一种基于氧化锌纳米棒结构的织物基底压电传感器及其制备方法与流程

文档序号:24530426发布日期:2021-04-02 10:09阅读:197来源:国知局
一种基于氧化锌纳米棒结构的织物基底压电传感器及其制备方法与流程

本发明属于一种功能纳米材料传感器,尤其涉及基于氧化锌纳米棒结构的织物基底压电传感器及其制备方法。



背景技术:

随着智能可穿戴技术的快速发展,人们对于高柔性、舒适、轻便的智能监测设备的提出了更高的要求,因此基于织物纺织品类的的智能可穿戴设备受到了越来越多人的喜爱。伴随着全球能源消耗危机,寻求可再生资源和绿色资源成为了可持续发展的亟待解决的难题。同时现存供电设备体积较大,寿命较短的问题影响了其在可穿戴设备上的应用。因此,能够将各种形式的环境的机械能转换成电能实现自身供电,为可穿戴自发电技术提供了一条可行的方案。

公开号为cn107815851a的专利公布了一种基于氧化锌纳米棒功能棉织物的生物传感器,该制备方法采用在经过牛血清蛋白(bsa)改性的棉织物高温水热釜中生长氧化锌纳米棒,然后通过在上述氧化锌纳米棒功能棉织物表面一段喷金处理,再将两端分别与导线两端相连,固定在柔性基底上得到具有压电效应的生物传感器,使其能够广泛的应用在可穿戴领域上。公开号为cn109457310a的专利公布了一种具有压电效应的双组分纤维、织物及其制备方法,采用具有导电性的高密度聚乙烯为芯层和具有压电效应的聚偏氟乙烯为平层,制备成了具有压电效应的双组分纤维及织物从而得到全纺压电传感器,得到的织物压电传感器能够用于服装和设备监测呼吸信号或心率,并可用于压力监测、执行器等方面。虽然通过将压电材料与织物基底进行结合能够在织物上制备具有压电效应的织物电极和传感器,但是应用到实际可穿戴领域监测人体信息如手指姿态的变化的监测、手腕运动的监测等等存在一些问题:织物基底压电传感器输出电压不稳定,灵敏度低,制备工艺复杂,辨识度较低。



技术实现要素:

发明目的:本发明的第一目的是提供一种在可穿戴领域用于提高传感性能以及兼容性能的基于氧化锌纳米棒结构的织物基底压电传感器;本发明的第二目的在于提供上述织物基底压电传感器的制备方法。

技术方案:本发明的一种基于氧化锌纳米棒结构的织物基底压电传感器,包括作为中间层的聚偏氟乙烯膜,以及设置在聚偏氟乙烯膜两侧作为上下层的涤纶织物电极;所述涤纶织物电极上生长有一层具有压电效应的氧化锌纳米棒。

本发明选用具有压电效应的氧化锌纳米棒和聚偏氟乙烯作为传感器的压电层,受压时氧化锌纳米棒和聚偏氟乙烯发生形变从而将外在的机械能转换成电能。由于氧化锌为直接宽带隙半导体,自然条件下具有六角纤锌矿结构,它的中心不对称性使得zno具有压电特性。在不受外力的作用下,zno体内正负电荷zn2+和o2-的中心重合,因此体内偶极矩为0,受到外力作用后,正负电荷中心不再重合,而是延着c轴产生极化,正负电荷之间产生偶极矩,偶极矩叠加的效果就是产生压电电势差,在材料两端将会产生符号相反的束缚电荷;同时由于聚偏氟乙烯的正压电效应,聚偏氟乙烯电偶极子的自发极化强度是恒定的,因此不能检测到压电输出信号,当在压电材料某一方向施加外力使其产生变形时,在其相对的两个表面上会产生极性相反,大小相等的电荷,当去除外力以后其又恢复为不带电的状态。

当传感器受到外力作用时,氧化锌纳米棒和聚偏氟乙烯膜都会发生变形,导致两个导电织物电极之间的电位差。在此状态下,电子将从下电极流向上电极。随着外力的增加,氧化锌纳米棒和聚偏氟乙烯膜的变形量增大,电子停止流动直到形成电位平衡。当外界压力去除时,氧化锌和聚偏氟乙烯恢复到初始的状态,电子呈反方向流动。

