一种具有荧光特性的多通道导电神经修复导管及其制备方法与流程

文档序号:15682962发布日期:2018-10-16 20:45阅读:266来源:国知局
一种具有荧光特性的多通道导电神经修复导管及其制备方法与流程

本发明涉及生物材料领域,涉及一种神经修复用导管及其制备方法,特别涉及一种具有荧光特性的多通道导电神经修复导管及其制备方法。



背景技术:

机械性、物理性、缺血性以及代谢性原因造成的周围神经损伤十分常见。周围神经损伤后常引起其支配区域的感觉、运动以及自主神经功能障碍,严重影响患者生活质量。如何促进损伤周围神经的再生和功能重建一直以来都是国内外神经科学领域研究的热点和难点。现在周围神经损伤修复的黄金标准是自体神经移植,但是这种做法存在供体不足、并发症、需要多次手术和要进行免疫抑制等弊端。神经组织工程的发展,即利用神经导管进行神经再生的修复策略,为周围神经损伤修复与功能重建提供了新方法,具有临床应用前景。

为促进损伤神经的再生修复和功能重建,导电性生物材料在神经组织工程研究中受到了研究人员的高度关注,其生理基础来自于神经组织的电生理特性。神经细胞在体内进行信息传递时主要依靠突触产生的动作电位,通常细胞膜具有负的膜电位,外界电刺激会影响细胞的膜电位,从而引起细胞内部化学信息的变化以及信号传导通路的变化。因此,从仿生神经细胞的电生理特性出发,具有导电性的生物材料已被证实可显著促进神经来源细胞的增殖和分化,可有效促进断损神经再生和功能恢复。目前,用于神经组织工程研究的导电性生物材料主要包括导电性高分子材料,如聚吡咯、聚苯胺、聚噻吩类等,以及导电性纳米材料如碳纳米管、石墨烯等。其中,碳纳米管具有非常出色的机械性能、高长径比和良好的导电性能,将其与高分子材料复合,已经成为神经组织工程材料研究的一个重要方面,如专利cn102671235a公开了一种高取向纳米纤维神经导管的制备方法,将碳纳米管与生物可降解聚合物共混后静电纺丝制成神经导管。但是,碳纳米管在体内是不可降解的,在神经的再生修复过程中,当生物可降解材料随着时间不断降解,碳纳米管仍然会形成不可降解的碎片,它们在再生神经中的存在状态,以及在体内的去向问题,就成为大家极其关注的问题。建立对碳纳米管在体内随神经再生的原位动态示踪技术,是研究导电性的生物可降解聚合物复合碳纳米管神经导管能否体内应用的有效手段,而目前关于碳纳米管在组织修复中原位示踪的报道十分有限,因此,具有体内成像特性的神经导管成为这一领域的研究热点。



技术实现要素:

本发明的目的是提供一种具有荧光特性的多通道导电神经修复导管,通过在生物可降解脂肪族聚酯中复合具有荧光特性的碳纳米管,实现导管材料在体内的显影示踪,同时对缺损神经再生修复和功能重建有显著促进效果,该导管可用于探究随着神经再生,生物可降解聚酯材料被吸收,碳纳米管在再生神经中的存在状态。

一种具有荧光特性的多通道导电神经修复导管,其特征在于:该导管具有沿轴向取向的平行多通道结构,由沿导管轴向取向的平行排布导电纳米纤维排列构成,平行排布纳米纤维是含具有荧光特性碳纳米管的生物可降解脂肪族聚酯纳米纤维。

一种具有荧光特性的多通道导电神经修复导管的制备方法,其特征在于,包括以下步骤:

(1)以羧基化碳纳米管cnts为原料,以硅烷偶联剂kh550为反应物,在cnts表面接枝氨基官能团,得到产物cnts-nh2,以α-溴代异丁酰溴bibb为反应物,在cnts-nh2表面接枝溴官能团,得到产物cnts-br,以甲基丙烯酸缩水甘油酯gma为反应物,利用原子转移自由基聚合法在cnts-br表面接枝聚甲基丙烯酸缩水甘油酯-pgma,得到产物cnts-pgma,以乙二胺eda为反应物,进行pgma环氧官能团的开环反应,得到产物cnts-pgma-nh2后,将其分散在缓冲溶液中,避光条件下加入荧光剂在cnts-pgma-nh2表面进行接枝反应,荧光剂以f表示,得到具有荧光特性的碳纳米管产物cnts-pgma-f;

