术中植入物增强的制作方法

文档序号:20766587发布日期:2020-05-15 19:01阅读:156来源:国知局
术中植入物增强的制作方法

优先权声明

本专利申请要求2017年8月31日提交的名称为“intraoperativeimplantaugmentation”的美国临时专利申请序列号62/552,645的优先权,该专利申请据此全文以引用方式并入本文。

本公开大体上涉及植入物翻修手术。更具体地,本公开涉及用于患者特异性翻修膝关节置换术的锥体的术中增强。



背景技术:

使用计算机、机器人和成像来在手术过程中提供帮助在本领域中是已知的。对用来引导手术程序的计算机辅助导航和机器人系统来说,已经有大量研究和开发。例如,精密徒手雕刻器采用机器人手术系统以帮助外科医生准确地将骨切割成期望形状。在诸如全膝关节置换术(tka)的程序中,已经使用计算机辅助手术技术来提高手术的准确性和可靠性。

在典型的关节镜程序中,医师可使用导航系统(例如光学或电磁跟踪系统)进行额外的引导,使得要做的任何切切口或骨形状改变与注册的手术计划一致。两种类型的跟踪系统都使用传感器,传感器被附接到待被切除的骨骼和由外科医生使用的切割工具。例如,在tka期间,可以将跟踪装置附接到患者的股骨、患者的胫骨以及一个或多个手术工具,诸如手持式旋转切割装置。导航系统可以记录跟踪装置在手术空间中的初始定位,并且跟踪患者和手术工具在整个手术程序中的位置。

在关节置换术之后,与植入物部件松开相关联的骨缺损、下沉和骨溶解可能发生,需要翻修手术来校正或补救骨缺损。通常,骨缺损涉及近侧胫骨或远侧股骨的显著骨损失。

重建技术通常包括将锥体或类似增强件插入到缺损区域中。为了校正缺损,外科医生可以选择适当尺寸的锥体,使用旋转切割装置上的切割锉附接件弄平缺损区域,并将锥体插入平滑区域中以试配。取决于试配,外科医生可以去除更多的材料或选择不同尺寸的锥体。一旦外科医生对配合满意,外科医生就可永久性地插入该锥体并继续翻修手术。

在此重建程序期间,锥体的配合对于防止额外骨损失是重要的。例如,如果锥体不提供对相邻骨骼表面的一定水平的压力,那么相邻骨骼表面可能随时间推移而劣化。因此,重要的是外科医生精确地弄平缺损区域,并确保锥体与平滑骨骼之间的紧密配合。另外,在植入的关节中实现良好的稳定性可能需要在配合的锥体和周围的骨骼之间良好配合(例如,>60%接触)。然而,这种术中重建过程可能是繁琐且耗时的,因为外科医生努力在锥体和周围骨骼之间实现良好配合。



技术实现要素:

提出此发明内容,以了解不会用于解释或限制本公开的范围或意义。

提供了一种术中增强植入物的方法。所述方法包括:从植入腔移除现有植入物;确定所述植入腔的形状;至少基于所确定的所述植入腔的形状选择锥体的形状和位置;加工具有所选择形状的所述锥体;将所述锥体安装在所述植入腔内的所选择位置处;以及将翻修植入物安装在所述锥体中。根据某些实施例,所述方法还包括限定在手术程序期间用于跟踪和导航系统的坐标系。在一些实施例中,限定坐标系包括使用具有多个光学跟踪器的已配准探头识别患者身上的一组基准点。

根据某些实施例,确定所述植入腔的形状包括使用具有多个光学跟踪器的已配准探头追踪所述植入腔的表面。根据某些实施例,确定所述植入腔的形状包括跟踪切割装置的定位,所述切割装置用于塑造所述植入腔的表面。

根据某些实施例,所述方法还包括使用图形用户界面来模拟所述锥体的形状和位置。在一些实施例中,选择所述锥体的形状和位置包括:在所述图形用户界面内修改所述锥体的形状和所述锥体的位置中的一个或多个;以及基于所述修改来改变所述锥体的所选择形状和位置。

