一种血压测量设备的制作方法

文档序号:33160924发布日期:2023-02-04 00:37阅读:78来源:国知局
一种血压测量设备的制作方法

1.本技术涉及到电子设备技术领域,尤其涉及到一种血压测量设备。


背景技术:

2.当今人们越来越重视自身及家人的健康情况,血压测量在其中也显得尤为重要。随着科技的进步与发展,不仅出现了家庭用的血压测量设备,在一些可穿戴设备(例如智能手表或者智能手环等)中也开始集成血压测量功能,其为用户随时随地进行血压测量提供了可能性。
3.目前的血压测量设备,均是直接将微泵和压力传感器置于血压测量设备的主体内部。压力传感器可通过对血压测量设备的主体内部的气压和气囊的气压进行测量,来获得用户的血压值。但是,在应用该血压测量设备进行血压测量的过程中,由于微泵会将主体内部的气体充入气囊,这会造成主体内部存在气压波动,从而造成压力传感器检测到的主体内部的气压不稳定,导致血压测量设备测量得到的血压值的精度较低。
4.因此,如何提供一种能够满足血压测量精度的血压测量设备已成为本领域技术人员亟待解决的难题。


技术实现要素:

5.本技术提供了一种血压测量设备,以减小血压测量设备的内部气压对于其血压测量的影响,从而提高血压测量的精度。
6.第一方面,本技术提供了一种血压测量设备,该血压测量设备可以包括主体、气囊、供排气装置和第一气压传感器。其中,主体包括一个腔体,血压测量设备的各功能模块或者器件可以设置于该腔体内,例如上述的供排气装置和第一气压传感器可设置于腔体内。气囊固定于主体的一个端部,且气囊具有气腔。供排气装置包括进气气路和泄气气路,且供排气装置通过第一气路与气囊的气腔相连通。第一气压传感器包括第一气孔、第二气孔和压力薄膜,压力薄膜位于第一气孔和第二气孔之间,第一气孔通过第二气路与气囊的气腔相连通。另外,主体的腔体可由多个侧壁围设形成,在侧壁上可开设有第一透气孔,该第一透气孔与外界大气相连通。这样,第一气压传感器的第二气孔可通过第三气路与第一透气孔相连通,从而使第一气压传感器经由第一透气孔与外界大气相连通。采用本技术提供的血压测量设备,由于第一气压传感器的压力薄膜两侧的气压分别为外界大气压和气囊的气腔内的气压,其在进行血压测量的过程中,不受腔体内气压的影响,因此,该血压测量设备的血压测量精度较高。
7.由于供排气装置设置于主体的腔体内,若供排气装置的进气气路和泄气气路均与主体的腔体相连通,则在供排气装置工作的过程中,会在主体的腔体内产生负压(内外气压差,即主体的腔体内部的气压小于外界的大气压)。在传统的血压测量设备中,为降低主体的腔体内部的负压,血压测量设备均不进行防水设计。其原因主要在于,防水膜的设置会降低血压测量设备的透气量,从而使主体的腔体内负压较大,从而增大血压测量过程中的系
统误差。另外,主体的腔体内部的气压值及其波动也会造成血压测量的误差。但是,血压测量设备的大多数器件均设置于主体的腔体内,如果不对主体进行防水设计,血压测量设备的主体的腔体内的器件存在较大的损坏的风险,其会影响血压测量设备的使用寿命。为了解决这一个问题,在本技术一个可能的实现方式中,还可以在主体的侧壁开设第二透气孔,该第二透气孔与外界大气相连通,以能够使外界大气的气体通过第二透气孔进入主体的腔体内,从而使主体的腔体内的气体得到及时的补充,以减小腔体内的负压。
8.另外,为了实现血压测量设备的防水设计,可以在第二透气孔处设置第一防水透气装置。为了减小第一防水透气装置的设置对于第二透气孔处透气量的影响,可以使第一防水透气装置的透气量大于等于100ml/min,从而使主体的腔体内的气体能够得到及时且稳定的补充。
9.但是,当第一防水透气装置发生堵塞时,其透气量会大打折扣,从而造成腔体内负压的增加。在本技术一个可能的实现方式中,可通过对第一防水透气装置的透气性能进行检测,来实现对第一防水透气装置的堵塞情况的判断。具体实施时,血压测量设备还可以包括第二气压传感器,该第二气压传感器设置于主体的腔体内,血压测量设备可以根据第二气压传感器测得的气压值判断第一防水透气装置的透气性能。其中,第二气压传感器可以为绝压式传感器,当该第二气压传感器测量的气压值高于第一阈值时,可确定第一防水透气装置的透气性能良好。在本技术中,第一阈值可以根据具体的应用场景进行设定,示例性的,可以为95kpa,则当第二气压传感器测量的气压值高于95kpa时,确定第一防水透气装置的透气性能良好。
10.相对应的,在一些可能的实现方式中,当第二气压传感器测量的气压值低于第一阈值时,可确定第一防水透气装置堵塞。
11.可以理解的是,在本技术中,还可以在第一透气孔处设置第二防水透气装置,以进一步提高血压测量设备的防水性能。
12.由上述对本技术的介绍可以知道,主体的腔体内负压的产生的原因之一为供排气装置对气囊的充气和泄气。为了减小供排气装置的工作对主体的腔体内负压的影响,在本技术一个可能的实现方式中,还可以开设有第四透气孔和第五透气孔,供排气装置的进气气路可通过第四透气孔与外界大气相连通,泄气气路可通过第五透气孔与外界大气相连通。这样,供排气装置可将外界大气中的气体通过第四透气孔和进气气路充入气囊,并可将气囊内的气体通过泄气气路和第五透气孔排出到外界大气。
13.在本技术中,供排气装置和第一气压传感器可通过对应的气路与气囊直接连接,或者间接连接。示例性的,在本技术一个可能的实现方式中,血压测量设备还可以包括气路腔体,该气路腔体设置于主体的腔体内。另外,供排气装置可通过第一气路与气路腔体相连通,第一气压传感器的第一气孔可通过第二气路与气路腔体相连通,而气路腔体通过第四气路与气囊的气腔相连通。这样,供排气装置和第一气压传感器的用于与气囊相连通的气路可先通过气路腔体进行合并,然后再通过一条气路与气囊进行连通。则此时只需要在主体的侧壁上开设一个用于与气囊进行连接的通孔,从而可以减少主体上开孔的数量,以提高血压测量设备的防水性能以及结构稳定性。
14.在本技术一个可能的实现方式中,为了将气囊与主体进行连接,可以在主体的端部设置有一个连接孔。另外,气囊具有一个气嘴,气嘴自气囊的一侧表面沿朝向主体的方向
凸出于气囊。这样,即可通过气嘴插接于连接孔,且将第四气路与气嘴连接,来实现气囊与气路腔体的连通。相类似的,在另外一些可能的实现方式中,还可以将气嘴设置于主体的端部,而在气囊上设置连接孔,这样也可以通过气嘴与连接孔的插接来实现气囊与主体的连接。