(2)将步骤(1)制备的cnts-pgma-f,在三氟乙醇中100-400w超声60-120min分散后,与生物可降解脂肪族聚酯溶液按一定重量比混合,cnts-pgma-f与生物可降解脂肪族聚酯重量比为0.045-0.055;通过静电纺丝制备高度平行取向的导电聚酯/荧光碳管复合纤维膜,所有过程注意避光;

(3)将7-24根直径为0.3-0.5mm的针灸针等间距平行置于步骤(2)制备的纤维平行取向的导电聚酯/荧光碳管复合纤维膜上,针灸针轴向与纤维取向方向一致,垂直于纤维取向方向卷绕成型,最后将针灸针去除,制备得到所述具有荧光特性的多通道导电神经修复导管,所有过程注意避光。

本发明的一种具有荧光特性的多通道导电神经修复导管的制备方法,具体如下:

(1)以羧基化碳纳米管(cnts)为原料,以硅烷偶联剂kh550为反应物,在cnts表面接枝氨基官能团,cnts与kh550的摩尔质量比例为1:0.5-1:5。接枝反应完成后对产物cnts-nh2进行真空抽滤,置于真空烘箱中于35-40℃干燥24-36h。

(2)以步骤(1)制备的cnts-nh2为原料,以α-溴代异丁酰溴bibb为反应物,在cnts-nh2表面接枝溴官能团,cnts-nh2与bibb的摩尔质量比例为1:1-1:5。接枝反应完成后对产物cnts-br进行真空抽滤,置于真空烘箱中于35-40℃干燥24-36h。

(3)以步骤(2)制备的cnts-br为原料,以甲基丙烯酸缩水甘油酯gma为反应物,利用原子转移自由基聚合(atrp)法在cnts-br表面接枝聚甲基丙烯酸缩水甘油酯-pgma,cnts-br与gma的摩尔质量比例为1:5-1:20。接枝反应完成后对产物cnts-pgma进行真空抽滤,置于真空烘箱中于35-40℃干燥24-36h。

(4)以步骤(3)制备的cnts-pgma为原料,以乙二胺eda为反应物,进行pgma环氧官能团的开环反应,cnts-pgma与eda的摩尔质量比例为1:5-1:15,反应完成后对产物cnts-pgma-nh2进行真空抽滤,置于真空烘箱中于35-40℃干燥24-36h。

(5)将步骤(4)制备的cnts-pgma-nh2分散在缓冲溶液中,加入荧光剂(以f表示)进行荧光剂在cnts-pgma-nh2表面的接枝反应,荧光剂与cnts-pgma-nh2的摩尔质量比例为1:1000-1:50,常温下避光反应2-12h,反应完成后用去离子水反复洗涤至上层液无色,然后真空抽滤,将产物cnts-pgma-f置于真空烘箱中于35-40℃干燥24-36h。在上述所有反应及抽滤干燥过程中全程避光。

(6)将步骤(5)制备的cnts-pgma-f超声分散在三氟乙醇中,并按一定的重量比,与生物可降解脂肪族聚酯三氟乙醇溶液混合,采用高速旋转的金属滚筒为接收装置,通过静电纺丝制备纤维高度平行取向的聚酯/荧光碳管导电复合纤维膜。所有过程注意避光。

(7)将多根针灸针等间距平行置于步骤(6)制备的纤维高度平行取向的聚酯/荧光碳管导电复合纤维膜上,针灸针轴向与纤维取向方向一致,垂直于纤维取向方向卷绕成型。将针灸针去除后即得具有荧光特性的多通道导电神经修复导管。所有过程注意避光。

所述制备步骤(3)中pgma的接枝量控制在30-45wt%。

所述制备步骤(5)中所使用的荧光剂为异硫氰酸荧光素(fitc)、四乙基罗丹明(rhob)、四甲基异硫氰酸罗丹明(tritc)、碘化丙啶(pi)、藻红蛋白(pe)中的一种。