根据某些实施例,所述方法还包括创建用于加工所述锥体的指令集。在一些实施例中,加工所述锥体包括术中加工所述锥体。

根据某些实施例,所述方法还包括将所述锥体的形状从所选择形状更新到修正形状;以及将被加工锥体加工成所述修正形状。

还提供一种制备用于翻修手术程序的定制锥体的方法。所述方法包括:在塑形夹具上提供具有标准化尺寸和形状的锥体坯料;由跟踪和导航系统基于所述锥体坯料的标准化尺寸和形状以及所述塑形夹具的一个或多个配准特征确定所述锥体坯料的外部尺寸;由所述跟踪和导航系统确定切割装置的位置;以及向所述切割装置提供一个或多个操作指令以将所述锥体坯料塑造成所述定制锥体。在一些实施例中,所述方法还包括通过使用具有多个光学跟踪器的已配准探头识别所述塑形夹具上的一组基准点来对所述塑形夹具上的所述一个或多个配准特征进行配准。

根据某些实施例,提供一个或多个操作指令包括由与所述跟踪和导航系统可操作通信的控制系统基于所述切割装置的位置和所述定制锥体形状控制所述切割装置的操作。在一些实施例中,控制所述切割装置的操作包括无线控制所述切割装置的操作。

根据某些实施例,所述切割装置是手持式切割装置。根据某些实施例,所述切割装置包括多个光学跟踪器。

另外,提供一种制备用于翻修手术程序的定制锥体的方法。所述方法包括:在塑形夹具上提供具有标准化尺寸和形状的锥体坯料;确定所述定制锥体的最小锥体体积;由跟踪和导航系统确定所述锥体坯料的定位;由所述跟踪和导航系统确定切割装置的定位,其中,所述切割装置包括切割元件;以及当所述切割装置的切割元件位于所述锥体坯料的最小锥体体积周围的可移除锥体材料内时,使所述切割装置操作所述切割元件。

根据某些实施例,确定所述定制锥体的最小锥体体积包括产生所述锥体坯料的三维模型,所述三维模型包括由所述可移除锥体材料围绕的最小锥体体积。

根据某些实施例,确定最小锥体体积包括:确定植入腔的形状;以及至少基于所确定的所述植入腔的形状选择所述最小锥体值的形状和位置。

根据某些实施例,确定所述锥体坯料的定位包括通过使用具有多个光学跟踪器的已配准探头识别所述塑形夹具上的一组基准点来对所述塑形夹具上的一个或多个配准特征进行配准。

根据某些实施例,确定切割装置的定位包括识别与所述切割装置相关联的多个光学跟踪器中的每一个光学跟踪器的定位。

提供了一种用于术中增强植入物的系统。所述系统包括切割装置、跟踪和导航系统以及控制系统。所述切割装置包括通信系统、切割元件和多个光学跟踪器。所述跟踪和导航系统被配置成检测一个或多个光学跟踪器的定位。所述控制系统与所述跟踪和导航系统以及所述切割装置可操作地通信。所述控制系统被配置成:使所述跟踪和导航系统通过识别与所述切割装置相关联的所述多个光学跟踪器的定位,检测所述切割装置的定位;确定植入腔的修正形状;当所述跟踪和导航系统识别所述切割元件定位在所述植入腔内时,使所述切割装置将所述植入腔切割成所述修正形状;至少基于所确定的所述植入腔的形状选择锥体的形状;以及当所述跟踪和导航系统识别所述切割元件邻近所述锥体坯料定位时,使所述切割装置将锥体坯料加工成所选择形状。

根据某些实施例,所述切割装置的通信系统包括无线通信系统。根据某些实施例,所述切割装置的切割元件包括旋转锉。

根据某些实施例,所述系统还可以包括探头和塑形夹具。所述探头包括多个光学跟踪器。所述塑形夹具包括多个配准点。在此类实施例中,所述控制系统还被配置成通过以下操作确定所述塑形夹具的定位:指导用户将所述探头放置在所述多个配准点中的每一个上,以及对于每个配准点,使所述跟踪和导航系统检测与所述探头相关联的所述多个光学跟踪器的定位。

附图说明

并入本说明书中且形成本说明书的一部分的附图说明本公开的实施例,且连同书面描述一起用于解释本公开的原理、特性和特征。在附图中:

图1描绘了根据实施例图示用于向手术工具提供导航和控制的系统的框图。

图2描绘了根据实施例图示在手术程序期间操作系统以供导航和控制的环境的图。

图3描绘了根据实施例的关节翻修手术的示例性流程图,其包括创建患者特异性增强锥体。

图4描绘了根据实施例的创建患者特异性锥体的示例性流程图。

图5a和图5b描绘了根据实施例用于创建患者特异性锥体的锥体坯料和塑形夹具。

图6描绘了根据实施例用于创建患者特异性锥体的虚拟映射。

具体实施方式

本公开不限于所描述的特定系统、装置和方法,因为这些系统可以变化。描述中使用的术语仅用于描述特定版本或实施例的目的,而不旨在限制范围。

如本文件中所使用,除非上下文另外明确规定,否则单数形式“一个”、“一种”和“该/所述”包括复数指代。除非另有定义,否则本文所使用的所有科技术语具有与本领域普通技术人员通常所理解的相同含义。本公开中的任何内容均不应被解释为承认本公开中描述的实施例由于在前发明而无权把本公开的日期提前。如本文件中所使用,术语“包括”意指“包括但不限于”。

