粘结纤维材料的制作方法

文档序号:1955977阅读:254来源:国知局
专利名称:粘结纤维材料的制作方法
技术领域
本发明涉及粘结纤维材料,尤其是适用于包含以粘结剂粘结之盐可溶纤维材料。
耐火陶瓷纤维(RCF)乃众所周知的材料,并且一般包含有由对熔融氧化物加以纺、吹、拉或用别的方法而形成的硅铝酸盐无机纤维。这样的RCF用于制造不同的工业和家庭物品。一般采用RCF以供要求耐超过800℃温度的应用。
很多RCF纤维以针织纤维毯之形式加以利用,其中结构的统一性由针织过程中缠结在一起的该纤维来保持。(这样的产品称之为“毯”)。有时利用粘结剂在暴露于高温后使该纤维固定在一起。能对毯进一步加工而形成切削过的型材,或叠合而形成隔热模件。
RCF纤维也用于所谓“转换产品”的制备。转换产品包含有RCF材料,进一步处理便形成其中RCF或者作为次要成分或者作为主要成分存在的材料。典型的转换产品包括如下“板”-基本上为刚性平板,含通过湿法所制得的无机及/或有机粘结剂(例如使一RCF和粘结剂的悬浮液脱水而制得);“纸”-厚度小于或等于6mm的柔性纤维隔热材料、在制纸机上形成(例如具有粘结剂的纸型RCF);“型材”-由添加入无机及/或有机粘结剂的陶瓷纤维制成的基本上为刚性的型材,加以焙烧或不加以焙烧(例如通过真空成型把RCF制成各种型材);“耐火型材”-按真空成型法使RCF成型,并且用来或者作为家庭和工业的发光体或者作为外观装饰;“可浇铸材料”-可加以浇注的具有无机及/或有机粘结剂的陶瓷纤维(例如,以水泥、混凝土和砂浆之形态的RCF);“胶泥”-一种含带有粘结剂之RCF的可塑材料,它可以镘刀涂抹、用手压制或从压刀枪压出,并且在干燥或加热时硬化;“挤压料”-一种可用于制造挤压型材和管子的胶泥状材料;“纺织料”-结合或不结合其它细丝、线或纱而加以纺织的陶瓷纤维(例如借助纺织工艺制成绳、纱、垫等的RCF)。
在上面提到的应用中均使用粘结剂。粘结剂有两大类“有机粘结剂”-它起改善有关产品在低温下之处理特性的作用,不过它在较高的温度下灼烧。有机粘结剂包括例如像淀粉这样的物质。
“无机粘结剂”-它可有效地改善有关产品在低温下的处理特性,并且它还在暴露于高温后给该产品予完整性。无机粘结剂包括例如像胶态硅石、矾土和粘土这样的物质。
所有以上物质和概念在耐火材料行业中是众所周知的。
近年,已提出许多耐火且可溶于人体流体的不同类型纤维。在这些纤维当中有于WO 96/04214内所披露的铝酸锶纤维。WO 096/04214中所规定的优选组成范围为该纤维包含至少90%、最好至少95重量%的SrO与Al2O3,以及一种纤维成型添加剂,并具有如下的组成SrO41.2重量%-63.8重量%,Al2O329.9重量%-53.1重量%。
本申请人现在推荐的组成为SrO58±0.5重量%,Al2O330±0.5重量%,SiO212±0.5重量%,偶然杂质<30重量%,优选小于2重量%,更优选小于1重量%。此组成展现出可成型性(SiO2使制造容易)与高温性能之间好的折衷。
作为纤维,这些纤维可在超过1260℃的温度使用,有些则可在超过1400℃或甚至超过1500℃的温度使用。然而当试图制做包括无机粘结剂之转换产品时却出现问题。
包括无机粘结剂的转换产品必须满足若干标准。这些标准包括该转换产品在灼烧后的收缩率(它应是低的);该转换产品在未经热处理和灼烧时的强度(它应是高的)和该转换产品的密度(对于指定等级的热导率,它应是低的,以保持低的热容量)。
通常用于RCF或其它硅酸盐纤维的无机粘结剂包括胶态硅石、粘土、磷酸盐和膦酸酯。这些材料似乎同铝酸锶纤维不兼容,因为在对该材料的湿处理中磷酸盐和膦酸酯迁移而产生一种转换产品,其表面含有相对高的浓度而其核心则含有相对低的浓度(因此该转换产品的强度及可加工性就差);
难于为着适当强度而又不降低耐火性起见,在其转换产品中达到足够高的磷酸盐和膦酸酯浓度;胶态硅石和粘土不迁移,但在1400℃或更高的温度却同其纤维反应。
