一种人体保温用Janus红外辐射膜及其制备方法与流程

文档序号:18304796发布日期:2019-07-31 10:58阅读:425来源:国知局

本发明属于辐射调控节能领域,涉及一种人体保温用janus红外辐射膜及其制备方法。



背景技术:

保持稳定的体温,对于人体正常的新陈代谢及良好的免疫能力有着重要的意义。人体具有精确可靠的体温调节机制,如出汗、颤抖和血液循环,但波动的天气会破坏人体的热舒适,甚至影响人的健康。例如,剧烈变化的天气易造成免疫系统的不平衡,人们容易患呼吸道感染甚至心脏相关疾病。在室内环境中,通常有两种方法来保持人体的正常体温:空调和衣物。对于空调而言,大部分能源浪费到建筑物的空旷空间和无生命物体上,导致巨大的能源消耗;衣物则是维持人体体温的另一种策略。然而,传统服装由于其不可改变的隔热性能,通常无法适应波动的天气。最近,个人热管理已成功证明,利用衣物实现加热或冷却来保持人类的舒适感。

基于辐射传热规律,人体红外辐射量对人体温有很大影响。目前,人体红外辐射控制的个人热管理材料的开发已引起相当大的关注。例如,具有致密金属涂层的聚酯薄膜覆盖层,可作为红外反射层以阻挡辐射热损失。然而,缺乏透气性导致使用者体感不舒服,极大地限制了它们在日常使用中的广泛应用。尽管人体红外辐射控制在热管理方面取得了巨大进步,但大多数个人热管理材料都专注于辐射保温纺织品,忽略了对散热的需求。

在一种材料中开发具有保温和散热双功能仍然是一个很大的挑战。

本发明为实现保温和散热功能的集成化,利用能够兼容多种特性的janus膜材料实现对人体热辐射的调控,帮助使用者适应不断变化的天气环境。具体为将高发射率的纤维与低发射率纤维机械纠缠为一个膜材料,实现一面具有高的发射率和另一面具有低发射率的目的。



技术实现要素:

针对上述现有技术中存在的不足,本发明的目的是提供一种同时兼具高发射率和低发射率特性的janus膜,由高红外发射率的纤维与低红外发射率的纤维互相纠缠、自组装成膜。

技术方案:本发明利用不同发射率的纤维自组装并互相纠缠制备具有不同保温和散热的janus膜。

一种人体保温用janus红外辐射膜,是由高红外发射率纤维层、过渡纤维层和低发射率纳米纤维层为单元依次叠加,纤维层间机械纠缠而成。

所述高发射率纤维层厚度0.1~5mm,孔径0.05~3μm,高发射率纤维直径为0.05~15μm,长度为1~100μm。

所述过渡纤维层厚度0.05~2μm,孔径0.02~1μm,纤维直径为20~800nm,长度为2~80μm。

所述低发射率纤维层厚度0.1~10mm,孔径10~200nm,低发射率纤维直径10~500nm,长度为1~20μm。

本发明还公开了上述人体保温用janus红外辐射膜的制备方法,包括如下步骤:

a)、按每升水分散0.1~5g高红外发射率纤维计,得高发射率纤维分散液;按每升水分散0.05~2g过渡纤维计,得过渡纤维分散液,按每升水分散0.1~10g低发射率纤维,得低发射纤维分散液;

b)、固定致密多孔滤膜,按照每平方厘米致密多孔膜使用0.5~100ml高发射率纤维分散液、1~50ml过渡纤维分散液和5~100ml低发射纤维分散液计,依次将高发射率纤维分散液、过渡纤维分散液和低发射率纤维分散液真空抽滤,固定在致密多孔膜表面,然后剥离致密多孔膜,制得人体保温用janus红外辐射膜。

本发明较优公开例中,步骤a)中所述高发射率纤维为双金属氢氧化物纤维、氧化锌纤维、纤维素纤维、氧化铝陶瓷纤维、玻璃纤维、二氧化钛纤维等中的任一种;所述过渡纤维为二氧化锰纳米线、碳纤维、玻璃纤维、碳化硅纤维、棉纤维等中的任一种;所述低发射率纤维为银纳米纤维、铜纳米纤维、金纳米纤维、铝纳米纤维、铁纳米纤维、钴纳米纤维、铟纳米纤维等中的任一种。

本发明较优公开例中,步骤b)中所述致密多孔滤膜为聚四氟乙烯滤膜、聚醚砜滤膜、混合纤维素酯滤膜、尼龙滤膜、聚偏氟乙烯滤膜中的任一种。

有益效果

本发明公开了一种具有不对称红外辐射性能的janus红外辐射膜,该材料的组成和结构可控,在宽温度变化范围内具有高的人体保温性能。将相互对立的辐射性能集成在同一个膜材料内,具有结构简单,性能优异的特点。本发明所公开的制备方法简单可控,得到的janus膜以机械纠缠的方式内聚,具有机械强度高、柔韧性的优势,同时所形成的多孔结构有利于皮肤呼吸,保持高的穿着性。该方法的操作简便,能有效控制膜材料的红外辐射性能。

