一种微环境响应型成骨细胞靶向载药纳米粒子及其制备方法和应用与流程

文档序号:23655157发布日期:2021-01-15 13:52阅读:298来源:国知局
一种微环境响应型成骨细胞靶向载药纳米粒子及其制备方法和应用与流程

本发明涉及靶向给药技术领域,特别是涉及一种微环境响应型成骨细胞靶向载药纳米粒子及其制备方法和应用。



背景技术:

成骨细胞(osteoblast)由间充质干细胞分化形成,能特异性分泌多种生物活性物质,促进新骨形成,调控机体内成骨及破骨的功能平衡,维持骨稳态(homeostasis)。

成骨细胞的功能活性,对加速骨缺损的修复以及骨质疏松治疗具有重要的意义,因此,通过药物增强细胞的分化活性成为了治疗上述疾病的主要手段。传统的给药方式主要通过口服或局部组织工程支架释放具有促进细胞成骨分化的生物活性分子,如骨形成蛋白(bmp)、甲状旁腺素(pth)等。然而,上述药物靶向性较差:浓度低时,空间靶向性低使得药物难以富集到成骨细胞上发挥作用;浓度高时,时间靶向性低使得药物持续作用于增强成骨,破坏机体骨稳态,引起负反馈等机制,降低药物效率,引起毒副作用。

开发具有高时空靶向性的载体材料,对于增强现有活性分子治疗骨质疏松及骨缺损,具有重要的意义。



技术实现要素:

本发明的目的是针对现有技术中存在的促进细胞成骨分化的生物活性分子靶向性较差的问题,而提供一种微环境响应型成骨细胞靶向载药纳米粒子。

本发明的另一个目的是提供所述微环境响应型成骨细胞靶向载药纳米粒子的制备方法。

本发明的另一个目的是提供所述微环境响应型成骨细胞靶向载药纳米粒子的应用。

为实现本发明的目的所采用的技术方案是:

一种ph响应纳米粒子,包括位于核心的上转化纳米粒子、修饰在所述纳米粒子表面用于载药的柱芳烃、以及连接于所述柱芳烃上位于最外层的门控结构,所述门控结构包括具有ph响应能力的磷酰基团。

在上述技术方案中,所述门控结构为磷酰基聚合物。

在上述技术方案中,所述ph响应载药纳米粒子的粒径为20-50nm。这一粒径范围与成骨细胞的尺寸匹配,能够更好的作用于成骨细胞。

在上述技术方案中,所述柱芳烃通过主客体交换连接在位于核心的纳米粒子上,具有五边型柱状结构,以利用静电力加载药物,所述五边型柱状结构的外侧通过主客体交换连接磷酰基团作为门控结构。

本发明的另一方面,所述ph响应纳米粒子作为响应成骨弱碱性微环境的药物载体的应用。

本发明的另一方面,一种成骨弱碱性微环境响应型载药纳米粒子,包括所述ph响应纳米粒子和负载于所述ph响应纳米粒子上的多巴胺。

在上述技术方案中,利用物理吸附技术,使多巴胺与柱芳烃间形成静电力,实现药物加载。

本发明的另一方面,所述成骨弱碱性微环境响应型载药纳米粒子在促进新骨形成、加速骨缺损修复的应用。

在上述技术方案中,所述成骨弱碱性微环境响应型载药纳米粒子应用于制备促进骨缺损修复靶向药物,或制备骨质疏松的靶向药物。

本发明的另一方面,一种复合载药材料,包括宏观载体材料和加载于所述宏观载体材料上的所述成骨弱碱性微环境响应型载药纳米粒子。

在上述技术方案中,所述宏观载体材料为水凝胶或同轴电纺丝。

本发明的另一方面,一种成骨弱碱性微环境响应型载药纳米粒子的制备方法,包括以下步骤:

步骤1,运用主客体交换技术,在上转化粒子的表面连接具有多边形结构的柱芳烃,以获得载药功能;

步骤2,利用配体交换技术,将步骤1得到的上转化粒子表面柱芳烃末端氢离子替换为碱性敏感的磷酰基聚合物,得到响应成骨弱碱性微环境释药的门控结构;

步骤3,利用物理吸附技术,将多巴胺混合至步骤2中合成的纳米粒子中,使多巴胺与柱芳烃间形成静电力,实现药物加载。

与现有技术相比,本发明的有益效果是:

1.本发明制备得到的载药纳米粒子为ph响应载药纳米粒子,能够有效响应成骨细胞微环境ph的变化,在成骨活跃期,处于细胞外弱碱性环境的纳米粒子,通过释放多巴胺直接作用于微环境内成骨细胞表面,从而实现时空特异性控释药物,增强对成骨细胞的靶向性。