15.值得一提的是,在本技术中,气囊与主体之间可为可拆卸连接,这样,可根据需要对气囊进行拆卸或者更换等。另外,在本技术一个可能的实现方式中,血压测量设备还可以包括光电容积描记器ppg模块和ecg检测模块,该ppg模块与ecg检测模块可以设置于主体的底面。而气囊也可以与主体的底面的一个端部固定连接,从而在使血压测量设备集成多项测量功能的同时,使该血压测量设备的结构较为紧凑。
16.为了进一步提高血压测量设备的血压测量精度,在本技术中,还可以为第一气压传感器设置校准装置。在本技术一个可能的实现方式中,血压测量设备还可以包括第三气压传感器,第三气压传感器包括第三气孔和第四气孔。另外,在主体的侧壁还开设有第三透气孔,该第三透气孔与外界大气相连通。第三气压传感器的第三气孔通过第七气路与气路腔体相连通,而第四气孔通过第八气路与第三透气孔相连通。这样,第三气压传感器可以对外界大气和气囊的气腔内的气压之间的气压差进行测量。
17.又因为第一气压传感器也是对外界大气和气囊的气腔内的气压之间的气压差进行测量,因此,通过将第一气压传感器和第三气压传感器分别测量的气压差进行对比,即可实现对第一气压传感器的测量值进行校准。具体实施时,当第一气压传感器测量的压差与第三气压传感器测量的压差的差值在第一阈值范围内时,则确定第一气压传感器测量的压差准确。在本技术中,第一阈值范围可根据具体的应用场景进行设定,示例性的,可为-200pa~200pa。
18.相类似的,当第一气压传感器测量的压差与第三气压传感器测量的压差的差值在第一阈值范围外时,则确定第一气压传感器测量得到的压差不准确。
19.用于对第一气压传感器的测量值进行校准的第三气压传感器除了可以采用上述的设置方式外,在本技术一个可能的实现方式中,还可以使第三气压传感器为绝压式气压传感器。该实现方式中,第三气压传感器只包括一个第三气孔,该第三气孔可通过第七气路与气路腔体相连通。通过该第三气压传感器对第一气压传感器的测量值进行校准的过程为:当第一气压传感器测量的气囊内的气压与第三气压传感器测量的气囊内的气压的差值在第一阈值范围内时,则判断第一气压传感器测量的气囊内的气压准确;和/或,当第一气压传感器测量的气囊内的气压与第三气压传感器测量的气囊内的气压的差值在第一阈值范围外时,则确定第一气压传感器测量得到的气囊内的气压不准确。采用该实现方式,可以减少主体上开设的透气孔的数量,从而提高血压测量设备的防水性能。
20.在本技术中,为了减小各气路中气体流动的波动对测量精度的影响,可以在气路的管道中设置缓冲结构。示例性的,可以在第一气压传感器与气囊相连接的第二气路的管道中设置多个凸起,该多个凸起沿管道的延伸方向间隔且交替排布。该多个凸起可在气体在第二气路中流动的过程中起到缓冲的作用,从而减小气体流动的波动,以提高第一气压传感器检测的准确性。
21.第二方面,本技术还提供一种血压测量设备,该血压测量设备可以包括主体、气囊、供排气装置、第一气压传感器和第二气压传感器。其中,主体包括一个腔体,血压测量设
备的各功能模块或者器件可以设置于该腔体内,例如上述的供排气装置、第一气压传感器和第二气压传感器可设置于腔体内。气囊固定于主体的一个端部,且气囊具有气腔。供排气装置包括进气气路和泄气气路,且供排气装置通过第一气路与气囊的气腔相连通。第一气压传感器包括第一气孔、第二气孔和压力薄膜,压力薄膜位于第一气孔和第二气孔之间,第一气孔通过第二气路与气囊的气腔相连通,第二气孔与腔体相连通,则第一气压传感器测量的压差由主体的腔体内的气压和气囊的气腔内的气压决定。另外,第二气压传感器为绝压式气压传感器,且第二气压传感器包括第五气孔,该第五气孔与第二气孔相对设置。
22.采用本技术提供的血压测量设备,通过在主体的腔体内设置第二气压传感器,血压测量设备可根据外界大气压、第二气压传感器测量的气压值、第一气压传感器测量的压差,获取气囊的气腔内的气压值。另外,外界大气压和第二气压传感器测量的气压值的差值可作为计算气囊的气腔内的气压的误差值,并可以得到气囊内的真实气压值,从而可有效的提高该血压测量设备的血压测量的精度。
23.在本技术一个可能的实现方式中,还可以使第五气孔与第二气孔同轴设置,另外,第五气孔第五气孔与第二气孔之间的间距可小于等于1mm。由于第二气压传感器只包括一个第五气孔,其可以对主体的腔体内的气压进行测量。又由于第五气孔与第二气孔之间的间距较小,则第五气孔侧测量到的气压与第二气孔侧测量到的气压可以认为相等。
24.在本技术一个可能的实现方式中,主体的侧壁还开设有透气孔,透气孔处设置有防水透气装置。此时,血压测量设备还可以根据第二气压传感器测得的气压值判断防水透气装置的透气性能。具体实施时,当该第二气压传感器测量的气压值高于第一阈值时,可确定防水透气装置的透气性能良好。在本技术中,第一阈值可以根据具体的应用场景进行设定,示例性的,可以为95kpa,则当第二气压传感器测量的气压值高于95kpa时,确定防水透气装置的透气性能良好。相对应的,在一些可能的实现方式中,当第二气压传感器测量的气压值低于第一阈值时,可确定防水透气装置堵塞。通过对防水透气装置的透气性能进行检测,可以在防水透气装置发生堵塞时及时对其进行更换或者清洗,以减小主体的腔体内的负压,从而提高血压测量设备的测量精度。
25.第三方面,本技术还提供一种血压测量设备,该血压测量设备可以包括主体、气囊、供排气装置、第一气压传感器、第二气压传感器和防水透气装置。其中,主体包括一个腔体,血压测量设备的各功能模块或者器件可以设置于该腔体内,例如上述的供排气装置、第一气压传感器和第二气压传感器可设置于腔体内。另外,腔体由多个侧壁围设形成,侧壁上开设有透气孔,防水透气装置覆盖于透气孔。气囊固定于主体的一个端部,且气囊具有气腔。供排气装置包括进气气路和泄气气路,且供排气装置通过第一气路与气囊的气腔相连通。第一气压传感器用于测量所述气囊的所述气腔内的气压。第二气压传感器为绝压式气压传感器,当第二气压传感器测量的气压值高于第一阈值时,确定防水透气装置的透气性能良好;和/或,当第二气压传感器测量的气压值低于第一阈值时,确定防水透气装置堵塞。
26.采用本技术提供的血压测量设备,通过在主体的腔体内设置第二气压传感器,可以实现对防水透气装置的透气性能的检测,从而可对防水透气装置进行及时的更换或者清理,以保证血压测量设备的安全性及其对血压测量的稳定性,从而使血压测量设备测量的血压值较为准确。
附图说明
27.图1为本技术一种实施例提供的血压测量设备的结构示意图;
28.图2为本技术一种实施例提供的现有的血压测量设备的框架结构示意图;