具体实施方式

下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。

除非另外限定,这里所使用的术语(包含科技术语)应当解释为具有如本发明所属技术领域的技术人员所共同理解到的相同意义。还将理解到,这里所使用的术语应当解释为具有与它们在本说明书和相关技术的内容中的意义相一致的意义,并且不应当以理想化或过度的形式解释,除非这里特意地如此限定。

实施例1

a)、按每升水分散4g氧化锌纤维计,得氧化锌纤维分散液;按每升水分散1g二氧化锰纳米线计,得二氧化锰纳米线分散液,按每升水分散6g银纳米纤维,得银纳米纤维分散液;

b)、固定聚四氟乙烯滤膜,按照每平方厘米聚四氟乙烯滤膜使用20ml氧化锌纤维分散液、30ml二氧化锰纳米线分散液和70ml银纳米纤维分散液计,依次将氧化锌纤维分散液、二氧化锰纳米线分散液和银纳米纤维分散液真空抽滤固定在聚四氟乙烯滤膜表面,剥离聚四氟乙烯滤膜,获得人体保温用janus红外辐射膜。

实施例2

a)、按每升水分散2g氧化铝陶瓷纤维计,得氧化铝陶瓷纤维分散液;按每升水分散0.5g二氧化锰纳米线计,得二氧化锰纳米线分散液,按每升水分散6g银纳米纤维,得银纳米纤维分散液;

b)、固定尼龙滤膜,按照每平方厘米聚四氟乙烯滤膜使用7ml氧化铝陶瓷纤维分散液、40ml二氧化锰纳米线分散液和60ml银纳米纤维分散液计,依次将氧化铝陶瓷纤维分散液、二氧化锰纳米线分散液和银纳米纤维分散液真空抽滤固定在尼龙滤膜表面,剥离尼龙滤膜,获得人体保温用janus红外辐射膜。

实施例3

a)、按每升水分散5g氧化锌纤维计,得氧化锌纤维分散液;按每升水分散1g碳纤维计,得碳纤维分散液,按每升水分散8g银纳米纤维,得银纳米纤维分散液;

b)、固定尼龙滤膜,按照每平方厘米尼龙滤膜使用90ml氧化锌纤维分散液、35ml碳纤维分散液和75ml银纳米纤维分散液计,依次将氧化锌纤维分散液、碳纤维分散液和银纳米纤维分散液真空抽滤固定在尼龙滤膜表面,剥离尼龙滤膜,获得人体保温用janus红外辐射膜。

实施例4

a)、按每升水分散3g氧化锌纤维计,得氧化锌纤维分散液;按每升水分散1g二氧化锰纳米线计,得二氧化锰纳米线分散液,按每升水分散5g铜纳米纤维,得铜纳米纤维分散液;

b)、固定聚四氟乙烯滤膜,按照每平方厘米聚四氟乙烯滤膜使用80ml氧化锌纤维分散液、40ml二氧化锰纳米线分散液和80ml铜纳米纤维分散液计,依次将氧化锌纤维分散液、二氧化锰纳米线分散液和铜纳米纤维分散液真空抽滤固定在聚四氟乙烯滤膜表面,剥离聚四氟乙烯滤膜,获得人体保温用janus红外辐射膜。

实施例5

a)、按每升水分散2g纤维素纤维计,得纤维素纤维分散液;按每升水分散1g二氧化锰纳米线计,得二氧化锰纳米线分散液,按每升水分散5g银纳米纤维,得银纳米纤维分散液;

b)、固定混合纤维素酯滤膜,按照每平方厘米混合纤维素酯滤膜使用20ml纤维素纤维分散液、30ml二氧化锰纳米线分散液和50ml银纳米纤维分散液计,依次将纤维素纤维分散液、二氧化锰纳米线分散液和银纳米纤维分散液真空抽滤固定在混合纤维素酯滤膜表面,剥离混合纤维素酯滤膜,获得人体保温用janus红外辐射膜。

实施例6

a)、按每升水分散5g氧化锌纤维计,得氧化锌纤维分散液;按每升水分散2g玻璃纤维计,得玻璃纤维分散液,按每升水分散1g银纳米纤维,得银纳米纤维分散液;

b)、固定聚醚砜滤膜,按照每平方厘米聚醚砜滤膜使用10ml氧化锌纤维分散液、20ml玻璃纤维分散液和30ml银纳米纤维分散液计,依次将氧化锌纤维分散液、玻璃纤维分散液和银纳米纤维分散液真空抽滤固定在聚醚砜滤膜表面,剥离聚醚砜滤膜,获得人体保温用janus红外辐射膜。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1