测量电路系统128被配置成捕获在电极阵列的如由电极选择模块126选择的(多个)感测电极处感测到的神经反应的测量结果。

图3是示意图,展示了植入式刺激器100与神经180的交互,然而,在这种情况下,脊髓替代性实施例可以定位在任何期望的神经组织(包括外周神经、内脏神经、副交感神经或大脑结构)附近。电极选择模块126选择电极阵列150的刺激电极2以便向包括神经180的周围组织递送电流脉冲,并且还选择阵列150的返回电极4以便进行刺激电流恢复从而维持零净电荷转移。

向神经180递送适当刺激诱发神经反应,所述神经反应包括将如所展示的为了治疗目的而沿着神经180传播的复合动作电位,在用于慢性疼痛的脊髓刺激器的情况下,所述治疗目的可能是在期望位置处产生感觉异常。为此,刺激电极用于以30hz递送刺激。为了装配设备,临床医生施加产生用户经历为感觉异常的感觉的刺激。当感觉异常处于与用户身体的受疼痛影响的区域一致的位置中且具有与所述区域一致的大小时,临床医生推荐持续使用所述配置。

设备100进一步被配置用于感测沿着神经180传播的复合动作电位(cap)的存在和强度,无论这种cap是由来自电极2和4的刺激诱发还是以其他方式诱发。为此,电极选择模块126可以选择阵列150的任何电极充当测量电极6和测量参考电极8。测量电极6和8感测到的信号被传递到测量电路系统128,所述测量电路系统例如可以根据本申请人的国际专利申请号wo2012155183的教导运行,所述专利申请的内容通过引用并入本文。

本发明认识到,在尝试实施反馈控制回路时,ecap记录中涉及两种距离相关传递函数。第一种涉及刺激:在较大的距离x处,需要较高的电流刺激相同的神经纤维。第二种涉及记录:在较大的距离x处,给定神经募集导致较小的观察到的ecap。寻求恒定的观察到的ecap电压振幅的反馈不考虑记录传递函数,结果是募集将实际上随着束距离增加而增加。此外,第一和第二传递函数是不同的并且需要单独的补偿。

本发明提供了以响应于传递函数之间的差别的方式考虑两种距离相关传递函数的方法以便由此改善反馈控制的性能。

这种方法必然受通过细胞内膜片钳记录等直接测量人体内的神经募集的不可能性或至少不切实际性的限制;在实际反馈系统中可能的是,在没有这种测量的情况下使反馈参数适合患者。

图4展示了健康受试者的电诱发复合动作电位的典型形式。图4中示出的复合动作电位的形状是可预测的,这是因为其是由响应于刺激而生成动作电位的全体轴突产生的离子电流的结果。在大量纤维当中生成的动作电位合计起来形成复合动作电位(cap)。cap是由大量单一纤维动作电位引起的反应之和。所记录的cap是大量不同纤维去极化的结果。传播速度在很大程度上由纤维直径确定。由一组类似纤维的激动产生的cap被测量为正峰电位p1,然后是负峰n1,随后是第二正峰p2。这由在动作电位沿着单独纤维传播时经过记录电极的激活的区域引起。观察到的cap信号将通常具有微伏范围内的最大振幅。

cap曲线采取典型形式并且可由任何适当的(多个)参数(图4中指示了其中一些参数)表征。根据记录的极性,正常记录曲线可以采取图4中示出的形式的相反形式,即,具有两个负峰n1和n2以及一个正峰p1。

出于说明性目的,在针对10个不同束位置中的每一个的scs模型的情况下执行ecap刺激,使束-电极距离从1.7mm变化到5.2mm(1.7mm、2.1mm、2.5mm、2.9mm、3.3mm、3.6mm、4.0mm、4.4mm、4.8mm、5.2mm)。单相刺激用于避免用第二阴极效应混淆测量结果。8-电极线性阵列被模型化,如同通常在scs中使用的那样。在电极2上递送刺激,在电极1和3上返回电流。图5是响应于范围在0ma到30ma内的刺激电流而在这些束-电极距离处在电极6上观察到的ecap的峰到峰振幅的曲线图。如可以看到的,随着束移动靠近电极阵列,募集阈值被降低并且增长斜率和饱和振幅增加。

为了比较刺激方法,选择5000个纤维的目标募集;这在线性募集区域内,如通常在治疗刺激中观察到的。图6是作为电流的函数的募集的曲线图,展示了根据现有技术方法使用固定刺激振幅(垂直线610)。固定电流振幅(大约4.8ma)被选择用于在内侧束位置处募集5000个纤维。使用恒定刺激电流募集的纤维数量的范围跨检查的束位置从零个纤维到几乎35000个纤维。这强调了传统scs对束位置的敏感程度。