出于本公开的目的,术语“植入物”用于指被制造成永久地或试验性地置换或增强生物结构的假体装置或结构。例如,在膝关节置换程序中,可以将植入物置于胫骨和股骨中的一者或两者上。虽然术语“植入物”通常被认为表示人造结构(与移植形成对比),但是出于本说明书的目的,植入物可包括移植以置换或增强生物结构的生物组织或材料。

类似地,如本文中所使用,术语“锥体”是指在翻修手术期间使用的锥体、套筒或其它类似增强件以用于在程序期间建立植入部件的稳定结构。锥体至少部分地由手术安全且稳定的材料构成,例如多孔钽、多孔钛、和/或钛合金,并且通常尺寸和形状被制成以抵消在关节翻修手术期间传统上遇到的各种骨缺损。在某些实施方式中,锥体可具有诸如羟基磷灰石以促进骨生长的涂层。

下文所描述的本教导的实施例并不意图为详尽性的或将教导限制于以下详细描述中所公开的精确形式。而是选择并描述了实施例,使得所属领域的技术人员可了解并理解本教导的原理和实践。

本公开描述了针对患者特异性膝关节翻修手术的锥体和类似增强件的术中更改。在手术程序期间,可基于由计算机辅助机器人手术系统提供的反馈来改变锥体。例如,与计算机辅助机器人手术系统相关联的跟踪和导航系统可以被配置成映射患者骨骼的表面。具体地,在翻修手术期间,可以通过追踪或以其他方式将跟踪的手术探头的尖端在缺损骨骼的表面周围移动,指示外科医生涂绘缺损区域的表面,例如在现有植入腔内。跟踪系统然后可以创建缺损骨骼表面的虚拟映射。

根据此虚拟映射,与先前识别的解剖标志结合,手术系统可确定针对缺损区域的最佳锥体形状。另外或替代地,手术系统还可以向外科医生提供切除缺损区域中骨骼的特定部分的指令。基于此最佳锥体形状,手术系统可生成用于形成患者特异性定制锥体的一组指令。这些指令可以由外科医生使用手持式切割装置,或者由独立切割或铣削装置,例如车床、磨机、计算机数字控制(cnc)机器或其他类似的切割或铣削装置来执行。类似地,可使用三维(3d)打印技术由手术安全材料制造锥体。

上面描述公开的跟踪系统特别适用于利用手术导航系统(例如手术导航系统)的手术程序。此类程序可包括膝关节置换翻修手术。navio是宾夕法尼亚州匹兹堡的bluebelttechnologies,inc.的注册商标。

手术导航系统可以实现为机器人辅助手术导航系统,其能够跟踪特定患者的关节的挠曲和伸展。所述系统可提供关于关节对准的反馈以辅助关节平衡。在各种实施例中,所述系统可以使用一系列被动光学跟踪器来在关节置换程序期间监测和跟踪患者。例如,在tka期间,可以将光学跟踪器固定到股骨和胫骨,以跟踪膝关节的运动。如上所述,手持式探头可用于通过在表面周围拖曳或以其他方式移动探头在表面上限定多个点来涂绘表面,限定胫骨-股骨铰接表面的近似形状。

图1是根据示例性实施例描绘用于向手术工具130提供导航和控制的系统100的框图。例如,系统100可包括控制系统110、跟踪系统120和手术工具130。在一些实施方案中,系统100还可以包括显示装置140和数据库150。在一个实例中,这些部件可以组合以在矫形外科(或类似)假体植入手术期间提供手术工具130的导航和控制。

控制系统110可包括一个或多个计算装置,所述一个或多个计算装置被配置成协调从跟踪系统120接收的信息并且向手术工具130提供控制。在一个实例中,控制系统110可包括规划模块112、导航模块114、控制模块116和通信接口118。规划模块112可提供术前规划服务,其使临床医生能够在进入手术室之前虚拟地规划程序。背景技术讨论了用在全膝关节置换中的各种术前规划程序,其可以用在手术机器人辅助关节置换程序中。