29.图3为本技术一种实施例提供的血压测量设备的框架结构示意图;
30.图4a至图4c为本技术一种实施例提供的气路的内部结构示意图;
31.图5为本技术另一种实施例提供的血压测量设备的框架结构示意图;
32.图6为本技术另一种实施例提供的血压测量设备的框架结构示意图;
33.图7为本技术一种实施例提供防水透气装置的爆炸结构示意图;
34.图8为本技术另一种实施例提供的血压测量设备的框架结构示意图;
35.图9为本技术一种实施例提供的血压测量设备的局部结构示意图;
36.图10为本技术一种实施例提供的气囊的结构示意图;
37.图11为图10中a处的局部结构放大图;
38.图12为本技术另一种实施例提供的血压测量设备的框架结构示意图;
39.图13为本技术另一种实施例提供的血压测量设备的框架结构示意图;
40.图14为本技术另一种实施例提供的血压测量设备的框架结构示意图;
41.图15为本技术另一种实施例提供的血压测量设备的框架结构示意图。
42.附图标记:
43.1-主体;101-腔体;102a,102b,102c,102d,102e-透气孔;103-连接孔;104-ppg模块;
44.105-ecg检测模块;2-气囊;201-气嘴;2011-卡接结构;3-腕带;4-供排气装置;
45.401-进气气路;402-泄气气路;5a-第一气压传感器;501-第一气孔;502-第二气孔;
46.5b-第二气压传感器;505-第五气孔;5c-第三气压传感器;503-第三气孔;504-第四气孔;
47.61-第一气路;62-第二气路;63-第三气路;64-第四气路;65-第五气路;66-第六气路;
48.67-第七气路;601-管道;602-凸起;7-驱动装置;8-第一防水透气装置;801-泡棉;
49.802-平衡孔钢片;803-pet层;804-防水膜;805-双面胶;806-防水胶;
50.9-第二防水透气装置;10-气路腔体;11-气阀;12-第三防水透气装置。
具体实施方式
51.为了使本技术的目的、技术方案和优点更加清楚,下面将结合附图对本技术作进一步地详细描述。
52.为了方便理解本技术实施例提供的血压测量设备,下面首先说明一下其应用场景。该血压测量设备可以但不限于为医用、家用等体积较大的用于血压测量的设备,也可以为智能手表、智能手环等便携性的带有血压测量功能的电子设备。以智能手表为例,其可以佩戴于用户的腕部,以能够随时检测用户的血压等身体体征,以实现对身体状态的预知,从而可有效的避免高血压引起的中风等危险继发症。
53.参照图1,图1为本技术一种实施例提供的带有血压测量功能的智能手表的结构示
意图。带有血压检测功能的血压测量设备,一般可以包括主体1和气囊2,气囊2可固定于主体1的一个端部。示例性的,气囊2可以固定于主体1的底面的一个端面。在本技术中,主体1的底面是指智能手表在佩戴于腕部时,主体1的直接与腕部接触的表面。另外,血压测量设备还可以包括腕带3,如图1所示,气囊2可位于腕带3的朝向用户的腕部的一侧。这样,在腕带3绕于用户的腕部时,可以将气囊2压向腕部,并使其与腕部相贴合,从而便于实现对用户的血压的测量。可以理解的是,气囊2与腕带3可以但不限于通过卡接、粘接或者铆接等方式相固定,以减少气囊2与腕带3之间的相互移动产生的摩擦力,从而降低气囊磨损的风险,以提高血压测量设备的使用寿命。
54.带有血压测量功能的智能手表,除了包括上述结构外,通常还可以设置有光电容积描记器(photoplethysmograph,ppg)模块。其中,ppg模块104也可以设置于主体1的底面,另外,还可将ppg模块104设置于主体1的底面的中间区域(参见图1所示主体1的底面中间圆形区域),以便于提高ppg模块104的检测准确性。由于ppg模块104可实现对人体的心率值进行连续的测量,通过在智能手表上同时设置气囊2和ppg模块104,可将利用气囊2进行单次血压测量的功能与ppg模块104的连续心率测量功能进行集成,并通过精确的算法运算解决连续血压测量的难题。
55.可继续参照图1,本技术实施例的智能手表还可以同时设置有心电图(electrocardiogram,ecg)检测模块,该ecg检测模块105也可以设置于主体1的底面,另外,还可将ecg检测模块105设置于主体1的中间区域,其示例性的可以设置于ppg模块104的周侧(参见图1所示主体1的底面中间两个弧形区域),从而实现智能手表的心电图检测功能。
56.可一并参照图2,图2展示了一种传统的血压测量设备的框架结构示意图。其中,主体1具有腔体101,血压测量设备的主要功能模块以及器件(例如处理器和传感器等电路元器件)可设置于主体1的腔体101内,例如,供排气装置4和第一气压传感器5a等。气囊2的一端可通过气嘴与供排气装置4和第一气压传感器5a连通,气囊2可绕于用户的腕部。在使用该血压测量设备进行血压测量时,可通过供排气装置4对气囊2进行充放气,而第一气压传感器5a可检测上述充放气过程中,主体1的腔体101内的气压以及气囊2中的气压,这样,可根据该两个气压值通过算法得到用户的血压值。
57.由上述对血压测量设备进行血压测量的过程的介绍可以理解,由于供排气装置4设置于主体1的腔体101内,则供排气装置4在向气囊2进行充气的过程中,是将主体1的腔体101内的空气充入气囊2。这样,会导致主体1的腔体101内的气压小于主体1外部的大气压,以在主体1的腔体101内与主体1的外部之间存在一个气压差,或者也可以理解为在主体1的腔体101内产生负压,该负压的存在会造成血压测量过程的误差。另外,在供排气装置4对气囊2进行充放气的过程中,会造成主体1的腔体101内的气压的波动,该气压的波动也会造成血压测量的误差。
58.基于此,本技术实施例提供了一种血压测量设备,以减小血压测量设备的主体1的腔体101内的气压对于其血压测量的影响,从而提高血压测量的精度。为了便于理解,在本技术以下实施例中,以智能手表为例对该血压测量设备的具体结构进行详细的说明。
59.以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本技术的限制。如在本技术的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上