图7展示了当使用寻求恒定n1到p2记录振幅(垂直线710)的反馈控制时作为记录振幅的函数的募集。选择设定的振幅(大约47μv)以便在内侧束位置处募集5000个纤维。相比于图6的恒定刺激振幅方法,在图7中由电极-神经间隔变化所引起的募集变化减小,跨检查的距离,募集现在从大约3000个纤维变化到6500个纤维。应注意的是,相比于图6的恒定电流刺激方法,图7的变化相反:在图7中,募集在较大的束距离处增加。然而,图7的恒定的观察到的电压方法响应于电极到神经间隔的变化而继续遭受相当大程度的不期望募集变化,其中当电极到神经间隔为1.7mm时募集比期望的小几乎40%,并且当电极到神经间隔为5.2mm时募集比期望的大几乎60%。

因此,本发明认识到,当电极到神经间隔经历变化时,图6的恒定刺激方法和图7的恒定的观察到的电压方法都无法可靠地募集期望治疗数量的神经纤维。

本发明相反以补偿以下两项的方式提供对刺激振幅的反馈控制:(i)相对于电极到神经间隔x的刺激传递函数以及(ii)相对于电极到神经间隔x的记录传递函数,并且以说明(i)与(ii)之间的差异的方式提供对刺激振幅的反馈控制。

刺激传递函数和记录传递函数都描述了物理过程,在所述物理过程中,第一元件(对应地,刺激电极或神经)在容积导体中辐射电场,并且这种电场中的一些被第二元件(对应地,神经或感测电极)感测到。辐射过程的耦合通常随距离的幂消退,并且可以通过包括这种幂项的方程建模。然而重要的是,刺激传递函数与测量传递函数不相同(或者相反),至少由于不同的原始波形(搏动刺激对典型地3瓣式ecap波形);由于总是用于一方面递送刺激并且另一方面获得神经测量结果的不同电极配置;并且由于至少在ecap波形远离刺激位点行进时所述ecap波形的增加的分散。

为了适当地解决不相等的传递函数,首先导出刺激强度i与所募集的纤维的数量n之间的关系的表达式,即刺激传递函数。此函数将取决于目标组织与刺激电极之间的距离x。n将等于具有低于刺激强度的阈值的纤维数量;这些阈值ti还将随距离变化:

ti随x的变化可以通过简单的分析模型来近似。如果考虑单个有髓神经纤维在距离x处暴露于点状电流源并且具有结间长度l,则第q个郎飞结处的电压具有以下形式:

其中,并且假设第0个结位于纤维上最靠近电极的点处。

纤维的将被给定刺激激活的倾向通过被称为激活函数的函数来近似。这表示净去极化电流被应用于纤维上的每个郎飞结,并且具有阈值行为;如果在任何结处去极化足够,则纤维将激发。对于有髓纤维,激活函数由沿着纤维的场的二阶差分给出。这在最靠近电极的结处具有最大值,值为:

因此,阈值将随距离变化,如下:

这不是特别容易处理的表达式。背侧柱中的结间间距通常小于束-电极距离;在l<x区域中,ti的四阶或更高阶导数非常小,并且行为近似为:

ti∝xn

在单极点状源刺激的情况下,n∈[1,3]。在电极、周围组织和神经的其他配置中,n的值可以在此范围外。

将此应用于全体行为,由给定刺激募集的纤维的总数取决于纤维阈值ti。在募集增长的线性区域中,n随i线性增加,因此ti可以被假定为均匀分布的,并且募集的数量变化为:

n∝ix-n-t0

其中,t0是与在x=1处最敏感的纤维的阈值相对应的归一化阈值。

根据此推导式,可以看出幂n(也被称为刺激传递函数参数)将取决于刺激电极与受刺激组织之间的电气和几何关系。例如,如通常在治疗scs中发现的在使用多极刺激电极配置的情况下,近场激活函数可以由于增加的场变化而增加,而远场激活函数可以由于偶极子消除而更快速地下降。这些效果还取决于受刺激神经纤维的几何形状并且取决于介入组织和周围组织的电气性质;例如,背侧柱的白质的纵向各向异性导电性影响场形状。当前描述的实施例中的刺激强度i是刺激电流,尽管可以相等地使用替代性刺激强度参数(电压、脉冲宽度等)。