在例如tka的实例中,规划模块112可以用于参照虚拟植入物宿主模型操纵植入物的虚拟模型。植入物宿主模型可以由目标患者的实际扫描构造,例如关节和周围结构的计算机断层扫描(ct)、磁共振成像(mri)、正电子发射断层摄影(pet)或超声扫描。替代地,可通过基于患者测量值或其它临床医师选择的输入从模型群组选择预定义植入物宿主模型来执行术前规划。在某些实例中,通过测量患者的(目标植入物宿主的)实际解剖结构在术中细化术前规划。在一个实例中,连接到跟踪系统120的点探头可用于测量目标植入物宿主的实际解剖结构。

在一个实例中,导航模块114可协调跟踪植入物、植入物宿主和手术工具130的定位和取向。在某些实例中,导航模块114还可协调跟踪在规划模块112内的术前规划期间使用的虚拟模型。跟踪虚拟模型可以包括这样的操作,例如通过经由跟踪系统120获得的数据将虚拟模型与植入物宿主对准。在这些实例中,导航模块114从跟踪系统120接收关于手术工具130和植入物宿主的物理定位和取向的输入。植入物宿主的跟踪可包括跟踪多个个别骨结构。例如,跟踪系统120可以使用锚定到个别骨骼的跟踪装置在tka程序期间单独地跟踪股骨和胫骨。

在一个实例中,控制模块116可处理由导航模块114提供的信息以产生用于控制手术工具130的控制信号。在某些实例中,控制模块116还可以与导航模块114一起工作以产生视觉动画,以在手术程序期间帮助外科医生。可以通过显示装置,例如显示装置140显示视觉动画。在一个实例中,视觉动画可以包括植入物、植入物宿主和手术工具130等的实时3-d表示。在某些实例中,视觉动画进行颜色编码以进一步帮助外科医生定位和定向植入物。

在一个实例中,通信接口118促进控制系统110与外部系统和装置之间的通信。通信接口118可包括有线和无线通信接口,例如以太网、ieee802.11无线或蓝牙等。如图1中所示,在此实例中,经由通信接口118连接的主要外部系统包括跟踪系统120和手术工具130。尽管未示出,但数据库150和显示装置140连同其它装置也可经由通信接口118连接到控制系统110。在一个实例中,通信接口118通过内部总线与控制系统110内的其它模块和硬件系统通信。

在一个实例中,跟踪系统120为手术装置和植入物宿主的解剖结构的部分提供定位和取向信息,以辅助半主动机器人手术装置的导航和控制。跟踪系统120可包括跟踪器,其包括或另外提供基于至少三个位置和至少三个角度的跟踪数据。跟踪器可包括与植入物宿主相关联的一个或多个第一跟踪标记和与手术装置(例如,手术工具130)相关联的一个或多个第二标记。标记或标记中的一些可以是红外源、射频(rf)源、超声源和/或发射器中的一者或多者。跟踪系统120因此可以是红外跟踪系统、光学跟踪系统、超声跟踪系统、惯性跟踪系统、有线系统和/或rf跟踪系统。一种说明性跟踪系统可以是本文所述的3-d运动和位置测量和跟踪系统,但所属领域的技术人员将认识到,可使用其他准确性和/或辨率的其他跟踪系统。optotrak是加拿大安大略省滑铁卢市的northerndigitalinc.公司的注册商标。

图2是根据示例性实施例示出用于操作系统200的环境的图,该系统用于手术工具(例如,如关于图1所描述的手术工具130)的导航和控制。在一个实例中,系统200可包括这样的部件,其类似于上文参考系统100所论述的部件。例如,系统200可包括控制系统110、跟踪系统120和一个或多个显示装置,例如显示装置140a和140b。系统200还示出了植入物宿主10、跟踪标记160、162和164和脚控制器170。

在一个实例中,跟踪标记160、162和164可以由跟踪系统120使用以跟踪植入物宿主10、一个或多个手术工具(包括例如类似的跟踪标记)和参照,例如操作台(跟踪标记164)的定位和取向。在此实例中,跟踪系统120使用光学跟踪来监测跟踪标记160、162和164的定位和取向。跟踪标记160、162和164中的每一个包括三个或更多个跟踪球,其提供容易处理的目标以确定多达六个自由度的定位和取向。跟踪系统120可以经过校准,以提供局部的3-d坐标系,在该坐标系内,可以对植入物宿主10和一个或多个手术工具进行空间跟踪。例如,只要跟踪系统120可以对在跟踪标记(例如跟踪标记160)上的跟踪球体中的三个成像,跟踪系统120就可以利用图像处理算法在3d坐标系内生成点。随后,跟踪系统120(或控制系统110内的导航模块114(图1))可使用3个点三角测量与跟踪标记附着到的物品(例如植入物宿主10或手术工具)关联的3-d位置和取向。一旦手术工具的精确定位和取向已知,系统200就可以使用手术工具的已知特性来精确地计算手术工具相对于植入物宿主10的位置和取向。