下文中明确地有相反指示。还应当理解,在本技术以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,a和/或b,可以表示:单独存在a,同时存在a和b,单独存在b的情况,其中a、b可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
60.在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本技术的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
61.参照图3,图3为本技术的一个实施例提供的血压测量设备的框架结构示意图。在本技术该实施例中,血压测量设备可以包括主体1和气囊2。其中,主体1具有多个侧壁,该多个侧壁相连接,以围设形成主体1的腔体101,在主体1的腔体101内可设置有该血压测量设备的主要功能模块和器件。气囊2可固定于主体1的一个侧壁,且气囊2具有气腔。
62.可继续参照图3,在本技术该实施例中,血压测量设备还可以包括供排气装置4和第一气压传感器5a,该供排气装置4和第一气压传感器5a设置于主体1的腔体101内。其中,供排气装置4包括进气气路401和泄气气路402,该进气气路401和泄气气路402均与主体1的腔体101相连通。另外,供排气装置4还通过第一气路61与气囊2的气腔相连通。这样,主体1的腔体101内的空气可通过进气气路401进入供排气装置4,并通过第一气路61进入气囊2,从而实现供排气装置4对气囊2的充气。相反的,当气囊2中的气体需要排出时,供排气装置4通过第一气路61将气囊2中的气体抽出,并经泄气气路402排放到主体1的腔体101。
63.另外,由于供排气装置4的进气气路401和泄气气路402不同时工作,因此,在本技术一个可能的实施例中,可以将进气气路401和泄气气路402合并设置,即只在供排气装置4上设置一条气路,供排气装置4可通过该气路对气囊2进行充气,并可使气囊2内的气体经过该气路抽出,从而可简化血压测量设备的结构。
64.在本技术中,不对供排气装置4的具体结构进行限定,示例性的,该供排气装置4可以为气泵,气泵的体积可根据血压测量装置的气囊2对于供排气的需求以及主体1的腔体101的大小进行设置。又考虑到目前带有血压测量功能的智能手表,其主体1的体积较小,则其腔体101的空间也较小,因此,设置于智能手表中的气泵的体积也较小。在本技术一些可能的实施例中,可将气泵固定于一个结构件(图中未示出)上,然后通过该结构件与主体1的固定来实现气泵在主体1上的安装。该结构件的材质可以但不限于为金属或者强度较大的非金属,以使其能够对气泵起到可靠的支撑,从而提高气泵的结构可靠性。在本技术中,不对气泵与结构件之间的固定方式进行限定,示例性的,可通过点胶或者螺纹联接等方式进行固定连接。另外,在本技术一些实施例中,还可以在气泵的周围进行点胶,以对气泵进行胶封,以此来提高气泵的结构稳定性。
65.可继续参照图3,血压测量设备还可以包括驱动装置7,该驱动装置7与供排气装置4电连接,驱动装置7可用于为供排气装置4的充放气过程提供驱动力。在本技术中,也不对驱动装置7进行具体的限定,示例性的,可为电机等。
66.在具体设置第一气压传感器5a时,该第一气压传感器5a可以为差压式气压传感
器。另外,该第一气压传感器5a具有第一气孔501和第二气孔502。其中,第一气孔501和第二气孔502在第一气压传感器5a上的具体设置位置不限,示例性的,第一气孔501和第二气孔502可以设置于第一气压传感器5a的相背设置的两个端面。另外,第一气压传感器5a还可以包括压力薄膜(图中未示出),该压力薄膜设置于第一气孔501和第二气孔502之间,在第一气孔501和第二气孔502处的气压不等时,该压力薄膜会产生形变,第一气压传感器5a可根据压力薄膜产生的形变的大小以及方向,判断出第一气孔501侧和第二气孔502侧之间的气压差。
67.在图3所示的实施例中,第一气压传感器5a的第一气孔501可通过第二气路62与气囊2的气腔相连通。另外,主体1的侧壁上开设有透气孔102a,该透气孔102a与外界大气相连通。第一气压传感器5a的第二气孔502通过第三气路63与透气孔102a相连通,从而实现第二气孔502与外界大气的连通。在本技术中,不对透气孔102a的具体设置位置进行限定,其可以根据主体1的结构设计以及第一气压传感器5a的具体设置位置进行调整。另外,本技术不对透气孔102a的具体形状进行限定,示例性的,可以为圆孔、椭圆孔或者方孔等规则形状的孔,也可以为一些可能的非规则形状的孔。
68.由此可知,在本技术中,第一气压传感器5a的压力薄膜的第一气孔501侧为气囊2内的气压,而压力薄膜的第二气孔502侧为大气压。因此,第一气压传感器5a只用于检测气囊2内的气压与大气压之间的气压差,而我们通常认为大气压恒定,则采用本技术提供的血压测量设备测量到的血压值较为准确。另外,由于第一气压传感器5a测量的气压差不受主体1的腔体101内的气压的影响,从而使该血压测量设备的血压测量准确性得到进一步提高。
69.在本技术各实施例中,不对各气路的具体设置形态进行限定,其可以呈直线设置,也可以呈曲线设备,具体可以根据血压测量设备的内部空间的部件进行适应性的调整。可以理解的是,为了使图示清楚,在本技术各示意图中,均将各气路示意为直线。
70.另外,考虑到各气路(例如第一气路61、第二气路62和第三气路63等)中的气体在流动的过程可能会出现气流波动的问题,而该气流的波动可能会造成气压的波动,从而影响血压测量的结果。为了解决这一问题,可参照图4a,图4a展示了本技术一种实施例的气路的内部结构示意图。在图4a所示的实施例中,气路的管道601的内壁上设置有多个凸起602,该多个凸起602沿管道601的延伸方向间隔且交替排布,以用于改善气流波动引起的气压波动噪声,从而达到提高血压测量准确性的目的。
71.在本技术中,不对凸起602的具体设置形式进行限定,其截面形状示例性的可为图4a中所示的圆形,也可以为图4b中所示的矩形,或者为图4c中所示的三角形等规则形状。在本技术另外一些实施例中,凸起602也可以为一些可能的非规则形状,在此不进行一一列举,但其均应理解为落在本技术的保护范围之内。
72.在本技术上述实施例中对第一气压传感器5a通过第二气路62与主体1的侧壁上的透气孔102a相连接,以使第一气压传感器5a的第二气孔502与外界大气相连通的介绍的基础上,在本技术一些可能的实施例中,还可以使供排气装置4的进气气路401和泄气气路402均通过开设于主体1的侧壁上的透气孔直接与外界大气相连通。可以参照图5,图5给出了本技术另一种实施例的血压测量设备的结构示意图。在该实施例中,主体1的侧壁还可以开设有透气孔102b和透气孔102c,其中,供排气装置4的进气气路401通过透气孔102b与外界大