本发明的目的规定粘结剂不迁移至如同磷酸盐或膦酸酯的程度,并且不同其纤维起有害的反应至如同胶态硅石和粘土的程度。
因此,本发明提供一种包括铝酸锶纤维和无机粘结剂的耐火材料,在灼烧后包含有大于35重量%的氧化锶。
优选地该无机粘结剂在灼烧后(基于所存在的锶、铝和硅总量按氧化物计算)具有的组成为Al2O3铝酸锶纤维中的氧化铝含量约65重量%,SiO2铝酸锶纤维中的氧化硅含量约20重量%。
本发明的另外的特点会从权利要求和下面关于附图的描述中明显地看到,其中

图1为按照本发明制得之一系列板的线性收缩率对加料量的曲线图;图2为按照本发明制得之一系列板的横向弯曲强度对密度的曲线图。
下面关于板的描述乃对本发明加以说明,但可适用于型材、防火型材和任何其它包括无机粘结剂的转换产品。
最通用的形式转换产品像板之类的常规方法是凭借真空成型,其中要制备无机纤维(一般为硅铝酸盐纤维)的一种稀浆,典型地含有阴离子胶态硅石。在加入阳离子淀粉时,由于相反电荷的吸引和分立的纤维、淀粉及胶态硅石团块的形成(称之为絮片)而发生絮凝作用。
当将一网状(凸或凹)模置于成型槽中并施加真空时,絮片便被抽至网眼上。一旦模子充分地填满便从稀浆中取出并再施加真空一个时间以除去尽可能多的水。小心地取出这样所得到的约含40%-50%水的型材,使之干燥,并回收过程中的水。
制做一系列的板来检验不同的粘结剂,并发现可溶粘结剂诸如磷酸盐和膦酸酯在水中的残留太多,因此欲达到粘结剂有意义的粘着就要求在稀浆中使用高的浓度。这样的高浓度降低耐火性,导致在高温下过分的收缩率。甚至当此材料中结合入合理用量的粘结剂时,在干燥过程中它迁移而形成具有相对高粘结剂含量的表面和具有相对低粘结剂含量的核心。这就形成一种强度差的产品,如果进行机加工将其表面去除(如同实际上所要求的那样),则它的强度变得还要差。胶态硅石粘结剂同纤维发生有害的反应而引致高的收缩率。本发明人了解,通过使用具有同纤维之化学组成相近的化学组成的粘结剂可以避免这样的问题,因为这会降低粘结剂和纤维之间的浓度梯度。
实施例1使用一批颗粒粘结剂和一种纺好的标定组成为SrO 58重量%、Al2O330重量%和SiO212重量%的纤维,相应地做另外一组试验。表4给出这样结合的有此平均组成之三个纤维样品的x射线荧光分析结果。诚如所制做的,纤维含有能引致性质改变的不同用量的颗粒料(注料量)。因此向纤维注入颗粒料可借助手(过筛),以便产生一种供这些试验用的稳定材料,不过这对于本发明并非是必需的。
用于这些试验的板的配方在下面的表1中给出,使用量以重量表示。在为着絮凝作用而加入淀粉之前,将纤维、水和无机颗粒料混合在一起。(根据粘土是阳离子或阴离子分别选择淀粉为阴离子或阳离子。对于两性粘土可用任一淀粉)。此时接着加入乳胶(Acronal LatexLA 420S),最后再以Percol 230L(基于聚丙烯酰胺之絮凝剂的0.2%溶液)絮凝。
表2给出所用无机成分连同在其它试验中显示有效但未予证实之胶态矾土的组合物的x射线分析结果。下面表3给出观察到的板的收缩率、计算的无机粘结剂组成(仅提及SrO、Al2O3和SiO2的含量)以及粘结剂组成同纤维组成的差异(即粘结剂含量扣除去纤维含量的绝对值,从SrO、Al2O3和SiO2的百分重量表示)。
在表3中,开头的四个组合物(D092、D095、D097和D096)与其纤维的SiO2含量相差超过20%,并且在1400℃的温度有高的收缩率。按照无机粘结剂之SiO2含量同纤维之SiO2含量的差异排列这些组合物,可以看出无机粘结剂之SiO2含量偏离纤维的越远,其线性收缩率就越厉害。
接着的组合物(D091)具有同纤维相近的SiO2含量,但却偏离纤维之Al2O3含量70.6%以及SrO含量57.8%。这一组合物有中等高的收缩率。