如上所述,在关节翻修手术期间,可以将锥体插入腔中以校正任何骨缺损。锥体可用于增强骨皮质,填充空隙,填充由于移除现有植入物部件产生的空隙,和/或对胫骨板或股骨植入物提供足够的支撑。现有技术包括顺序去除骨材料并且试配锥体。最终的锥体放置通过压紧来实现。然而,传统的骨制备通常留下要用移植材料填充的间隙和空隙。使用本文所教导的技术,外科医生可以准确地绘制待由锥体填充的植入腔并且创建具有患者特异性的定制锥体。不使用标准化尺寸和形状的锥体(其需要由外科医生精确塑造),如本文所教导的定制锥体在植入腔内提供高度精确且紧密的配合(例如,大于锥体与现有骨骼之间接触的75%),从而增加翻修手术之后的关节的稳定性。提供更准确且紧密的配合有很多益处。例如,与移植骨骼相比,现有骨骼具有已建立的血液供应,移植骨骼具有与现有骨骼不结合的风险。另外,现有骨骼改善了翻修植入物的初始稳定性和固定。

图3示出了用于在膝关节翻修手术期间创建定制锥体的示例性过程。应当注意,出于讨论目的,仅作为实例在本文中描述了膝关节置换翻修程序。本文所述的技术可以应用于任何关节植入物翻修程序。

在某些实施方式中,在用计算机辅助机器人手术系统(诸如本文所述的那些)进行手术期间,可通过可操作地连接到手术系统的触摸屏监视器引导外科医生通过该程序。监视器可显示骨模型,所述骨模型表示例如患者的股骨和胫骨、内翻/外翻变形、被跟踪仪器的位置、以及与手术程序有关的其他信息。

如图3所示,手术系统可以在膝关节翻修手术期间限定305用于跟踪和导航系统的坐标系。如上所述,外科医生可以在手术程序期间将光学跟踪器附接到患者身上的各种位置,诸如患者的股骨和胫骨。外科医生可以使用已配准探头(例如,探头具有跟踪系统已知的尺寸和形状),其具有一组附接或集成的光学跟踪器,以识别患者身上的一组基准点。跟踪系统可使用探头上的光学标记、患者身上的光学标记和基准点的定位以限定305坐标系和坐标系内的各种光学标记。一旦限定305,跟踪系统就可以在光学标记通过坐标系时准确地跟踪任何光学标记,无论其附接到患者还是在程序期间使用的手术工具。

外科医生然后可以移除310现有的植入物。为了移除310植入物,外科医生可切割或移除各种软组织以提供对现有植入物的接入。在移除310植入物后,外科医生可以评估植入腔并且如果需要,使用切割工具,诸如具有切割锉的手持式旋转装置,以重塑312腔体。

在某些程序中,执行两阶段膝关节翻修。例如,如果经历翻修手术的膝关节包括大的感染区,则在第一阶段中治疗感染的同时,现有植入物可以被移除并用临时性装置(例如接合剂间隔物或暂时性关节融合术)替换。可以在几周后进行(取决于感染的根除)第二阶段。在第二阶段,可以移除310临时性装置,并且过程如图3中所示的继续。

在移除310之后,外科医生接着可以使用探头或另一个被跟踪工具来追踪植入腔的表面。通过在外科医生追踪腔表面时监测探头的位置和取向,手术系统可以确定315植入腔的形状。例如,当外科医生正在追踪植入腔的表面时,跟踪系统可以连续地监测探头的位置和取向并记录探头尖端的位置。一旦跟踪系统具有足够量的位置信息,手术系统就可以从跟踪系统接收位置信息,并使用位置信息来映射或模拟腔的表面。通过映射或模拟表面信息,手术系统可通过识别表面信息内限定的负空间来确定315腔形状。

在某些实施方式中,手术系统可以通过在切除期间跟踪锉来映射腔体几何形状。例如,当外科医生正在使用锉来形成腔体时,跟踪系统可以跟踪旋转工具,并且通过扩展,跟踪锉来映射腔体的几何形状。在切除期间生成与骨形状和腔体相关的模型进一步在名称为“systemsandmethodsforplanningandperformingimagefreeimplantrevisionsurgery”的美国专利申请号14/955,742中描述,其内容以引用的方式并入本文。