使用ecap模型结果来检查此关系。对于给定的募集值n,计算针对每个距离x的相应刺激电流。在图8中在募集曲线的线性部分内针对高达n=20,000的募集值示出了这一情况。图8中的线不完全是直的,表明在较大距离处募集相同数量的纤维需要不成比例的更高的电流,进而表明幂次定律的转移。将n处理为常数允许曲线的斜率被用作对n的估计:在双对数轴上使用线性回归导致在低募集(n=1,000)处n≈1.64,在较高募集水平(n=20,000)处下降到n≈1.55。

如之前注意到的,不仅有必要解决刺激传递函数,还有必要解决记录传递函数。因此,我们导出记录传递函数的表达式;是募集的纤维的数量n与观察到的n1-p2ecap振幅v之间的关系,尽管可以相等地使用ecap强度的其他度量。记录的信号v以距离相关方式随神经募集变化。动作电位从在郎飞结之间有效传播的去极化区域产生;这还导致去极化之前和之后的膜电流,有效地产生与双偶极子或三极源相当的场。动作电位沿有髓纤维的传播对有意义的分析处理来说太复杂;相反,可以使用点记录电极对有髓神经纤维的集合进行刺激,对于所述神经纤维的集合,发现单个纤维在距离x处的单个纤维动作电位(sfap)振幅si遵循如下定律:

si∝x-m

其中,m=1接近纤维,并且m=3在远场中。当x<<l时,期望是前者,并且最近的结的动作电流主导所述记录;后者由行进的动作电位的近似三极性质而产生。

ecap电压v由许多单个纤维动作电位(sfap)的总和产生,并且因此取决于所募集的纤维的空间和直径分布。不同直径的纤维具有不同sfap振幅,然而本发明的本实施例注意到其比例在增长曲线的线性部分内相当恒定。本发明的本实施例进一步假设所募集的纤维的空间分布变化小于x,这使我们能够将ecap振幅近似为:

v∝nx-m(2)

其中,m是记录传递函数参数。

实际上,记录电极不是点,而是相比于神经和/或神经-电极距离的显著尺寸的物理结构。通常使用差异记录,其中ecap被测量为近似于目标组织的两个电极之间的电位差。当ecap由于分散、纤维终止等远离初始点传播时,所述ecap还经历波形变化。周围电极环境还影响记录传递。神经纤维的膜性质还影响去极化行为以及由此诱导的外部电流。这些和其他因子引入对m的附加影响。

根据这些推导式,可以看出n取决于包括以下各项的因子:包括驱动和返回电极的配置的刺激电极配置;电极的尺寸和布局;周围组织的导电性质;以及神经纤维的几何形状。同时,m取决于包括以下各项的因子:记录电极(以及参考电极,如果使用的话);单独神经纤维的膜性质和几何形状;受刺激的总体神经群;以及周围组织。因此,期望m和n将取不同值,并且可以进一步随当前束-电极距离变化。

在恒定募集处使用电压距离曲线检查ecap模型中的记录传递函数。图9示出了根据ecap模型结果计算的电压-距离曲线。每条线示出了双对数轴上针对步长为1000、范围从n=1000(底部曲线)到n=20,000(顶部曲线)的固定募集的ecap振幅与距离之间的关系。每条线的斜率是对值m的估计。这些曲线指示在募集开始(小n)处m的值为约0.75,在线性区域内m下降至约0.6到0.65。不旨在受理论限制,减小的m值可以与所募集的纤维直径的范围的增宽相对应,由此有髓纤维的直径相关传导速度导致动作电位齐射的分散;这导致通过膜电流贡献于ecap的神经干的较长区域。然后,由每个纤维辐射的三相场稍有抵消,产生随距离更快速地衰退的场。

由于刺激传递函数参数n和记录传递函数参数m与电极几何形状和配置有关并且预计在治疗期间不明显的改变,因此其可以被确定。距离x未知,然而刺激传递函数和记录传递函数可以被组合以补偿x的变化并且确保恒定募集。对于每个刺激,刺激电流i可以是已知的,并且ecap电压v可以被测量。将方程(2)代入方程(1)得到:

其中,a是方程2的比例常数。

为了像反馈控制期望的那样维持常数n,得出结论:im/nv必须是常数。出于募集控制的目的,这更容易表达为:

y=ikv(4)

其中,k=m/n并且k>0。

因此,本发明的此实施例在单个参数k中捕获传递函数行为,所述参数根据m和n导出,反映刺激传递函数和记录传递函数两者,并且重要地反映这些传递函数与之前讨论的不同,并且被配置成补偿两个独特传递函数。