气相连通,排气气路402通过透气孔102c与外界大气相连通。这样,供排气装置4在工作的过程中,可将外界大气中的空气通过进气气路401和第一气路61充入气囊2。另外,当气囊2中的气体需要排出时,供排气装置4通过第一气路61将气囊2中的气体抽出,并经泄气气路402排放到外界大气中。在该过程中,主体1的腔体101内的气压不受供排气装置4工作的影响,其可以维持在一个稳定的状态。采用该实施例提供的血压测量设备,可避免主体1的腔体101中的气压对供排气装置4的正常工作的影响,从而可有效的提高血压测量设备的安全性以及工作可靠性。
73.为了保证供排气装置4能够正常工作,除了上述提到的将进气气路401和泄气气路402均通过主体1的侧壁上的透气孔直接与外界大气相连通的设置方式外,还可通过减小主体1的腔体101内的负压来实现。其中,在本技术中,减小主体1的腔体101内的负压是指减小腔体101内与主体1外部的外界大气之间的气压差。
74.为降低主体1的腔体101内的负压,传统的血压测量设备通常在主体1的侧壁开设有透气孔102d,且在透气孔102d处不进行防水设计。可继续参照图2,这样可使主体1的腔体101内的空气能够得到及时的补充,从而保证血压测量的准确性。
75.但是,血压测量设备的大多数功能模块和器件均设置于主体1的腔体101内,如果不对主体1进行防水设计,血压测量设备的主体1的腔体101内的功能模块和器件存在较大的损坏的风险,其会影响血压测量设备的使用寿命。尤其是对于智能手表或者智能手环这些用户经常佩戴,且应用场景较多的便携式电子设备,其防水设计的必要性更加显著。
76.基于此,可参照图6,在本技术实施例中,为了减小主体1的腔体101内的负压,主体1的侧壁上还可以设置有透气孔102d,该透气孔102d可用于将主体1的腔体101与外界大气相连通,以能够及时的为腔体101补充空气,从而降低主体1的腔体101内的负压,以保证主体1内的功能模块和器件的正常工作。在本技术中,不对透气孔102d的具体设置位置进行限定,其可以根据主体1的结构设计进行调整。另外,透气孔102a与透气孔102d可开设于主体1的同一侧壁,也可以开设于不同的侧壁。
77.为了能够及时的为腔体101补充空气,在本技术一些可能的实施例中,可使透气孔102d的孔径开设的较大,示例性的,可大于等于1mm。另外,透气孔102d可为多个,该多个透气孔102d可以但不限于呈阵列排布。
78.在图6所示的实施例中,为了使血压测量设备的整机具有较好的防水性能,可以在透气孔102d处设置第一防水透气装置8,该第一防水透气装置8既具有防水的特性,又能够使外界大气中的空气通过,以进入主体1的腔体101内。参照图7,图7展示了本技术一种实施例提供的第一防水透气装置8的结构示意图。该第一防水透气装置8可以包括多个层叠设置的层结构,例如,包括泡棉801、平衡孔钢片802、聚对苯二甲酸乙二醇酯(polyethylene terephthalate,pet)层和防水膜804。其中,平衡孔钢片802设置于泡棉801和pet层803之间,泡棉801和pet层803可分别与平衡孔钢片802粘接固定。由于平衡孔钢片802的强度较大,因此其可对整个防水透气装置起到支撑的作用。另外,防水膜804可设置于pet层803的背离平衡孔钢片802的一侧,且防水膜804可以但不限于通过双面胶805粘接固定于pet层803。在将该防水透气装置设置于主体1时,可使第一防水透气装置8的防水膜804的背离pet层803的一侧通过防水胶806粘接固定于主体1的侧壁上,并将透气孔102d覆盖。
79.另外,为了满足血压测量设备在进行血压测量过程中对气流量的要求,在本技术
一些实施例中,可对第一防水透气装置8的透气量进行设置,示例性的,可使第一该防水透气装置8的透气量大于等于100ml/min。在本技术另外一些实施例中,还可以对第一防水透气装置8的设置面积进行调整,示例性的,该第一防水透气装置8的面积可大于10mm^2。
80.采用本技术提供的血压测量设备,通过设置透气孔102d可满足该血压测量设备整机的透气性能。另外,通过在透气孔102d处设置第一防水透气装置8,可使血压测量设备具有较好的防水透气性能,以使血压测量设备可用于一些防水级别要求较高的场景下,从而使血压测量设备的适用场景得到了扩展。又由于采用本技术提供的血压测量设备进行血压测量的过程中,第一气压传感器5a测量得到的压差不受主体1的腔体101内的气压的影响,其使该血压测量设备测量到的血压值较为准确。
81.由上述实施例的介绍可知,本技术实施例提供的血压测量设备的透气孔102a只是用于将第一气压传感器5a的第二气孔502与外界大气相连通,在一些对于第一气压传感器5a的防水要求不高,或者第一气压传感器5a自身带有防水结构,又或者透气孔102a的孔径较小的场景下,该透气孔102a处可以不进行防水设计,从而简化血压测量设备的结构。但是,在一些防水要求较高的血压测量设备中,也可以在透气孔102a处设置防水透气装置。可继续参照图3,在该实施例中,透气孔102a处设置有第二防水透气装置9,该第二防水透气装置9可与透气孔102d处的第一防水透气装置8相同,也可以不同,在本技术中不对其进行具体限定。
82.值得一提的是,在图5所示的实施例中,由于供排气装置4的进气气路401和泄气气路402均直接通过开设于主体1的侧壁上的透气孔与外界大气相连通。因此,在图5所示的实施例中,主体1的侧壁上可不开设用于将腔体101与外界大气相连通的透气孔102d,从而使该血压测量设备的防水性能较好。另外,由于透气孔102b和透气孔102c用于供排气装置4的进气和排气,故其开设的尺寸可较小,这样可不在透气孔102b和透气孔102c处设置防水透气装置。但是,在一些防水要求较高的血压测量设备中,也可以在透气孔102b和透气孔102c处设置防水透气装置,该防水透气装置可参照上述的第一防水透气装置8和第二防水透气装置9进行设置,在此不进行赘述。