所述制备步骤(6)中生物可降解脂肪族聚酯为聚丙交酯、聚乙交酯、聚己内酯及它们的共聚物中的一种。聚合物分子量为5-20万,优选10万。

所述制备步骤(6)中,cnts-pgma-f与生物可降解脂肪族聚酯重量比为0.045-0.055;所配置聚合物溶液的优选质量体积百分浓度为15-20%。

所述制备步骤(6)中,超声分散的优选超声功率为100-400w,超声时间为60-120min。

所述制备步骤(6)中,高速旋转的金属滚筒,优选的表面线速度范围为10-20m/s,纺丝时间不小于10h,获得厚度为30-60μm的高度取向平行纤维膜。

所述制备步骤(7)中,优选的针灸针直径为0.3-0.5mm,针灸针个数为7-24根。

所述制备步骤(7)中,优化的具有荧光特性的多通道导电神经修复导管直径为1.5-2.3mm,通道孔径为0.25-0.55mm,管壁厚度为0.15-0.25mm。

发明效果

本发明所制备的具有荧光特性的多通道导电神经修复导管,是通过在生物可降解脂肪族聚酯材料中复合具有荧光特性的碳纳米管来提供显影功能的,该导管可通过紫外光激发在体内外成像,为导电性神经导管材料用于神经再生,随着生物可降解材料的吸收,研究不可降解的碳纳米管在再生神经中的存在状态和去向问题,提供了一种有效手段。具有荧光特性的碳纳米管的制备,是通过在碳纳米管表面先接枝一层pgma聚合物,再负载荧光剂分子。该pgma层在本发明中的重要作用有两点,一是避免荧光剂分子与碳纳米管的直接接触,保证荧光剂分子的荧光不发生明显淬灭,二是利用pgma与纺丝溶剂三氟乙醇的相互作用,减少碳纳米管在聚酯纤维中的团聚,提高荧光碳纳米管的分散性,保证纤维的导电性。本发明所制备的具有荧光特性的多通道导电神经修复导管,是通过纤维高度平行的聚酯/荧光碳纳米管导电复合纤维膜垂直于纤维取向方向卷绕成型的,成型过程中利用针灸针的模板作用,同时形成沿导管轴向的多个微通道。该导管具有平行导管延展方向的拓扑结构,利于神经修复过程中神经轴突的取向生长,平行多通道结构在提供引导神经生长功能的同时,又能使导管具有足够的力学强度,确保导管不易塌陷。本发明在生物可降解聚酯纤维中添加的碳纳米管含量,在保证良好纤维形貌的前提下,可使复合纤维的电导率达到10-4s/m以上,有利于具有电生理特性的神经细胞的增殖与分化,有利于神经突的生长与延伸,能够更加有效地促进神经再生和功能重建。

以下结合具体实施方式对本发明的内容进行详细说明,但本发明并不限于以下这些实例,在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段做出的各种替换和变更,均应包括在本发明的范围内。

附图说明:

图1平行排布的生物可降解聚酯/荧光碳纳米管复合纤维的激光共聚焦图。

图2多通道导电神经修复导管的断面扫描电镜图。

图3具有荧光特性的多通道导电神经修复导管在裸鼠皮下的小动物成像图。

具体实施方式:

通过以下实施例对本发明的实施方案进行详细说明。但本发明不限于以下实施例。各实施例中所使用的羧基化多壁碳纳米管(mwcnts)是由中国科学院成都有机化学有限公司生产。

实施例1

(1)在圆底烧瓶中加入2g羧基化mwcnts,98ml无水乙醇,2ml硅烷偶联剂kh550,2ml乙酸,在50℃下反应24h。产物经无水乙醇洗涤,真空抽滤收集后,置于真空烘箱中40℃干燥24h,得到mwcnts-nh2。

(2)在圆底烧瓶中加入0.8gmwcnts-nh2,25ml四氢呋喃和3ml三乙胺,装置置于冰浴中,缓慢滴加6ml四氢呋喃和3mlα-溴代异丁酰溴bibb。滴完后,在40℃下反应72h。用无水乙醇洗涤产物,直至液体变为无色透明,真空抽滤收集产物,置于真空烘箱中40℃干燥24h,得到mwcnts-br。