然后,可以使用任何合适的反馈算法(如图17中示出的以下进一步讨论的)来调节刺激电流i以便维持i与v之间的关系,其中期望的y值被驱动到选择的设定值。更大的y值将导致更高的募集。

通过测量针对各种距离的设定值-募集曲线来检查此反馈方法的性能。对于这种比较,m和n分别被估计为0.6和1.6,给定k=0.37的值。图10中示出了ikv值与募集之间的关系。

图中示出的设定值在束-电极距离x为3.2mm处被选择为n=5,000个纤维募集,在范围的中间。跨束位置的整个范围,从1.7mm到5.2mm的范围,募集保持在窄范围内,这表明本发明的此实施例的益处并且说明假定n和m是常数表现良好。图11a展示了之前恒定电流方法1102、之前恒定ecap电压1104相比于本实施例1106的性能。恒定电流刺激1102的极差的性能在图11a的全视图中可见;图11b的详细视图示出了本实施例的i-v控制1106相比于恒定振幅控制1104的经改善性能。恒定振幅控制1104导致离设定值的大于-30/+50%的变化,而i-v控制1106将恒定募集维持在比±5%更好。

此外,i-v控制1206跨期望募集值的范围一贯表现良好,如图12中示出的。对于每个期望的募集,再次使用束距离3.2mm针对每种算法确定合适的设定值。使用该设定值以及记录的rms平均偏差针对每个束位置计算募集。相比于之前恒定ecap方法1204(典型地>25%),i-v控制1206导致跨宽范围的设定值的募集的较小变化(典型地<5%)。

本实施例的i-v控制方法要求为k选择合适的值。进行敏感度分析,k在0与1之间变化。对于每个值,进行图12中示出的类型的rms偏差测量。通过对图13中示出的所有考虑的募集水平的rms偏差求平均来估计针对每个k值的总误差。在k=0的情况下,从反馈方程中移除电流项(i),使i-v控制等于具有超过25%的相对差平均偏差(rms)的恒定振幅控制。图13示出了对于0与0.8之间的任何k值,i-v控制胜过恒定振幅控制。

在这种刺激中,实现给定性能的k的合适范围可以直接从图13中读出,例如为了实现小于20%的平均偏差,k应当被设置为0.1到0.7,小于15%的平均偏差给出k为0.16到0.61,小于10%的平均偏差给出k为0.22到0.53,小于5%的平均偏差给出k为0.3到0.43,最小平均偏差给出k为约0.37。然而,在实践中,图13的曲线图不可用,并且需要间接测量以便确定k以使植入物与受体适合,如以下进一步讨论的。

方程(2)的记录传递函数取决于使用中的记录电极。几何图形因子可以在电极之间不同,并且在动作电位齐射远离刺激位点行进时其分散增加。增加分散减小m,因此可能期望正确的k值随着离刺激的增加的距离而更小。这在图14中可见。如果在最靠近刺激的电极4上记录,则最佳k为大约0.45,但是0与1之间的任何值胜过恒定振幅反馈。对于电极8,最佳值为大约0.27,0与0.55之间的值胜过恒定振幅反馈。

使用单相刺激准备图5到图14的结果,以便清楚地证明原理而无需考虑第二阴极效应及其结果的复杂性。然而,当使用两相刺激时,所描述的技术同样适用,如图15和图16中所示出的。具体地,图15示出了在两相刺激的情况下并且在不同电极上不同k值对当前募集控制技术的性能的影响。在两相刺激情况下获得的最佳结果与单相情况下获得的最佳结果类似,尽管k的最佳值稍微低一点。对于在0与0.65之间的k值,两相情况下的i-v控制胜过恒定振幅控制。图16示出了在两相刺激的情况下i、v和i-v控制的性能。针对i-v控制使用k值0.35。电压模式(v)控制导致跨检查的距离范围大于-30/+50%的变化,而i-v控制将募集维持在小于初始设定值的+10/-0%内。

因此,i-v控制方法需要单个参数k,所述参数将取决于患者脊髓的几何形状以及刺激和记录配置。在本发明的一些实施例中,可以根据预先计算的表或历书确定k,其中基于刺激和记录参数中的一个或多个选择固定值。例如,可以使用刺激与记录电极之间的距离、刺激脉冲宽度和测量参考电极的位置确定最佳k值。