2.本发明制备得到的载药纳米粒子所使用的材料均具有良好的生物安全性,多巴胺作为一种内源性生物小分子细胞毒性小,因此具有良好的临床应用前景。

3.载药纳米粒子的核心上转化纳米粒子具有良好的光学性能,在近红外光的照射下,可以在明场下观察示踪。柱芳烃形成的外层结构降低了核心上转化纳米粒子的光强,进行磷酰化门控结构改性后,载药纳米粒子在碱性条件下分散性增强,还具有光强增加的特性。

附图说明

图1中(a)是pyp5-ucnps的透射电镜图,(b)是pyp5-ucnps的紫外可见光谱图。

图2是pyp5-ucnps于不同ph的溶剂中粒子的分布性能。

图3是pyp5-ucnps@da的元素分析。

图4是hplc检测得到的pyp5-ucnps@da在不同ph条件下多巴胺的释放量。

图5是p5-ucnps、pyp5-ucnps、pyp5-ucnps@da的生物安全性实验结果。

图6中(a)是p5-ucnps、pyp5-ucnps、pyp5-ucnps@da细胞增殖抑制验证,(b)是p5-ucnps、pyp5-ucnps、pyp5-ucnps@da对间充质干细胞的成骨活性的影响。

图7是plla、plla@p5-ucnps、plla@pyp5-ucnps、plla@pyp5-ucnps@da的表面粗糙度。

图8是plla、plla@p5-ucnps、plla@pyp5-ucnps、plla@pyp5-ucnps@da的亲水性验证。

图9是荧光显微镜观察在plla、plla@p5-ucnps、plla@pyp5-ucnps、plla@pyp5-ucnps@da的作用下,各组细胞在不同时间点上的伸展情况。

图10是plla、plla@p5-ucnps、plla@pyp5-ucnps、plla@pyp5-ucnps@da对小鼠颅骨缺损的修复效果。

具体实施方式

以下结合具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

实施例1

上转化纳米粒子-柱[5]芳烃自组装聚合物的制备的合成:取50mg上转化纳米粒子(ucnps)分散到15ml75%乙醇溶剂中,加入10ml含100mg柱[5]芳烃(p5)的水。室温下搅拌5分钟,使ucnps与p5间发生主客体交换,形成自组装聚合物,8000rpm离心5分钟,收集沉淀。去离子水与乙醇先后洗涤沉淀物3次,去除多余未结合原料,储存粒子(p5-ucnps)待用。

实施例2

ph响应型纳米粒子的合成:取50mg上转化纳米粒子(ucnps)分散到15ml75%乙醇溶剂中,加入10ml含100mg柱[5]芳烃(p5)的水。室温下搅拌5分钟,使ucnps与p5间发生主客体交换,形成自组装聚合物,8000rpm离心5分钟,收集沉淀。去离子水与乙醇先后洗涤沉淀物3次,去除多余未结合原料,储存于去离子水中(p5-ucnps)待用。

将含有磷酰基团(py-)的20mg磷酸溶于10ml水中,取上述步骤合成的p5-ucnps10ml与之共混。室温下,通过磁力搅拌24小时,使py在配体交换的作用下,充分替换p5末端的氢离子,充分洗涤,去除多余未结合原料,形成柱芳烃的ph响应门控结构,合成ph响应型纳米粒子(pyp5-ucnps)。

通过透射电镜观察pyp5-ucnps形态及直径,紫外可见光谱检测pyp5-ucnps的光学特征峰,结果如图1所示,新合成纳米粒子的粒径在20-50nm(a),且改性后仍维持上转化粒子的光谱特征(b)。

溶解pyp5-ucnps于不同ph条件下的溶剂中,观察粒子的分布性能,结果如图2所示,弱碱性微环境增强了粒子在水溶液中的分散性。

实施例3

ph响应型载多巴胺纳米粒子的合成:取50mg上转化纳米粒子(ucnps)分散到15ml75%乙醇溶剂中,加入10ml含100mg柱[5]芳烃(p5)的水。室温下搅拌5分钟,使ucnps与p5间发生主客体交换,形成自组装聚合物,8000rpm离心5分钟,收集沉淀。去离子水与乙醇先后洗涤沉淀物3次,去除多余未结合原料,储存于去离子水中(p5-ucnps)待用。

将含有磷酰基团(py-)的20mg磷酸溶于10ml水中,取上述步骤合成的p5-ucnps10ml与之共混。室温下,通过磁力搅拌24小时,使py在配体交换的作用下,充分替换p5末端的氢离子,充分洗涤,去除多余未结合原料,形成柱芳烃的ph响应门控结构,合成ph响应型纳米粒子(pyp5-ucnps)。

将1μmol/l的多巴胺(da)溶解于20ml去离子水中,取10ml上步合成的pyp5-ucnps水溶液共混,100℃条件下,磁力搅拌12小时,使da通过静电力吸附到柱芳烃内部,洗涤去除未吸附的多巴胺,合成ph响应型载多巴胺纳米粒子(pyp5-ucnps@da)。