下一组合物(D090)具有同纤维相近的SiO2含量,但却偏离纤维之Al2O3含量29.4%以及SrO含量42.2%。这一组合物在1400℃有可接受的低收缩率,但在1500℃则有高的收缩率。
对于其余的组合物(D093、D101、D100、D094和D098),其SiO2、Al2O3和SrO含理乃同纤维的接近,并在1400℃和1500℃均观测到低的线性收缩率。还可以看出,其组成同所用纤维(D098和D099)的最为接近的那些粘结剂在1500℃收缩率最低。
应该指出,全部SrO大于35重量%的组合物在1400℃具有低的收缩率(例如<5%)。
在转换产品中使用颗粒无机填料会有好处。于一全纤维产品中,其纤维的收缩引起含纤维之整个物体的收缩。由于颗粒填料颗粒阻碍该物体的收缩,因此使之同纤维的收缩不成比例。该填料最好具有同纤维相近的组成,以降低填料与纤维间发生有害反应的危险。可采用部分纤维成型处理所形成的物料作为这种填料而达至有利效果,但会增加整板的密度。为着热容量要求起见,板的密度最好不应超过0.5g/cm3。表5给出一组试验板的结果,该板采用空气分选的(使用英国Rema Mini Split空气分选机)组成与上述试验中所用的相同的纤维制得,只不过作为填料还回加了一些物料。使组合物S113-116和S121在4000rpm重新注入物料,把所有大于50μm直径的颗粒除去并回加指定用量的物料。使组合物S117在较低速度重新注入物料,引致约50%的物料残留,因此无需补充加入物料。
这些结果于图1中标出,见绘制的组合物S113-116和S121的曲线以及作为参照的组合物S117的曲线。可以看出,补充注入物料降低收缩率,在较高温度下这一效果更为明显。组合物S117板的收缩率在大多数温度均较低,但这会是向其它样品重新注入物料处理所引起的人为事故,可能由于注入物料同纤维的分离(一部分通常附着于纤维上)或由于纤维的长度较短。然而,此补充加入物料或利用含有许多物料之纤维的方法,看来对于制板的确有用。
实施例2按照表3中所示的测量,以一批粘结剂组合物并利用不同的粘土做另外的试验。还测试一个只使用未热处理粘结剂(它不具有高温强度)的样品。其结果给于表6,该表显示35% SrO含量的确使1400℃的收缩率有明显的差别。
在1400℃所用的粘土对收缩率几无影响,但在更高的温度会有影响(可能是由于粘土中的杂质)。
粘结剂的SrO含量越接近纤维的SrO含量,则收缩率就越可重复地低。优选地粘结剂的SrO含量>40重量%,而更优选地为>50重量%。并且SrO含量优选地<90重量%,更优选地<80重量%,还更优选地<70重量%。粘结剂的SrO含量有利地约为纤维之SrO含量的±15重量%(更优选地约为±10重量%,还更优选地约为±5重量%)。
实施例3真空成型硅酸锶铝板中所用的无粘土配方可包含有
对于这样的转换产品,任何粘结体系的目的是1)适合于真空成型-所有成分应以一种尽可能稳定的方式絮凝;2)在灼烧和未灼烧时均同纤维粘结好;3)对纤维无有害的影响。
在以上的混合物中,碳酸锶(以分散在水中的细粉末加入该混合物)作为氧化锶之来源存在,矾土溶胶一旦焙烧便提供氧化铝和一定的强度,而胶态硅石则提供二氧化硅和大量的粘结,尤其在650℃左右。此材料不含胶态硅石可能更加耐火,不过在650℃焙烧半小时之后(即在淀粉已烧掉而尚未发生任何灼烧之时)强度将非常之差。
此胶态矾土呈阳离子形态,与阳离子胶态硅石的电荷相配,以便可混溶并且不过早引起絮凝作用。胶态硅石和胶态矾土具有的电荷不足以同预定用量的阴离子淀粉(由所希望的未灼烧强度预先确定)起絮凝作用,因此要加入阳离子聚合物来增强硅石与矾土之不充分的阳离子贡献。[当然,可用其它方法选择电荷而提供阴离子硅石和矾土以及阳离子淀粉和阴离子聚合物。这或许是一种经济的选择。]
此无机粘结剂的元素组成与纤维的大致相同,这样将增进稳定性,而在这一点上锶乃是最为重要的元素。上述粘结剂组成具有的大致相对比例为58.2重量%SrO、30.9重量%Al2O3和10.9重量%SiO2。