83.由于在图6所示的实施例中,主体1的腔体101内部的空气主要通过透气孔102d进行补充,而在透气孔102d处设置有第一防水透气装置8。若第一防水透气装置8出现堵塞等问题,其透气性能会大大降低,从而会造成整个血压测量设备对于血压测量的精度的影响。为了解决这一问题,可继续参照图6,还可以在血压测量设备的主体1的腔体101内设置有第二气压传感器5b。该第二气压传感器5b为绝压传感器,假设主体1的腔体101内的气压为p1,则第二气压传感器5b测量的气压值为p1。
84.在本技术中,可为p1设定一个第一阈值,这样,当第二气压传感器5b测量的气压值p1小于该设定的第一阈值时,则确定该第一防水透气装置8的透气性能良好。在本技术实施例中,第一阈值的数值可以根据具体的应用场景进行设定,示例性的,可将第一阈值设定为95kpa,这样,在第二气压传感器5b测量的气压值p1高于95kpa时,则认为第一防水透气装置8的透气性能良好。
85.另外,当第二气压传感器5b测量的气压值p1低于第一阈值时,则判断该第一防水透气装置8堵塞,这时用户可对第一防水透气装置8进行更换或清理,以保证血压测量装置的安全性及对血压测量的稳定性。
86.可以理解的是,在本技术中,第一防水透气装置8可以设置于主体1的外侧,也可以设置于主体1的内侧。另外,第一防水透气装置8与主体1的固定方式可以为螺纹锁接或者卡接等,以能够实现第一防水透气装置8与主体1的可拆卸连接,从而便于第一防水透气装置8的更换以及清洗等。
87.参照图8,图8为本技术另一个可能的实施例提供的血压测量设备的框架结构示意图。图8所示的实施例的血压测量设备与上述图6所示的实施例的不同之处主要在于:在图8所示的实施例中,血压测量设备还包括气路腔体10,该气路腔体10设置于主体1的腔体101内。另外,该气路腔体10可以但不限于通过粘接或者螺纹联接的方式固定于主体1的侧壁朝向腔体101的一侧,以提高气路腔体10的结构稳定性。
88.基于血压测量设备的结构的上述变化,在本技术该实施例中,第一气压传感器5a和供排气装置4与气囊2之间的连接方式也做了适应性的变化。具体实施时,可继续参照图8,供排气装置4通过第一气路61与气路腔体10连通,第一气压传感器5a的第一气孔501通过第二气路62与气路腔体10连通。这样,第一气路61和第二气路62可通过气路腔体10进行连通。另外,气路腔体10可通过第四气路64与气囊2的气腔连通。图8所示的实施例的血压测量设备的其它结构均可参照上述任一实施例进行设置,在此不进行赘述。
89.采用本技术该实施例提供的血压测量设备,通过增加气路腔体10的设计,可通过气路腔体10将供排气装置4的进气气路401和泄气气路402与气囊2的气腔连通。当供排气装置4工作时,该供排气装置4可把气体从主体1的腔体101吸入到气路腔体10,随后进入气囊2的气腔。另外,供排气装置4还可通过将气路腔体10内的气体由泄气气路402排出,来实现气囊2内的气体的排出。
90.另外,第一气压传感器5a与供排气装置4通过气路腔体10连接后,可只通过一个气路(第四气路64)与气囊2相连通。可一并参照图9,图9展示了本技术一个可能的实施例的与图8相对应的血压测量设备的主体1的结构示意图。由图9可以看出,在血压测量设备的主体1的侧壁上可只开设一个用于与气囊2连接的连接孔103。另外,参照图10,图10展示了本技术一个可能的实施例的与图8相对应的血压测量设备的气囊2的结构示意图。在该实施例中,气囊2可设置有一个气嘴201,该一个气嘴201可插设于上述图9中所示的主体1的一个开孔,从而实现气囊2和主体1的单气嘴连接,其可有效的减少血压测量设备的整机的连接孔103的开设数量,以提高血压测量设备整体的密封性,其可降低血压测量设备的主体1的腔体101内的功能模块和器件损坏的风险,从而有利于延长血压测量设备的使用寿命。
91.另外,在本技术实施例中,不对气囊2的气嘴201的具体结构进行限定,示例性的,可参照图11,图11展示了本技术一个可能的实施例提供的气囊2的气嘴201的结构示意图。该气嘴201可自气囊2的一侧表面沿朝向主体1的方向凸出于气囊2,在气嘴201上可设置有卡接结构2011,该卡接结构2011可以但不限于为凸出于气嘴201表面的环形凸起结构。这样,在气嘴201插接于连接孔103时,可以使气嘴201通过该卡接结构2011卡设于主体1的连接孔103。另外,通过合理设计,还可以使该卡接结构2011起到防水密封的作用。在本技术一些可能的实施例中,还可以将气嘴201设置于主体1,而将连接孔103设置于气囊2,此时,也可以通过气嘴和连接孔103的插接来实现主体1和气囊2的连接。
92.可以理解的是,当气囊2和主体1通过单气嘴实现连接时,气路腔体10可通过第四气路64与气囊2的气嘴201相连接,从而实现气路腔体10与气囊2的气腔的连通。
93.值得一提的是,图8所示的血压测量设备的其它结构可参照上述任一实施例进行设置,例如,在图8所示的血压测量设备的主体1的侧壁上设置有透气孔102b以及第一防水透气装置8时,也可以在图8所示的血压测量设备的腔体101内设置第二气压传感器5b,以起到对第一防水透气装置的透气性的检测的作用。又例如,可以在第一气路61、第二气路62和第三气路63的管道中设置有凸起,对于图13所示的血压测量设备的其它结构的具体设置方式在此不进行一一赘述。
94.在本技术一些实施例中,为保证血压测量设备的安全性,在血压测量设备中还可以设置有气阀11,该气阀11可与供排气装置4连通,其可作为供排气装置4的一个备用的泄气口。在具体实施时,可以参照图12,图12为本技术另一个可能的实施例的血压测量设备的框架结构示意图。通过将图12所示的血压测量设备与图8所示的血压测量设备进行对比可知,两个实施例的不同之处主要在于:图12所示的实施例中的血压测量设备中还设置有气阀11,该气阀11包括两个气口,该两个气口可分别定义为第一气口1101和第二气口1102,第一气口1101可通过第五气路65与气路腔体10相连通,第二气口1102通过第六气路66与主体1的腔体101相连通。
95.另外,由上述对供排气装置4的进气气路401和泄气气路402通过主体1的侧壁上的透气孔直接与外界大气相连通的介绍可以知道,在本技术一些实施例中,也可以使气阀11的第二气口1102通过第六气路66与开设于主体1的侧壁的透气孔直接与外界大气相连通,以减小气阀11的工作对主体1的腔体101内气压的影响。
96.在本技术该实施例中,由于供排气装置4的泄气气路402与气路腔体10相连通,则气阀11可与供排气装置4的泄气气路402相连通。这样,在供排气装置4的自身的泄气气路402故障或泄气气路402不通等情况下,可通过气阀11的开启来实现气路腔体10的泄气,从而避免对供排气装置4、第一气压传感器5a或者气囊2等器件造成损坏,以保证血压测量设备在进行血压测量过程中的安全性。