本发明的基于氧化锌纳米棒结构的织物基底压电传感器的制备方法,包括以下步骤:

步骤一、将涤纶织物经等离子体处理后,先浸渍于含氯化亚锡和盐酸的混合溶液中,然后再重复浸渍于氧化石墨烯溶液中,最后用含还原剂的溶液进行还原形成涤纶织物电极;

步骤二、将步骤一制备的涤纶织物电极先置于氧化锌种子溶液中,然后取出反应,并于室温条件下在织物表面形成种子生长点,接着再置于氧化锌生长溶液中反应,制备得到含氧化锌纳米棒阵列的涤纶织物电极;

步骤三、通过旋涂法在玻璃片上涂覆一层聚偏氟乙烯溶液,真空干燥后制备得到聚偏氟乙烯膜;

步骤四、将含氧化锌纳米棒阵列的涤纶织物电极和聚偏氟乙烯膜进行组装,电极采用铜线连接,组装后整体放于模具中进行封装,制备得到压电传感器。

进一步地,将涤纶织物通过氧等离子体处理增加织物表面粗糙度赋予织物表面羟基、羧基基团,增加对亚锡离子的吸附量,然后再重复浸渍氧化石墨烯溶液,使织物表面吸附大量均匀的氧化石墨烯,通过化学还原的作用在织物上形成具有高导电性能的还原氧化石墨烯赋予织物优良的导电性能。亚锡离子与石墨烯的羟基、羧基静电吸引作用将氧化石墨烯牢牢的吸附在涤纶织物表面,氯化亚锡的加入一方面提高了对氧化石墨烯的吸附作用,另一方面也可以起到对氧化石墨烯的还原作用。优选地,含氯化亚锡和盐酸的混合溶液的具体配制为:每100ml的去离子水中添加0.5~2g的氯化亚锡和0.1~0.3ml的盐酸;其中,盐酸的质量百分比浓度为30~35%,织物的浸渍时间为1~3h,织物的浸渍温度为70~90℃;优选地,氧化石墨烯溶液的具体配制为:每100ml的去离子水添加0.1~0.5g的氧化石墨烯粉末;其中,织物的浸渍时间为0.2~0.4h,浸渍温度为20~30℃,重复浸渍的次数为2~8次;优选地,还原剂包括连二亚硫酸钠、l-抗坏血酸、水合肼中的任一种;其中,含还原剂的溶液的质量浓度为5~10g/l,还原反应的温度为80~100℃,还原反应的时间为10~12h。

进一步地,电传感器中氧化锌纳米棒通过两步低温水热生长的方法均匀的生长在织物电极表面,生长在织物电极表面上的氧化锌纳米棒为沿着c轴自发生长的具有压电效应的六方纤锌矿结构,氧化锌纳米棒在涤纶织物表面均匀紧密排列。优选的,涤纶织物电极在氧化锌种子溶液中的处理时间为8~15min,处理后在70~90℃的温度下反应0.5~1h,反应后置于室温下的时间为6~8h;涤纶织物电极在氧化锌生长溶液中的反应时间为7~10h,反应温度为90~100℃。其中,氧化锌种子溶液的具体配制为;每50ml的异丙醇中先添加1.00~1.20g的乙酸锌,在80~90℃的温度下搅拌,然后再加入600~800μl的三乙胺,在80~90℃的温度下继续搅拌;氧化锌生长溶液的具体配制为:按摩尔比1:1在去离子水中分别添加六亚甲基四胺与硝酸锌六水合物。

进一步地,电传感器中聚偏氟乙烯膜通过旋涂方法制备,将聚偏氟乙烯溶于dmf中,通过在玻璃片上旋涂制备一层厚度均匀的具有压电效应的β相聚偏氟乙烯膜,优选的,旋涂速率为400~600rpm,旋涂时间为15~25s,制备的聚偏氟乙烯膜厚度为40~200μm。

进一步地,压电传感器放于pdms模具中,模具通过激光切割方法制备高度为1mm的开口正方形的模具,将pdms倒入模具中固化得到一个大小为3cm×3cm,高度为1mm的模具,pdms固化温度为100℃,时间为30min,压电传感器上端采用聚酰亚胺胶带进行封装。