(3)在圆底烧瓶中加入0.2gmwcnts-br,15ml二甲基甲酰胺,3ml甲基丙烯酸缩水甘油酯单体gma,通氮气30min后,加入0.027gcubr,0.08ml五甲基-二乙基三胺,再通氮气10min后,体系在30℃下反应24h。用无水乙醇洗涤产物,直至液体变为无色透明。进行真空抽滤,将抽滤产物置于真空烘箱中40℃干燥24h,得到mwcnts-pgma,pgma的接枝量为~40wt%。

(4)在圆底烧瓶中加入0.2gmwcnts-pgma,40ml无水乙醇,8ml乙二胺,在50℃下反应48h。用无水乙醇洗涤产物,离心抽滤纯化后,将抽滤产物置于真空烘箱中40℃干燥24h,得到mwcnts-pgma-nh2。

(5)在三口烧瓶中加入200ml去离子水,再依次加入1.512gnahco3、0.212gnaco3、1.472gnacl,搅拌溶解后加入0.1gmwcnts-pgma-nh2。避光条件下,将0.001g荧光素异硫氰酸荧光素fitc充分溶解于1ml二甲基亚砜,然后将该溶液滴加到前述三口烧瓶中,常温下避光反应10h。用去离子水反复洗涤至上层液无色,真空抽滤,将抽滤产物置于真空烘箱中40℃干燥40h,得到mwcnts-pgma-fitc。所有过程注意避光。

(6)将2.25g丙交酯-乙交酯共聚物plga7525(丙交酯含量75mol%,分子量10万)溶于5ml三氟乙醇,将步骤(5)制备的mwcnts-pgma-fitc悬浮于10ml三氟乙醇,250w超声分散90min,将上述两种液体混合后再在250w下超声分散30min,得到纺丝溶液,其中,mwcnts-pgma-fitc与plga7525的重量比为0.05。以高速旋转(表面线速度10m/s)的金属滚筒为接收装置,静电纺丝制备平行的plga/mwcnts-pgma-fitc复合纤维膜,纺丝参数为:接收距离15cm,流速0.4ml/h,电压16kv,滚筒转速1000rpm。所有过程注意避光。所得纤维膜的导电性测得为2×10-4s/m。

(7)将20根直径为0.3mm的针灸针等间距平行置于步骤(6)制备的平行plga/mwcnts-pgma-fitc复合纤维膜上,针灸针轴向与纤维取向方向一致,垂直于纤维取向方向卷绕成型,最后将针灸针去除。管体长度为15mm,直径为1.5-2.3mm,通道孔径为0.3mm,通道数为20个,管壁厚度为0.15-0.25mm。所有过程注意避光。

对比例1:

步骤(3)中反应时间改为3h,其余步骤与实例1中的条件一样,制备多通道导电神经修复导管,此时pgma的接枝量为~20wt%。结果发现制得的多通道导电神经修复导管的光致荧光响应性不强,在激光共聚焦显微镜下观察不到明显的荧光响应现象,说明pgma接枝反应时间的减少导致fitc负载量降低,荧光官能团接枝量不足,影响了多通道导电神经修复导管的光致荧光显影效果。

对比例2:

(1)在圆底烧瓶中加入2g羧基化碳纳米管,98ml无水乙醇,2ml硅烷偶联剂kh550,2ml乙酸,在50℃下反应24h。产物用无水乙醇洗涤,真空抽滤收集后,置于真空烘箱中40℃干燥24h,得到mwcnts-nh2。

(2)在三口烧瓶中加入200ml去离子水,再依次加入1.512gnahco3、0.212gnaco3、1.472gnacl,搅拌溶解后加入0.1gmwcnts-nh2。避光条件下,0.001g荧光素异硫氰酸荧光素fitc充分溶解于1ml二甲基亚砜,然后将该溶液滴加到前述三口烧瓶中,常温下避光反应10h。用去离子水反复洗涤至上层液无色,真空抽滤,将抽滤产物置于真空烘箱中40℃干燥40h,得到mwcnts-fitc。所有过程注意避光。