在本发明的一些实施例中,可以使用募集数据在临床上确定k。募集数据可以被用作参考点以便调节刺激强度并实现不同姿势中的相同水平的神经募集。合适的数据可以包括患者的感知阈值、不适阈值、对某个区域或身体部位的覆盖范围、或者患者对刺激的感知的任何定性特性,如最佳舒适。还可以使用电生理学度量,如肌肉反应/抽搐发作,或者一些神经活动度量。这种度量可以使用由刺激诱发的反应的振幅、等待时间或(多个)其他特性,所述刺激可以出现在脊柱、外周神经、大脑或身体内的其他地方。

在此实施例中,指导患者采取一系列姿势,以实现每个姿势中不同但未知的束-电极距离xi。在每个姿势中,调节刺激强度直到实现募集数据。针对每个姿势i记录所产生的电流ii和ecap度量vi。由于使用募集数据暗示n跨这些测量结果是恒定的,这暗示

ii∝xin

vi∝xi-m

因此,估计k的一个简单方法是绘制logii对logvi并且对这些数据点拟合线;然后此线将具有斜率-n/m=-k。还可使用近似这种方程的解的其他方法。

还可以使用募集神经纤维的恒定子群的其他方法来完成此任务。例如,使用经皮电神经刺激(tens)的外周神经刺激可以提供外周神经的恒定募集,即使在患者姿势变化时;如果这些外周神经的一些子集延伸到记录电极附近的脊柱中,则诱发信号vi可以记录在每个姿势i中。在将vi记录到每个姿势中之后,外周刺激被移除,并且引入治疗刺激;其强度被调节为重现等于vi的诱发的振幅反应,并且记录此强度ii。此过程产生恒定募集的(ii,vi)对集合,所述集合可能与其他募集数据一样适合k。

然而,替代性实施例可能试图根据ecap记录直接确定k而不参考患者的感知。募集、距离与ecap振幅之间的记录传递函数是复杂的,特别当其取决于所募集的纤维群的分散特性时。单独的振幅测量结果通常无法将分散的变化与募集的变化区分。然而,在此呈现了适合于具有非常窄的直径范围的纤维群的拟合技术。尽管在脊柱中情况不是这样,但是当使用单个记录电极时以下技术可以在身体的任何地方有用。在一些情况下,特别在纤维群相当均匀时,可能根据增长曲线的阈值和斜率测量结果确定k。

在典型增长曲线中,存在测量的变量随刺激强度线性增长的线性区域。治疗scs在线性区域中操作。图5中示出的增长曲线示出了这种线性区域;例如在束-电极距离为1.7mm处,此区域在1.5ma与3ma之间延伸;在5.2mm,此区域在大约9ma与18ma之间延伸。这种线性区域可以通过对其拟合线来表征;然后,所述线性区域由该线的斜率m和x-截距(阈值)t描述。然后,此线性区域中的ecap测量结果v可以被建模为刺激强度i的函数:

v=m(i-t)

然后,当考虑刺激和记录传递函数的幂次定律模型时,其表现为

t∝xn

m∝x-(m+n)

因此,用于估计k的方法将患者置于一系列姿势i中,并且在每个姿势中,扫掠刺激强度并记录增长曲线。根据每个增长曲线,确定阈值ti和增长斜率mi的线被拟合。logti的值可以针对logtimi绘制;然后,对这些点拟合的线具有斜率-m/n=-k。还可以替代性地使用找到这些方程的解的其他方法。

图17展示了根据本实施例的用于使用i-v控制维持恒定募集的反馈回路。将ecap的传入测量结果(v)与用于生成所述测量结果的刺激电流(i)的取幂版本(ik)相乘。相对于设定值生成误差信号并将所述误差信号馈送到确定下一个刺激强度的控制器g中。因此,i-v控制可以以所示出的方式被实施为反馈回路。设定值是由患者的期望刺激水平确定的无单位值。离散时间控制器g(z)用于基于误差信号控制刺激电流;这可以采用具有简单增益的形式或更复杂的系统,如pid控制器。

除了提供更好的控制精度之外,这种特殊方案还具有提高回路反应速度的潜能。在恒定振幅反馈中,患者的传递函数(从刺激到ecap振幅)随姿势变化;这限制在保持回路稳定时可以应用的最大控制器增益,并且这样做还限制潜在带宽。如果通过在对g(z)的输入处缩放ecap振幅来实施i-v控制,则当回路正确地跟踪时,所述缩放补偿患者的改变传递函数。这意味着g(z)的增益可以被最大化而无需折衷稳定性,从而增加了回路可以反应的速度。

本领域的技术人员将认识到,在不脱离如所广泛描述的本发明的精神或范围的情况下,可以如特定实施例中所示对本发明进行许多变化和/或修改。因此,本发明实施例将在所有方面被视为是说明性而非限制性或约束性的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1