有益效果:与现有技术相比,本发明的显著优点为:(1)本发明采用的基底为织物基底,具有优良的透气性、柔韧性及可穿戴性能;(2)采用聚偏氟乙烯和在织物电极上生长均匀紧密排列的氧化锌纳米棒作为压电感应层,其中聚偏氟乙烯膜对压电传感器具有显著的增强作用;(3)本发明中的基于氧化锌纳米棒的织物基底压电传感器具有高的灵敏度及低的监测限;(4)本发明的织物基压电传感器能够在受到外力的作用下产生压电效应,将外部的机械能转换成电能,能够被用来监测手势姿态的变化和感测人体不同位置信息,对于人体信息的检测具有重要意义。

附图说明

图1是本发明的基于氧化锌纳米棒的织物基底压电传感器示意图;

图2是本发明实施例1制备的氧化锌纳米棒微观结构示意图;

图3是本发明对比例2测试结果示意图;

图4是本发明实施例1制备的压电传感器监测不同物体能力示意图;

图5是本发明实施例1制备的压电传感器最大电压测试示意图;

图6是本发明实施例1制备的压电传感器灵敏度的示意图;

图7是本发明实施例1制备的压电传感器监测手腕变化的示意图;

图8是本发明实施例1制备的压电传感器监测手指运动示意图。

具体实施方式

下面结合附图及实施例对本发明的技术方案作进一步详细说明。

实施例1

一、高导电性能织物电极的制备

对涤纶织物表面进行等离子体处理,处理气氛为氧气,处理功率为400w,处理时间为120s,然后取100ml去离子水,分别添加0.5g氯化亚锡以及0.1ml质量浓度为30%的盐酸,制备得到含氯化亚锡和盐酸的混合溶液,将处理后的涤纶织物浸渍于混合溶液中,在80℃的温度下浸渍2h;然后将0.3g氧化石墨烯粉末经超声处理后分散在100ml的去离子水中30min,制备出3mg/ml氧化石墨烯溶液,用去离子水漂洗去除杂质,继续将涤纶织物浸渍在氧化石墨烯溶液中,在25℃的温度下浸渍0.25h,重复浸渍3次后烘干;最后用5g/l的连二亚硫酸钠溶液在95℃的温度下对烘干后的涤纶织物进行还原10h后得到涤纶织物电极。

二、氧化锌织物电极的制备

先配制氧化锌种子溶液:称取1.10g乙酸锌二水合物溶于50ml异丙醇中制备100mmol/l的乙酸锌溶液,在85℃搅拌15min,然后加入700μl的三乙胺在85℃下搅拌10min,静置3h;再配制氧化锌生长溶液,配制等摩尔比的六亚甲基四胺与硝酸锌六水合物溶液,分别称取7.71g六亚甲基四胺与16.4g硝酸锌六水合物溶于550ml的去离子水中,室温搅拌24h;将涤纶织物电极放入氧化锌种子溶液中8min,用乙醇清洗,置于70℃下1h,在室温条件下放置6h,然后再将其垂直悬挂于氧化锌生长溶液中,生长液在95℃下8h,在室温下10h,取出后清洗烘干,得到含氧化锌纳米棒阵列的涤纶织物电极;参见图2,涤纶织物电极表面上的氧化锌纳米棒沿着c轴自发生长,形成的结构为有压电效应的六方纤锌矿结构。

三、聚偏氟乙烯膜的制备

将12wt%聚偏氟乙烯(mw=180000)溶液溶解在n,n-二甲基甲酰胺(dmf)中,然后在85℃,600rpm下连续搅拌3小时。在预处理玻璃中旋转喷涂,旋涂速率为500rpm,旋涂时间为20s,然后将玻璃放入真空干燥箱30分钟,然后在60℃下加热30分钟,最后将聚偏氟乙烯膜浸入去离子水与玻璃分离,干燥得到β相聚偏氟乙烯薄膜,聚偏氟乙烯膜厚度为40μm。