手术系统还可以通过识别表面信息内限定的负空间来模拟320定制锥体形状和位置。然而,在某些实现方式中,定制锥体形状和位置可以不与腔体形状相同。例如,定制锥体的一部分可在腔上方延伸。类似地,取决于用于制造定制锥体的材料的物理特性,可改变锥体的大小。例如,如果定制锥体由可变形的材料制成,那么锥体可塑形成略微大于腔体,从而允许在插入到腔中时压迫锥体。因此,手术系统可基于定制锥体的预期用途和构造来模拟320锥体形状和位置。

在某些实施方式中,外科医生可在如上所述的触摸屏上观察定制锥体的形状和位置。取决于外科医生的偏好,或者在执行与特定手术程序相关的特定情况下,外科医生可以选择改变由手术系统模拟的定制锥体的大小或位置。手术系统可以响应于外科医生的改变而调整模拟的锥体形状和位置,并且模拟320更新的定制锥体形状和位置。还可提示外科医生同意更新的定制锥体形状和位置或提供额外的改变。

手术系统可创建325用于加工定制锥体的指令集。基于指令,可加工330定制锥体。在下面的图4-6的讨论中描述了与创建用于加工定制锥体的指令和定制锥体的实际加工有关的额外细节。

在定制锥体已经被加工330之后,外科医生可以将定制锥体试配335在植入腔中。外科医生可分析定制锥体的配合,并确定340植入物在翻修手术之后是否是稳定的。如果外科医生确定340已实现稳定性,那么外科医生可以继续安装345锥体和植入部件并继续翻修手术。相反,如果外科医生确定340稳定性尚未达成,那么外科医生可使用手术系统来更新定制锥体的设计。响应于更新的设计,手术系统可更新350加工指令,先前制造的定制锥体可被进一步加工,或可加工330新的定制锥体。

在某些实施方式中,可对定制锥体分析机器间隙和配合条件以适合使用的植入部件的优选尺寸和位置。例如,可分析所使用的植入部件的尺寸和类型,以及植入部件的其它特征(例如,内部几何形状、前股骨凸缘、胫骨翅片和半增强件),以确定定制锥体的间隙和配合条件。例如,名称为“anatomicallyshapedaugments”的国际公布号wo2016/183446,其内容通过引用并入本文中,教导了增强件,其具有经配置的形状以大体上符合待插入增强件和相关联植入物的腔体的形状。

因此,在一些实例中,翻修程序可包括确定针对每个骨骼的所有相对植入部件的所有定制锥体的大小和位置信息。例如,胫骨确定可以在程序早期进行,而股骨确定可以被执行以考虑由胫骨植入物的放置产生的任何平衡/定位需求。例如,此类确定可在创建325用于加工植入物的指令之前进行。

另外,在一些实施例中,可以执行强度分析和可行性分析,以基于定制锥体的可变内部几何形状和可变外部几何形状的组合来分析定制锥体的强度。此分析可例如在模拟320定制锥体之前执行。

图4示出如图3的论述中所描述的用于加工定制锥体的示例性过程。类似于图3,手术系统可基于从跟踪系统接收的信息来创建405虚拟锥体腔。手术系统可基于虚拟锥体腔确定410定制锥体尺寸和形状。

基于确定410的尺寸和形状,手术系统可创建415工具路径和/或用于加工定制锥体的指令。取决于用于定制锥体的加工的过程类型,工具路径和/或指令的创建415可相应地变化。

例如,如果定制锥体将由专用铣削或切割机加工,那么手术系统可以创建根据切割机的输入要求要创建的锥体的一组指令和/或3d表示。例如,如果切割机是cnc机,那么手术系统可创建3d模型文件,所述3d模型文件包括待创建的定制锥体的表示。3d文件可保存为例如.dwg、.dxf、.dgn、.stl或另一类似模型文件。手术系统可以向切割机发送420文件/指令,并且基于模型文件,切割机可以使用传统的切割技术来加工425定制锥体。

在另一实施方式中,外科医生可使用计算机辅助切割工具,例如旋转切割工具,从锥体坯料加工定制锥体。在这种实施方式中,手术系统可以监测430定制锥体的手动切割,并且在适当时,调节切割装置的操作。在下面对图5a、图5b和图6的讨论中提供了与外科医生手动创建定制锥体相关的额外细节。