选择组分的电荷和加入顺序,使得将所有的成分加入后絮凝作用才发生。
实施例4在一组着眼于改进产品强度的试验中,按下列表8的配方制做一批板,对某些样品AlcofixTM成分的用量略作调整。
所用的纤维或为切短的或为大块的铝酸锶纤维,在该纤维中存在有一些氧化锆。这些纤维的x射线荧光分析给出如下面表9中所示的组成。
(对样品D237,使用1.5倍上述用量的AlcofixTM,而对D238和T149则使用2倍的AlcofixTM用量。)
板可通过下面的步骤由这些纤维并按照此配方制得1.于部分水中加入Bacosol 3C;2.把碳酸锶加入其中而形成第一混合物;3.将纤维加入其余的水中并搅拌而形成第二混合物;4.然后把第一混合物加入第二混合物;5.将胶态硅石加入这个混合物;6.其次加入Alcofix;7.把淀粉加入以发生絮凝作用;8.然后使用所产生的絮片稀浆通过真空浇注而形成样品板。对某些板品板可使浇注压力改变以便增加密度。
其结果列于下面的表10并图解地显示于图2。
在表10中·“纤维”一栏指出所用之纤维是否为切短的、大块的、切短和大块的以及是否使用加入AlcofixTM的。
·“板”一栏为样品的标识符。
·“密度”一栏为样品的密度。
·“TBS”一栏为通过三点弯曲试验所测得的横向折断应力。
可以看出,尽管大多数样品呈现强度与密度的关联(如原本预期的),但是随着AlcofixTM含量增加,样品便具有比原本由板之密度所预期的高得多的强度。当将强度对密度绘图,如图2,这种情况尤其显而易见。
AlcofixTMB为一种聚DADMAC类阳离子聚合物(聚二烯丙基二甲基氯化铵),具有单体单元 本申请人们估计,使用过量的聚DADMAC(在多于仅要求来同净水形成稳定絮片的意义上的过量)允许该聚DADMAC粘着于纤维并给与电荷于纤维,因此形成能比原本的絮片连结更强地缠结和粘结在一起的较为松散和柔软的絮片。
权利要求
1.一种包括铝酸锶耐火纤维和无机粘结剂的耐火材料,其在灼烧后含有大于35重量%的锶氧化物。
2.权利要求1的包括铝酸锶耐火纤维和无机粘结剂的耐火材料,其在灼烧后的组成,基于所存在的锶、铝和硅之总量作为氧化物计算,具有约为铝酸锶纤维的±20重量%之SiO2含量。
3.权利要求1或2的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±65重量%的Al2O3含量。
4.权利要求3的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±25重量%的Al2O3含量。
5.权利要求4中的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±20重量%的Al2O3含量。
6.权利要求5的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±15重量%的±Al2O3含量。
7.权利要求6的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±10重量%的Al2O3含量。
8.权利要求7的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±5重量%的Al2O3铝氧化物含量。
9.在任一上述权利要求的材料,其中无机粘结剂在灼烧后包含有>40重量%的SrO。
10.权利要求9的耐火材料,其中无机粘结剂在灼烧后包含有>50重量%的SrO。
11.任一前述权利要求的耐火材料,其中无机粘结剂在灼烧后包含有<90重量%的SrO。
12.权利要求11的耐火材料,其中无机粘结剂在灼烧后包含有<80重量%的SrO。
13.权利要求9至12之任一项的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±15重量%的SrO含量。