四、基于氧化锌纳米棒的织物基底压电传感器的制备

将上述制备的含氧化锌纳米棒阵列的涤纶织物电极,聚偏氟乙烯膜组装起来,采用pdms模具以及聚酰亚胺胶带进行封装。按照三明治结构的方式进行组装,上下层为生长有氧化锌纳米棒的织物电极,电极用铜线进行连接,中间为具有压电效应的β相聚偏氟乙烯膜,将其放置在pdms模具中,上层用聚酰亚胺胶带封装,如图1所示。

实施例2

一、高导电性能织物电极的制备

对涤纶织物表面进行等离子体处理,处理气氛为氧气,处理功率为400w,处理时间为120s,然后取100ml去离子水,分别添加1g氯化亚锡以及0.2ml质量浓度为32%的盐酸,制备得到含氯化亚锡和盐酸的混合溶液,将处理后的涤纶织物浸渍于混合溶液中,在70℃的温度下浸渍1h;然后将0.2g氧化石墨烯粉末经超声处理后分散在100ml的去离子水中30min,制备出2mg/ml氧化石墨烯溶液,用去离子水漂洗去除杂质,继续将涤纶织物浸渍在氧化石墨烯溶液中,在20℃的温度下浸渍0.35h,重复浸渍5次后烘干;最后用8g/l的水合肼溶液在90℃的温度下对烘干后的涤纶织物进行还原11h后得到涤纶织物电极。

二、氧化锌织物电极的制备

先配制氧化锌种子溶液:称取1.00g乙酸锌二水合物溶于50ml异丙醇中制备100mmol/l的乙酸锌溶液,在80℃搅拌15min,然后加入600μl的三乙胺在80℃下搅拌10min,静置3h;再配制氧化锌生长溶液,配制等摩尔比的六亚甲基四胺与硝酸锌六水合物溶液,分别称取7.71g六亚甲基四胺与16.4g硝酸锌六水合物溶于550ml的去离子水中,室温搅拌24h;将涤纶织物电极放入氧化锌种子溶液中10min,用乙醇清洗,置于80℃下1h,在室温条件下放置7h,然后再将其垂直悬挂于氧化锌生长溶液中,生长液在80℃下9h,在室温下10h,取出后清洗烘干,得到含氧化锌纳米棒阵列的涤纶织物电极。

三、聚偏氟乙烯膜的制备

将12wt%聚偏氟乙烯(mw=180000)溶液溶解在n,n-二甲基甲酰胺(dmf)中,然后在85℃,600rpm下连续搅拌3小时。在预处理玻璃中旋转喷涂,旋涂速率为400rpm,旋涂时间为25s,然后将玻璃放入真空干燥箱30分钟,然后在60℃下加热30分钟,最后将聚偏氟乙烯膜浸入去离子水与玻璃分离,干燥得到β相聚偏氟乙烯薄膜,聚偏氟乙烯膜厚度为150μm。

四、基于氧化锌纳米棒的织物基底压电传感器的制备

将上述制备的含氧化锌纳米棒阵列的涤纶织物电极,聚偏氟乙烯膜组装起来,采用pdms模具以及聚酰亚胺胶带进行封装。按照三明治结构的方式进行组装,上下层为生长有氧化锌纳米棒的织物电极,电极用铜线进行连接,中间为具有压电效应的β相聚偏氟乙烯膜,将其放置在pdms模具中,上层用聚酰亚胺胶带封装,如图1所示。

实施例3

一、高导电性能织物电极的制备

对涤纶织物表面进行等离子体处理,处理气氛为氧气,处理功率为400w,处理时间为120s,然后取100ml去离子水,分别添加1.5g氯化亚锡以及0.3ml质量浓度为36%的盐酸,制备得到含氯化亚锡和盐酸的混合溶液,将处理后的涤纶织物浸渍于混合溶液中,在90℃的温度下浸渍3h;然后将0.5g氧化石墨烯粉末经超声处理后分散在100ml的去离子水中30min,制备出5mg/ml氧化石墨烯溶液,用去离子水漂洗去除杂质,继续将涤纶织物浸渍在氧化石墨烯溶液中,在30℃的温度下浸渍0.4h,重复浸渍3次后烘干;最后用10g/l的l-抗坏血酸溶液在100℃的温度下对烘干后的涤纶织物进行还原12h后得到涤纶织物电极。