图5a示出可在术中使用以手动塑造患者特异性定制锥体的塑形夹具500。如图5a中所示,锥体坯料505可附接到塑形夹具500。如上所述,每个锥体可以是每个患者的定制尺寸和形状。因此,每个锥体坯料505在任何切割或加工之前都可具有相同的初始尺寸。因此,当锥体坯料505附接到塑形夹具500时,跟踪和导航系统可确定锥体坯料505相对于塑形夹具500的外部尺寸。

例如,塑形夹具500可包括一系列配准点510。外科医生可使用探头或其它类似指向装置,以通过用例如被跟踪探头选择每个配准点510来将塑形夹具500与跟踪系统配准。跟踪系统可使用塑形夹具500的空间信息和锥体坯料505的尺寸信息以向切割装置(例如手持式旋转切割工具)提供操作指令。例如,如图5b所示,一旦锥形坯件505附接到成形夹具500,外科医生就可以使用跟踪的手持式切割工具来开始为患者塑造定制锥体。当跟踪系统结合(计算机辅助机器人手术系统的)导航和控制系统,跟踪切割工具的位置时,控制系统可控制切割工具的操作以确保切割工具仅从锥体坯料505移除适当的材料,从而创建定制锥体。

如上文在图3的讨论中所述,计算机辅助机器人手术系统可以在创建定制锥体时模拟锥体形状和尺寸。根据此信息,手术系统可创建定制锥体应必须配合患者的最小锥体体积。为了将指令和控制信号准确地提供至切割装置,以创建定制锥体,手术系统可将此最小锥体值插入或覆盖到锥体坯料的虚拟表示中或虚拟表示上以创建切割指令。

例如,如图6所示,可以创建锥体坯料600的数字表示。锥体坯料600可以包括待移除605的锥体材料的面积和用于定制锥体的最小锥体体积610。因此,当确定切割指令时,手术系统可以通过跟踪切割装置(例如,在锥体坯料安装在塑形夹具上时,诸如图5a和5b所示的塑形夹具500)并且在切割装置的切割表面处于待移除605的锥体材料内时,向切割装置提供电力,来命令切割装置移除可移除的锥形材料605。例如,可跟踪旋转工具,且可基于锉尖端相对于最小锥体体积610的位置来旋转、伸长或缩回锉尖端。在这样的实例中,外科医生可以在切割装置准确地且自动地移除锥体材料605时简单地追踪锥体坯料600的表面,使定制锥体的最小体积610未切割并且准备插入患者体内。

在一些实施方式中,用于创建定制锥体的切割工具可安装在机械臂上和/或由机械臂控制。例如,旋转工具可安装到被构造成模拟人手臂的移动的机械臂。手术系统可向机械臂提供指令以操纵旋转工具来自动切割定制锥体,从而减少或消除外科医生在定制锥体切割过程期间与切割工具的交互。

本文所述的技术提供了对关节植入物的改进翻修手术。通过创建定制锥体,翻修手术中植入部件的配合和稳定性可得到改善,从而使翻修手术后的患者满意度更高,并且翻修手术之间的时间更长。然而,本文所述的技术可用于其他手术技术,包括翻修手术的另外方法。

例如,不是加工定制锥体以配合植入腔,如本文中所描述的自动追踪和工具操作技术可用于帮助外科医生准备植入腔以接收不需要任何术中更改的预制锥体。类似地,可基于诸如x射线或mri数据的成像数据在手术程序之前为患者创建半定制锥体。可基于翻修手术期间患者的需求来近似半定制锥体的尺寸。手术系统可以帮助外科医生在翻修手术期间将植入腔塑造成适当的尺寸和形状,以接收半定制锥体。

在以上详细描述中,参考形成其一部分的附图。在附图中,除非上下文另外规定,类似符号通常标识类似的部件。在详细描述、附图和权利要求书中描述的说明性实施例并不意味着是限制性的。可以使用其它实施例,并且可以在不脱离本文所呈现的主题的精神或范围的情况下进行其它改变。容易理解的是,本公开的各种特征(如本文大体上描述并在附图中图示的)可以被布置、取代、组合、分离和设计成各种各样的不同构型,这些构型全部在本文中明确设想。

本公开不限于本申请中所描述的特定实施例方面,其旨在作为各种特征的说明。在不脱离本领域技术人员显然明白的精神和范围的情况下,可以进行许多修改和变化。根据前述描述,本公开的范围内的功能等效方法和设备(除本文中所列举的那些之外)对于本领域技术人员将显而易见。此类修改和变化意图落在所附权利要求书的范围内。本公开将仅受所附权利要求书的措词以及这些权利要求书有资格享有的等效物的完整范围限制。应当理解,本公开不限于特定的方法、试剂、化合物、组合物或生物系统,其当然可以变化。还应理解,本文中所使用的术语仅用于描述特定实施例的目的,而不意图是限制性的。