14.权利要求13的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±10重量%的SrO含量。
15.权利要求14的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±5重量%的SrO含量。
16.上述权利要求之任一项的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±15重量%的SiO2含量。
17.权利要求16的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±10重量%的SiO2含量。
18.权利要求17的耐火材料,其中无机粘结剂在灼烧后含有约为铝酸锶纤维的±5重量%的SiO2含量。
19.前述权利要求之任一项的一种耐火材料,另外包含有一种无机填料。
20.权利要求19的耐火材料,其中无机填料具有的组成为,基于所存在的锶、铝和硅总量作为氧化物计算,含有约为铝酸锶纤维的±20重量%之Al2O3含量。
21.权利要求20的耐火材料,其中无机填料含有约为铝酸锶纤维的±65重量%的Al2O3含量。
22.权利要求21的耐火材料,其中无机填料含有约为铝酸锶纤维的±25重量%的Al2O3含量。
23.任一权利要求19至22的耐火材料,其中无机填料包含有>40重量%的SrO。
24.权利要求23的耐火材料,其中无机填料包含有>50重量%的SrO。
25.权利要求23或24的耐火材料,其中无机填料包含有<90重量%的SrO。
26.权利要求26的耐火材料,其中无机填料在灼烧后包含有<80重量%的SrO。
27.权利要求19至25之任一项的耐火材料,其中无机填料在灼烧后含有约为铝酸锶纤维的±15%重的SrO含量。
28.权利要求27的耐火材料,其中无机填料在灼烧后含有约为铝酸锶纤维的±10重量%的SrO含量。
29.权利要求28的耐火材料,共中无机填料在灼烧后含有约为铝酸锶纤维的±5重量%的SrO含量。
30.权利要求19的耐火材料,其中无机填料包括来自制造纤维的物料。
31.前述权利要求之任一项的耐火材料,其在灼烧前包含有乳胶粘结剂和淀粉。
32.前述权利要求之任一项的耐火材料,其在灼烧前包含有阳离子聚合物。
33.权利要求32中的耐火材料,其中该阳离子聚合物为聚DADMAC。
34.一种制造包含一种铝酸锶耐火纤维和一种含有锶及铝的氧化物的无机粘结剂的耐火材料的方法,包括步骤a)由一种铝酸锶耐火纤维和一种颗粒材料形成半成品;b)灼烧此半成品以使该颗粒材料转化为具有权利要求1至10之任一项中所述组成的无机粘合剂。
35.权利要求34的制造耐火材料的方法,其中该颗粒材料包括含铝颗粒材料和含锶颗粒材料。
36.权利要求34或35的制造耐火材料的方法,其中该耐火材料乃由一种稀浆通过沉积而形成。
37.权利要求36的制造耐火材料的方法,其中该稀浆包含有a)铝酸锶耐火纤维;b)能形成含锶和铝之无机粘结剂的颗粒材料;c)一种有机粘结剂。
38.权利要求37的制造耐火材料的方法,其中该稀浆包含一种电荷调节剂。
39.权利要求38的制造耐火材料的方法,其中该有机电荷调节剂包含一种阳离子聚合物。
40.权利要求39的制造耐火材料的方法,其中该阳离子聚合物为聚DADMAC。
全文摘要
一种包括铝酸锶耐火纤维和无机粘结剂的耐火材料,在灼烧后含有大于铝酸锶纤维的35重量%的锶氧化物及/或铝酸锶纤维的±65重量%的Al
文档编号C03C13/06GK1468202SQ0181685
公开日2004年1月14日 申请日期2001年8月2日 优先权日2000年8月4日
发明者P·N·伊顿, C·J·弗雷曼, P N 伊顿, 弗雷曼 申请人:摩根坩埚有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1