二、氧化锌织物电极的制备

先配制氧化锌种子溶液:称取1.20g乙酸锌二水合物溶于50ml异丙醇中制备100mmol/l的乙酸锌溶液,在85℃搅拌15min,然后加入800μl的三乙胺在85℃下搅拌10min,静置3h;再配制氧化锌生长溶液,配制等摩尔比的六亚甲基四胺与硝酸锌六水合物溶液,分别称取7.71g六亚甲基四胺与16.4g硝酸锌六水合物溶于550ml的去离子水中,室温搅拌24h;将涤纶织物电极放入氧化锌种子溶液中15min,用乙醇清洗,置于90℃下0.5h,在室温条件下放置8h,然后再将其垂直悬挂于氧化锌生长溶液中,生长液在95℃下7h,在室温下10h,取出后清洗烘干,得到含氧化锌纳米棒阵列的涤纶织物电极。

三、聚偏氟乙烯膜的制备

将12wt%聚偏氟乙烯(mw=180000)溶液溶解在n,n-二甲基甲酰胺(dmf)中,然后在85℃,600rpm下连续搅拌3小时。在预处理玻璃中旋转喷涂,旋涂速率为600rpm,旋涂时间为15s,然后将玻璃放入真空干燥箱30分钟,然后在60℃下加热30分钟,最后将聚偏氟乙烯膜浸入去离子水与玻璃分离,干燥得到β相聚偏氟乙烯薄膜,聚偏氟乙烯膜厚度为80μm。

四、基于氧化锌纳米棒的织物基底压电传感器的制备

将上述制备的含氧化锌纳米棒阵列的涤纶织物电极,聚偏氟乙烯膜组装起来,采用pdms模具以及聚酰亚胺胶带进行封装。按照三明治结构的方式进行组装,上下层为生长有氧化锌纳米棒的织物电极,电极用铜线进行连接,中间为具有压电效应的β相聚偏氟乙烯膜,将其放置在pdms模具中,上层用聚酰亚胺胶带封装,如图1所示。

实施例4

一、高导电性能织物电极的制备

对涤纶织物表面进行等离子体处理,处理气氛为氧气,处理功率为400w,处理时间为120s,然后取100ml去离子水,分别添加2g氯化亚锡以及0.1ml质量浓度为35%的盐酸,制备得到含氯化亚锡和盐酸的混合溶液,将处理后的涤纶织物浸渍于混合溶液中,在80℃的温度下浸渍2h;然后将0.3g氧化石墨烯粉末经超声处理后分散在100ml的去离子水中30min,制备出3mg/ml氧化石墨烯溶液,用去离子水漂洗去除杂质,继续将涤纶织物浸渍在氧化石墨烯溶液中,在25℃的温度下浸渍0.2h,重复浸渍3次后烘干;最后用8g/l的连二亚硫酸钠溶液在95℃的温度下对烘干后的涤纶织物进行还原10h后得到涤纶织物电极。

二、氧化锌织物电极的制备

先配制氧化锌种子溶液:称取1.10g乙酸锌二水合物溶于50ml异丙醇中制备100mmol/l的乙酸锌溶液,在85℃搅拌15min,然后加入700μl的三乙胺在85℃下搅拌10min,静置3h;再配制氧化锌生长溶液,配制等摩尔比的六亚甲基四胺与硝酸锌六水合物溶液,分别称取7.71g六亚甲基四胺与16.4g硝酸锌六水合物溶于550ml的去离子水中,室温搅拌24h;将涤纶织物电极放入氧化锌种子溶液中8min,用乙醇清洗,置于70℃下1h,在室温条件下放置6h,然后再将其垂直悬挂于氧化锌生长溶液中,生长液在95℃下8h,在室温下10h,取出后清洗烘干,得到含氧化锌纳米棒阵列的涤纶织物电极;参见图6,涤纶织物电极表面上的氧化锌纳米棒沿着c轴自发生长,形成的结构为有压电效应的六方纤锌矿结构。

三、聚偏氟乙烯膜的制备

将12wt%聚偏氟乙烯(mw=180000)溶液溶解在n,n-二甲基甲酰胺(dmf)中,然后在85℃,600rpm下连续搅拌3小时。在预处理玻璃中旋转喷涂,旋涂速率为450rpm,旋涂时间为20s,然后将玻璃放入真空干燥箱30分钟,然后在60℃下加热30分钟,最后将聚偏氟乙烯膜浸入去离子水与玻璃分离,干燥得到β相聚偏氟乙烯薄膜,聚偏氟乙烯膜厚度为100μm。