关于本文中基本上任何复数和/或单数术语的使用,本领域技术人员可以根据上下文和/或应用酌情从复数转换成单数和/或从单数转换为复数。为了清楚起见,各种单数/复数排列可在本文中明确阐述。

本领域内的技术人员应理解,一般来说,本文中且尤其在所附权利要求(例如,所附权利要求书的主体)中所使用的术语通常意图为“开放性”术语(例如,术语“包括”应解释为“包括但不限于”,术语“具有”应解释为“至少具有”,术语“包括”应解释为“包括但不限于”等等)。虽然各种组合物、方法和装置按照“包括”各种部件或步骤(解释为意为“包括但不限于”)描述,但组合物、方法和装置还可“基本上由各种部件和步骤组成”或“由各种部件和步骤组成”,并且此类术语应解释为定义基本上封闭的构件组。本领域技术人员还将理解,如果意图是特定数目的所引出的权利要求叙述物,那么在权利要求书中将明确详述此类意图,且在不存在此类详述时不存在此类意图。

例如,为了帮助理解,以下所附权利要求书可以包含使用介绍性短语“至少一个”和“一个或多个”来引出权利要求叙述物。然而,使用此类短语不应被解释为暗示由不定冠词“一(a/an)”引出的权利要求叙述物将包含此类引出的权利要求叙述物的任何特定权利要求限制到只包含这种叙述物的实施例,即使当同一权利要求包括介绍性短语“一个或多个”或“至少一个”时和诸如“一”的不定冠词时(例如,“一”应解释为意指“至少一个”或“一个或多个”);这同样适用于使用定冠词用于引出权利要求叙述物。

另外,即使明确叙述了特定数目的所引出权利要求叙述物,所属领域的技术人员将认识到,此类叙述应解释为意指至少所叙述的数字(例如,无其它修饰词只叙述“两个叙述物”,意味着至少两个叙述物或两个或更多个叙述物)。此外,在使用类似于“a、b和c中的至少一个”的用语的那些情况下,一般来说,这种构造意在本领域技术人员将理解该用语的意义(例如,“具有a、b和c中的至少一个的系统”将包括但不限于只具有a、只具有b、只具有c、一起具有a和b、一起具有a和c、一起具有b和c和/或一起具有a、b和c的系统,等等)。在使用类似于“a、b或c中的至少一个等等”的用语的那些情况下,一般来说,这种构造意在本领域技术人员将理解该用语的意义(例如,“具有a、b或c中的至少一个的系统”将包括但不限于只具有a、只具有b、只具有c、一起具有a和b、一起具有a和c、一起具有b和c和/或一起具有a、b和c的系统,等等)。本领域技术人员还将理解,不管在说明书、权利要求书或者附图中,呈现两个或更多个替代术语的几乎任何转折词和/或短语都应理解为考虑了包括术语之一、术语中任一个或两个术语的可能性。例如,短语“a或b”将理解为包括“a”或“b”或“a和b”的可能性。

另外,在根据马库什组描述本公开的特征的情况下,本领域的技术人员将认识到,本公开还根据马库什组的任何个别成员或成员的子组描述。

本领域技术人员将理解,出于任何和所有目的,例如就提供书面描述而言,本文公开的所有范围还涵盖任何可能的子范围和所有可能的子范围及其子范围的组合。任何列出的范围可被容易地认为是充分描述并且实现分解为至少相等的二分之一、三分之一、四分之一、五分之一、十分之一等等的相同范围。作为非限制性实例,本文中论述的每个范围可以容易地分解为下三分之一、中三分之一和上三分之一等等。本领域技术人员还将理解,诸如“高达”、“至少”等的所有语言包括叙述的数字,并且指可以随后如上所述分解成子范围的范围。最后,所属领域的技术人员将理解,范围包括每个个别成员。因此,例如,具有1-3个细胞的基团是指具有1、2或3个细胞的基团。类似地,具有1-5个细胞的基团是指具有1、2、3、4或5个细胞的基团,诸如此类。

以上公开的各种特征和功能以及其替代方案可以组合成许多其它不同的系统或应用。本领域的技术人员随后可以进行各种目前不可预见或非预期的替代方案、修改、变化或改进,其中每一个也旨在由所公开的实施例涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1