结果发现制得的mwcnts-fitc没有光致荧光响应性,在激光共聚焦显微镜下观察不到荧光响应现象,说明碳纳米管外不接枝pgma而直接负载荧光素荧光基团,会导致荧光淬灭现象发生,起不到示踪显影的作用。

实施例2

(1)在圆底烧瓶中加入2g羧基化mwcnts,98ml无水乙醇,2ml硅烷偶联剂kh550,2ml乙酸,在50℃下反应24h。产物经无水乙醇洗涤,真空抽滤收集后,置于真空烘箱中40℃干燥24h,得到mwcnts-nh2。

(2)在圆底烧瓶中加入0.8gmwcnts-nh2,25ml四氢呋喃和3ml三乙胺,装置置于冰浴中,缓慢滴加6ml四氢呋喃和3mlα-溴代异丁酰溴bibb。滴完后,在40℃下反应72h。用无水乙醇洗涤产物,直至液体变为无色透明,真空抽滤收集产物,置于真空烘箱中40℃干燥24h,得到mwcnts-br。

(3)在圆底烧瓶中加入0.2gmwcnts-br,15ml二甲基甲酰胺,3ml甲基丙烯酸缩水甘油酯单体gma,通氮气30min后,加入0.027gcubr,0.08ml五甲基-二乙基三胺,再通氮气10min后,体系在30℃下反应24h。用无水乙醇洗涤产物,直至液体变为无色透明。进行真空抽滤,将抽滤产物置于真空烘箱中40℃干燥24h,得到mwcnts-pgma,pgma的接枝量为~40wt%。

(4)在圆底烧瓶中加入0.2gmwcnts-pgma,40ml无水乙醇,8ml乙二胺,在50℃下反应48h。用无水乙醇洗涤产物,离心抽滤纯化后,将抽滤产物置于真空烘箱中40℃干燥24h,得到mwcnts-pgma-nh2。

(5)在三口烧瓶中加入200ml去离子水,再依次加入1.512gnahco3、0.212gnaco3、1.472gnacl,搅拌溶解后加入0.1gmwcnts-pgma-nh2。避光条件下,将0.001g荧光素四乙基罗丹明rhob充分溶解于1ml二甲基亚砜,然后将该溶液滴加到前述三口烧瓶中,常温下避光反应10h。用去离子水反复洗涤至上层液无色,真空抽滤,将抽滤产物置于真空烘箱中40℃干燥40h,得到mwcnts-pgma-rhob。所有过程注意避光。

(6)将2.25g丙交酯-乙交酯共聚物plga7525(丙交酯含量75mol%,分子量10万)溶于5ml三氟乙醇,将步骤(5)制备的mwcnts-pgma-rhob悬浮于10ml三氟乙醇,400w超声分散90min,将上述两种液体混合后再在400w下超声分散30min,得到纺丝溶液,其中,mwcnts-pgma-rhob与plga7525的重量比为0.055。以高速旋转(表面线速度10m/s)的金属滚筒为接收装置,静电纺丝制备平行的plga/mwcnts-pgma-rhob复合纤维膜,纺丝参数为:接收距离15cm,流速0.4ml/h,电压16kv,滚筒转速1000rpm。所有过程注意避光。所得纤维膜的导电性测得为2×10-4s/m。

(7)将24根直径为0.4mm的针灸针等间距平行置于步骤(6)制备的平行plga/mwcnts-pgma-rhob复合纤维膜上,针灸针轴向与纤维取向方向一致,垂直于纤维取向方向卷绕成型,最后将针灸针去除。管体长度为15mm,直径为1.5-2.3mm,通道孔径为0.4mm,通道数为24个,管壁厚度为0.15-0.25mm。所有过程注意避光。

对比例3:

步骤(4)中乙二胺加入量改为0.5ml,其余步骤与实例2中的条件一样,制备多通道导电神经修复导管。结果发现制得的多通道导电神经修复导管的光致荧光响应性不强,在激光共聚焦显微镜下观察不到明显的荧光响应现象,说明乙二胺加入量的减少,降低了pgma的开环程度,导致rhob负载量降低,荧光官能团接枝量不足,影响了多通道导电神经修复导管的光致荧光显影效果。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1