四、基于氧化锌纳米棒的织物基底压电传感器的制备

将上述制备的含氧化锌纳米棒阵列的涤纶织物电极,聚偏氟乙烯膜组装起来,采用pdms模具以及聚酰亚胺胶带进行封装。按照三明治结构的方式进行组装,上下层为生长有氧化锌纳米棒的织物电极,电极用铜线进行连接,中间为具有压电效应的β相聚偏氟乙烯膜,将其放置在pdms模具中,上层用聚酰亚胺胶带封装,如图1所示。

对比例1

分别设计两组平行试验,具体试验过程同实施例1,不同之处在于,平行试验1为高导电性能织物电极的制备过程中不采用含氯化亚锡和盐酸的混合溶液对涤纶织物进行浸渍;平行试验2为高导电性能织物电极的制备过程中将氯化亚锡、盐酸和氧化石墨烯粉末一同配制成混合溶液后对涤纶织物进行浸渍。具体的测试数据参见下表1。

表1实施例1-4以及对比例1的表面电阻值测试结果

由表1可知,涤纶织物表面吸附的还原氧化石墨烯量随着浓度的增加织物的表面电阻随之减小,同时得到的织物电极水洗牢度也较好,水洗后织物表面电阻无变化,平行试验1中未采用亚锡离子改性的涤纶织物表面电阻为36.900kω/cm,采用亚锡离子改性后织物的表面电阻有较大变化,突出了亚锡离子在吸附氧化石墨烯及辅助还原具有较大作用。其次,为先将涤纶织物浸渍亚锡离子溶液,使织物表面带亚锡离子,亚锡离子能够均匀的吸附在织物表面然后遇到氧化石墨烯后会吸附氧化石墨烯溶液,然后在还原剂高温条件下能在织物表面形成还原氧化石墨烯均匀的包覆织物表面及填补纤维的缝隙且牢度较好了,当亚锡离子溶液与氧化石墨烯溶液直接混合时在高温条件下,亚锡离子直接将氧化石墨烯还原,在溶液中,还原氧化石墨烯不溶于与水,会逐渐团聚,然后逐渐沉积成块,还原氧化石墨烯难以包覆纤维的表面,极易堆积在纤维的表面且牢度很差,因此平行试验2中涤纶织物表面电阻为35.600kω/cm,性能远低于实施例1-4测试的结果。

对比例2

具体制备过程同实施例1,不同之处在于不采用聚偏氟乙烯膜与含氧化锌纳米棒阵列的涤纶织物电极进行封装,采用纸片来代替聚偏氟乙烯膜。测试结果参见图3,可以看到中间层为纸片的传感器输出电压为100mv左右,中间层为聚偏氟乙烯膜的传感器输出电压为1v左右,说明了聚偏氟乙烯膜的插入对压电传感器的压电效应具有较大影响,采用聚偏氟乙烯的压电效应将其作为中间压电层与生长氧化锌的织物电极结合可以制备出高性能的具有压电效应的传感器。

性能测试

将实施例1中制备好的织物基底的压电传感器应用在不同的环境中,图4显示了传感器甄别不同物体的能力,能够监测出超低压力的变化,最小监测8.71pa的压力变化;图5显示了压电传感器测试的最大电压,施加压力时,传感器最大输出电压可以达到11.47v;图6显示了压电传感器的灵敏度,织物基压电传感器的灵敏度为0.62v/kpa。

将传感器应用在手腕上监测手腕不同状态下的情况,如图7所示,在手腕弯曲不同的曲度时,织物基压电传感器能够实时反映区分手腕在不同状态下变化,从而达到检测手腕运动的目的。为了更进一步的探究压电传感器对人体监测能力,将其组装在手指关节处,监测不同弯曲状态下,压电传感器的监测能力,如图8所示,由此可知当手指弯曲不同度数时,压电传感器会相应地产生对应的输出电压,在较大的弯曲条件下,压电传感器输出信号越大,区别越明显,从而实现检测手指运动状态的目的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1