97.在本技术中,不对气阀11的具体设置形式进行限定,示例性的,气阀11可为电磁阀。这样,可根据需要对气阀11的开启以及关闭进行程序的设定,从而可简化血压测量设备的操作,以提高用户的使用体验。例如,在本技术一个可能的实施例中,可将气阀11配置为:当气路腔体10内的气压大于一定值(比如300mmhg)时,气阀11被电控打开放气;而当气路腔体10内的气压值降低到一定值(比如10mmhg)及以下时,气阀11关闭。从而使气阀11能够根据气路腔体10内的气压值来适应性的开启或者关闭,从而使整个气路系统内的气压维持在一个较为稳定的状态,以提高血压测量设备工作的可靠性。
98.由上述实施例对气阀11的介绍可知,通过设置气阀11可有效的提高血压测量设备的安全性能。基于此,在本技术一些可能的实施例中,还可以在血压测量设备的气路(例如第一气路61、第三气路63或第四气路64等)上设置气阀11,以通过气阀11来控制对应的气路的开关,从而实现对该气路中气体的流通状态的灵活控制,以进一步提高血压测量设备工作的可靠性。
99.值得一提的是,图12所示的血压测量设备的其它结构可参照上述任一实施例进行设置,例如,在图12所示的血压测量设备的主体1的侧壁上设置有透气孔102d以及第一防水透气装置8时,也可以在图12所示的血压测量设备的腔体101内设置第二气压传感器5b,以起到对第一防水透气装置的透气性的检测的作用。又例如,可以在第一气路61、第二气路
62、第三气路63和第四气路64的管道中设置有凸起,对于图12所示的血压测量设备的其它结构的具体设置方式在此不进行一一赘述。
100.另外,在本技术中,为了提高血压测量设备对于血压值测量的准确性,可为第一气压传感器5a增加一个校准设备,以对第一气压传感器5a测量得到气囊2的气腔内的气压值进行校准。具体实施时,可参照图13,图13为本技术另一个可能的实施例提供的血压测量设备的框架结构示意图。在该实施例中,血压测量设备增加了第三气压传感器5c,在该实施例中,该第三气压传感器5c也可为差压式气压传感器。第三气压传感器5c包括第三气孔503和第四气孔504,第三气孔503可通过第七气路67与气路腔体10相连通,以实现第三气孔503与气囊2的气腔的连通。另外,主体1的侧壁上开设有透气孔102e,第三气压传感器5c的第四气孔504通过第八气路68与外界大气相连通。在本技术中,不对透气孔102e的具体设置位置进行限定,其可以根据主体1的结构设计以及第三气压传感器5c的具体设置位置进行调整。另外,可以理解的是,在透气孔102e处可设置第三防水透气装置12,该第三防水透气装置12可参照上述任一实施例中对于透气孔102d处的第一防水透气装置8的介绍进行设置,在此不进行赘述。
101.由上述对第三气压传感器5c的具体设置方式的介绍可以理解,第三气压传感器5c与第一气压传感器5a均是对气路腔体10和外界大气之间的压差进行测量。基于此,可通过对第一气压传感器5a测量得到的压差与第三气压传感器5c测量得到的压差进行对比,来判断第一气压传感器5a的测量是否准确。其判断过程例如可为:当第一气压传感器5a测量得到的压差与第三气压传感器5c测量得到的压差的差值在第一阈值范围内时,则确定第一气压传感器5a测量得到的压差准确,并使血压测量设备根据该压差计算得到对应的血压值。在本技术中,第一阈值范围可根据具体的应用场景进行设定,示例性的,可为-200pa~200pa。
102.另外,当第一气压传感器5a测量得到的压差与第三气压传感器5c测量得到的压差的差值在第一阈值范围外时,则判断第一气压传感器5a测量得到的压差不准确,则将第一气压传感器测量的该组压差数据舍弃,并进行下一次的测量,直到第一气压传感器5a测量得到的压差与第三气压传感器5c测量得到的压差的差值落入第一阈值范围,并使血压测量设备根据该压差计算得到对应的血压值为止。
103.值得一提的是,图13所示的实施例的血压测量设备的其它结构均可参照上述任一实施例进行设置,例如,在图13所示的血压测量设备的主体1的侧壁上设置有透气孔102d以及第一防水透气装置8时,也可以在图13所示的血压测量设备的腔体101内设置第二气压传感器5b,以起到对第一防水透气装置8的透气性的检测的作用。又例如,可以在第一气路61、第二气路62、第三气路63、第四气路64、第五气路65、第六气路66、第七气路67和第八气路68的管道中设置有凸起。又例如,当血压测量设备中未设置有气路腔体10时,第三气压传感器5c的第三气孔503可通过第七气路67与气囊2的气腔直接连通,对于图13所示的血压测量设备的其它结构的具体设置方式在此不进行一一赘述。
104.采用本技术该实施例的血压测量设备,通过增加第三气压传感器5c的设置,以对第一气压传感器5a测量的压差进行校准,可以有效的提高血压测量设备对于血压值测量的准确性。
105.在本技术中,第三气压传感器5c除了可以采用如图13中所示的差压式气压传感器
外,还可采用绝压式气压传感器。具体实施时,可以参照图14,图14展示了本技术另一种可能的实施例的血压测量设备的框架结构示意图。在该实施例中,第三气压传感器5c只有一个第三气孔,该第三气孔通过第七气路67与气路腔体10相连通。
106.在图14所示的实施例中,可通过该绝压式的第三气压传感器5c测量得到的气囊2内的气压,对第一气压传感器5a测量到的气囊2的气腔内的气压进行校准。其校准方法例如可以为:当第一气压传感器5a测量得到的气囊2的气腔内的气压与第三气压传感器5c测量得到的气囊2的气腔内的气压的差值在第一阈值范围内时,则确定第一气压传感器5a测量得到的气囊2的气腔内的气压准确,并使血压测量设备根据该气压计算得到对应的血压值。在本技术中,第一阈值范围可根据具体的应用场景进行设定,示例性的,可为-200pa~200pa。
107.另外,当第一气压传感器5a测量得到的气囊2的气腔内的气压与第三气压传感器5c测量得到的气囊2的气腔内的气压的差值在第一阈值范围外时,则确定第一气压传感器测量得到的气囊2的气腔内的气压不准确,则将第一气压传感器5a测量的该组气压数据舍弃,并进行下一次的测量,直到第一气压传感器5a测量得到的气囊2的气腔内的气压与第三气压传感器5c测量得到的气囊2的气腔内的气压的差值落入第一阈值范围,并使血压测量设备根据该气压计算得到对应的血压值为止。