通过stem-edx对纳米粒子内的元素组成进行分析,结果如图3所示,代表磷酰基复合物的磷元素(p)及代表多巴胺的氮元素(n)均匀分布在代表上转化粒子的钇(y)元素周围,hplc检测粒子在不同ph条件下,多巴胺的释放量,结果如图4所示,在ph=8.5的弱碱性条件下,多巴胺的释放量显著增加。

应用例1

ph响应型载多巴胺纳米粒子(pyp5-ucnps@da)用于促进间充质干细胞成骨分化。

①不同纳米粒子对人骨髓间充质干细胞的毒性影响

在24孔板接种密度为10000细胞/毫升的人骨髓间充质干细胞,使用ph=8.5的含10%胎牛血清α-mem在37℃,5%co2的培养箱中培养。分别添加不同实施例中的纳米粒子,常规培养7天后,使用活死细胞染色试剂盒(凯基生物,中国)检测各组材料的细胞毒性。根据说明书取10μl1%calcein-am储存液与15μlpl储存液在常温下加入到4.975μl的pbs中,配置成染色液待用。吸净培养基,pbs溶液洗涤3次,每孔加入150μl染液避光孵育15分钟后再次使用pb洗涤3次。在荧光显微镜下,选择波长为490nm的激发光观察并拍照绿色活细胞,再选择波长为545nm的激发光观察并拍照红色死细胞,利用自带软件进行图像融合。结果如图5所示,上述实施例中合成的各组纳米粒子均显示了良好的生物安全性。

②不同纳米粒子对人骨髓间充质干细胞增殖及成骨向分化的影响

在24孔板接种密度为10000细胞/毫升的人骨髓间充质干细胞,使用ph=8.5的含10%胎牛血清α-mem在37℃,5%co2的培养箱中培养。分别添加不同实施例中的纳米粒子,于接种后的第1、4、7天分别吸去各组细胞的培养基,添加cck8溶液共混孵育2小时后,在酶标仪读取各组实施例的吸光度,如图6(a)所示,结果显示与不添加纳米粒子的对照组相比,添加各组实施例对细胞增殖无显著抑制作用;进一步收集7天时,添加各实施例分组的总蛋白,使用碱性磷酸酶定量试剂盒检测各组的成骨活性,结果如图6(b)所示,显示添加实施例3的分组,间充质干细胞的成骨活性被显著增强。

应用例2

使用聚乳酸电纺丝加载ph响应型载多巴胺纳米粒子(plla@pyp5-ucnps@da),作为植入材料用于骨缺损的修复

①利用聚乳酸同轴电纺实施例1、2、3中的纳米粒子,检测纺丝理化性能

利用乙醇、六氟异丙醇以及二氯甲烷按照体积分数2:2:5的剂量制备混合溶剂,对于空白对照组(plla)电纺丝溶液的制备是将1g聚乳酸(plla)溶解到6g上述制备的溶剂中;加载实施例1组的电纺丝溶液的制备是将9mgp5-ucnps与1gplla直接溶解到6g上述混合溶剂中;加载实施例2组的电纺丝溶液是将12mgpyp5-ucnps与1gplla直接溶解到6g上述混合溶剂中;加载实施例3组的电纺丝溶液是将12.6mgpyp5-ucnps@da与1gplla直接溶解到6g上述混合溶剂中。使用20kv的纺丝电压,0.5ml/h的推进速度以及纺丝距离15cm的参数制备电纺丝。将各组纺丝置于3d光学显微镜(3d-opt)下观察,如图7所示,各组纺丝的表面粗糙度无显著差异;接触角仪(wca)观察纺丝的亲水性,如图8所示,加载实施例2与3中的纳米粒子,显著增强了纺丝的亲水性。

②不同电纺丝对人骨髓间充质干细胞粘附的影响

在弱碱性ph条件下(ph=8.5),将①中合成加载不同实施例的电纺丝平铺于24孔板底部,常规接种人骨髓间充质干细胞,于接种后6、12、24小时收集细胞,多聚甲醛固定后进行免疫荧光染色,使用荧光显微镜观察各组细胞在不同时间点上的伸展情况,结果如图9所示,加载实施例3的电纺丝可以在弱碱性环境下释放多巴胺,增强干细胞在材料表面早期定植的能力。

③不同电纺丝对小鼠颅骨缺损的修复效果

将①中合成加载不同实施例的电纺丝植入到小鼠颅骨缺损的动物模型中。模型常规选用spf级小鼠,在颅中缝两侧制备一个直径为2mm的圆形缺损区;将电纺丝裁剪至匹配的尺寸后,植入缺损区;于术后骨修复8周后,分别收集不同分组小鼠的颅骨,通过micro-ct对缺损区的修复效果进行扫描,结果如图10所示。植入包含微环境响应型纳米粒子(pyp5-ucnps@da)的电纺丝可以显著增加缺损区的骨体积分数,骨小梁更加粗壮且分布致密,加速了骨缺损修复的速度及质量。

以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1