108.由上述实施例中对第一气压传感器5a的工作原理的介绍可以知道,第一气压传感器5a测量得到的气压差由外界大气压和气囊2的气腔内的气压直接决定,通常我们认为外界大气压为恒定值,因此,通过第一气压传感器5a测量的压差和外界大气压可以直接得到气囊2的气腔内的气压值。
109.值得一提的是,图14所示的实施例的血压测量设备的其它结构均可参照上述任一实施例进行设置,例如,在图14所示的血压测量设备的主体1的侧壁上设置有透气孔102d以及第一防水透气装置8时,也可以在图14所示的血压测量设备的腔体101内设置第二气压传感器5b,以起到对第一防水透气装置8的透气性的检测的作用。又例如,可以在第一气路61、第二气路62、第三气路63、第四气路64、第五气路65、第六气路66和第七气路67的管道中设置有凸起。又例如,当血压测量设备中未设置有气路腔体10时,第三气压传感器5c的第三气孔可通过第七气路67与气囊2的气腔直接连通,对于图14所示的血压测量设备的其它结构的具体设置方式在此不进行一一赘述。
110.采用本技术该实施例的血压测量设备,通过增加第三气压传感器5c的设置,以对第一气压传感器5a测量的结果进行校准,其可以有效的提高血压测量设备对于血压值测量的准确性。
111.参照图15,图15为本技术另一种实施例提供的血压测量设备的结构示意图。该实施例的血压测量设备的结构与上述任意实施例均有不同,其不同之处主要在于:第一气压传感器5a设置于主体1的腔体101内部,且主体1的侧壁上未设置透气孔102a,而第一气压传感器5a的第二气孔502与主体1的腔体101相连通。则在该实施例中,第一气压传感器5a测量得到的压差由主体1的腔体101内的气压和气囊2的气腔内的气压决定。
112.为减小主体1的腔体101内的气压的变化对于第一气压传感器5a测量到的气压差的准确性的影响,可继续参照图15,在主体1的腔体101内还可以设置有第二气压传感器5b,该第二气压传感器5b为绝压式传感器,该第二气压传感器5b靠近第一气压传感器5a设置。
其中,第二气压传感器5b仅设置有一个第五气孔505,该第五气孔505与第一气压传感器5a的第二气孔502相对设置。在一个可能的实施例中,可以使第五气孔505与第二气孔502同轴设置,另外,第五气孔505和第二气孔502之间的间距小于等于1mm。
113.由于第二气压传感器5b只包括一个第五气孔505,其可以对主体1的腔体101内的气压进行测量。又由于第五气孔505与第二气孔502之间的间距较小,则第五气孔505侧测量到的气压与第二气孔502侧测量到的气压可以认为相等。
114.在采用本技术图15所示的血压测量设备进行血压测量时,当通过供排气装置4向气囊2的气腔充气时,主体1的腔体101内的空气被抽到气囊2的气腔。这样,会在主体1的腔体101内形成一个低于大气压的低气压空间,假设主体1的腔体101内的气压为p1(绝压传感器的读值),外界大气压为p0,气囊2的气腔内的气压为p。可以理解的是,该气压p为气囊2的气腔内的差压值,其绝压值为p+p0。则上述各气压值之间的关系如下:第一气压传感器5a的读值:p2=p+p0-p1;因此,气囊2内真实的气压为:p=p2-δp(δp=p0-p1),则p=p2-(p0-p1)。
115.可以理解的是,在本技术该实施例中,虽然主体1内气压较低,但是通过在主体1的腔体101内设置第二气压传感器5b,这样,可将外界大气的气压p0与第二气压传感器5b测量的气压值的差值作为计算气囊2的气腔内的气压的误差值,并可以得到气囊2内的真实气压值。从而可有效的提高该血压测量设备的血压测量的精度。
116.另外,在本技术该实施例中,血压测量设备的透气孔102d处可以设置有第一防水透气装置8,这样,在实现了整机防水的同时,还可以保证血压测量设备测量的血压值的精度。
117.又由于第二气压传感器5b设置于主体2的腔体101内,且第二气压传感器5b为绝压传感器。由上述对通过设置第二气压传感器5b对第一防水透气装置8的堵塞程度的检测的介绍可以理解,在本技术图15所示的实施例中,还可以根据血压测量过程中,第二气压传感器5b的测量的气压值p1的大小来判断第一防水透气装置8的堵塞程度。具体实施时,可为p1设定一个第一阈值,当第二气压传感器5b测量的气压值p1高于该第一阈值时,则确定该第一防水透气装置8的透气性能良好。和/或,当第二气压传感器5b测量的气压值p1小于该第一阈值时,则确定该第一防水透气装置8的透气性能不佳,这时用户可对第一防水透气装置8进行更换或清理,以保证血压测量设备的安全性及对血压测量的稳定性,从而使血压测量设备测量的血压值较为准确。
118.在本技术中,第一防水透气装置8可以设置于主体1的外侧,也可以设置于主体1的内侧。另外,第一防水透气装置8与主体1的固定方式可以为螺纹锁接或者卡接等,以能够实现第一防水透气装置8与主体1的可拆卸连接,从而便于第一防水透气装置8的更换以及清洗等。
119.值得一提的是,图15所示的实施例的血压测量设备的其它结构均可参照上述任一实施例进行设置,例如,可以在血压测量设备中设置有气路腔体10,以使供排气装置4通过第一气路61与气路腔体10连通,使第一气压传感器5a的第一气孔501可通过第二气路62与气路腔体10连通,并使气路腔体10通过第四气路64与气囊2相连通,以实现主体1和气囊2之间的单气嘴的连接。对于图15所示的血压测量设备的其它结构的具体设置方式在此不进行一一赘述。
120.采用本技术提供的血压测量设备进行血压测量时,可以有效的减小血压测量设备的主体1的腔体101内的气压对第一气压传感器5a的测量值的影响,从而使血压测量结果较为准确。另外,该血压测量设备的主体1上可设置有第一防水透气装置8,以能够实现血压测量设备的防水设计。另外,通过第二气压传感器5b的设置可以对第一防水透气装置8的透气性能进行检测,以避免第一防水透气装置8的堵塞对血压测量设备的测量结果造成影响。
121.以上,仅为本技术的具体实施方式,但本技术的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本技术揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本技术的保护范围之内。因此,本技术的保护范围应以权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1