用于窗玻璃的可经预应力处理的低e多层系统的制作方法

文档序号:1841107阅读:157来源:国知局
专利名称:用于窗玻璃的可经预应力处理的低e多层系统的制作方法
技术领域
本发明涉及用于窗玻璃(适合安装于建筑或交通工具)的可抗高热应力的低E多层薄膜(un empllement de couches àE faible),它具有权利要求1前序部分所述的技术特征。
带有低E(低E是指“低发射率“(émissivit éfaible),因此对红外光波具有低发射率或高反射率)的多层薄膜的窗玻璃特别适用于改善建筑或交通工具上窗的隔热性。在此情况下,隔热性能本身通常是由一层或多层银层(称为“功能层”)获得的。就隔热窗玻璃而言,例如,通过使用双层玻璃型窗户几乎可完全阻断窗玻璃之间的辐射交换(échange radiatif),该双层玻璃型窗户在双层玻璃之间的空间的面上的发射率E≤0.1。因此,可以制造k值为1.1W/m2K的隔热玻璃窗。
为了将入射太阳能计入建筑物的能量衡算,最优化的带有低E多层薄膜的窗玻璃还必须具有尽可能高的总能量透过率(尽可能高的g值)。另外,透射率在可见光谱范围内必须尽可能高。涂覆有涂层的窗玻璃的反射颜色必须是不鲜明的颜色,像常规的隔热窗玻璃一样。
在某些情况中,此类具有低E多层薄膜的窗(至少是组成窗的玻璃之一)需要或适合进行弯曲或韧化型的弯曲或预应力处理。为此目的,将窗玻璃加热至约550℃至650℃,然后再进行弯曲或预应力处理。在此热应力作用期间,由于氧化作用和扩散作用之故,银层结构通常发生改变。虽然银层的这些改变肉眼不能观察到,但可以通过能量值特别是透射率和发射率数值的劣化表现出来。当例如由两块4mm厚的玻璃和16mm厚并充有氩气的中间空间构成的隔热窗必须具有1.1W/m2K的K值时,窗玻璃多层系统的发射率必须至多仅为5%。这相当于单位面积电阻至多为4.5欧姆。
目前强烈需要这样的多层薄膜它能够抗高热预应力,发射率和漫色散作用(diffuse dispersion)(雾霾效应)极低,甚至在热(预应力)处理之后,仍保持光学性质,而薄膜的其它质量标准,如硬度、颜色和抗腐蚀性不受影响。
为改进此类多层薄膜已提出多种建议。涂有涂层的窗玻璃所希望具有的光学和能量值因此应显著保持,甚至在由玻璃制成的窗玻璃在涂覆有涂层后进行弯曲或预应力操作的情况下亦如此。应该防止由于热处理导致的涂层性质发生劣化或将这种劣化降至最小限度。
对比文件DE-A1-19632788公开了上述类型的可经预应力处理的多层薄膜,其中抗反射电介质层由以下物质组成金属Sn、Zn、Ti、Si、或Bi的氧化物,或SiN或AlN,以及AlMgMn合金的牺牲金属层(la couche métqllique de sacrifice)。该牺牲金属层厚度为5至10nm。术语“可经预应力处理的”是指这类多层薄膜可经受高温弯曲和/或韧化处理而没有明显降解。
对比文件DE-A1-19640800公开了一种银基多层薄膜,其中在牺牲金属层和抗反射上层之间设有由牺牲金属层金属的氧化物、氮化物或氧氮化物形成的中间层。抗反射处理上层由不同于牺牲金属层金属的氧化物、氮化物或氧氮化物组成。它还可以是此类型至少两层的叠加。术语“上层”是指一层或多层所述层设置在膜中一层或至少一层功能层之上,与术语“下层”相反。
对比文件EP-B1-0567735、EP-B1-0717014、EP-B1-0771766、EP-B1-0646551和EP-A2-0796825公开了的可经预应力处理的多层薄膜,该多层薄膜具有银层作为功能层,其中两层抗反射层分别由Si3N4组成,而牺牲金属层为Ni或NiCr。
对比文件EP-B1-0883584公开的可经预应力处理的多层薄膜具有优选由Si3N4制得的抗反射层,和由硅组成的牺牲金属层。
在对比文件EP-A1-19850023中公开的可经预应力处理的多层薄膜的特征在于,厚度在0.1至0.2nm之间的低氧化NiCrOx层嵌入被围绕的银层中(la couche d’argent entouré),该银层设置于牺牲金属下层和牺牲金属上层之间。这些牺牲金属层由低氧化NiCrOx,或低氧化NiCrOx和低氧化TiO2组成。此已知多层薄膜应使涂覆有涂层的窗玻璃可预加应力和弯曲,而不显著改变多层薄膜的光学性质。热处理后,漫色散(雾霾效应)特别应该小于5%。
对比文件DE-C1-19852358公开了一种低E多层薄膜,它可以抗高热应力,具有玻璃-MeO-ZnO-Zn-Ag-AlMe-MeO-ZnxMeyOn顺序的层。AlMe牺牲金属层是铝和一种或多种元素Si、Mg、Mn、Cu和Zn的合金,在此情况中作为银层之上的合金的组分。
已知的多层薄膜没有满足所有最佳性质。在大多数情况下,热处理后,多层薄膜具有太高的发射率和较高的漫色散(雾霾效应)。
如上所述,本发明目的是进一步改善可抗高热应力的低E多层薄膜。
按照本发明,此目的借助于权利要求1的技术特征达到。应该理解,此类多层薄膜未必就只能专用于玻璃基材上,它们还可以适当地用在/设置在由其它透明(合成)材料制成的基材上(例如,聚碳酸酯、聚甲基丙烯酸甲酯PMMA、聚对苯二甲酸乙二醇酯PET等)。当然,合成(聚合物基)材料不能像玻璃那样经受高的温度。
已发现,在银层和牺牲金属层之间的金属氮化物层是有效阻隔层。该层防止或显著降低牺牲金属原子扩散到银层中,反之亦然。这是因为金属氮化物是较为稳定的化合物,它们本身没有扩散性移动到银层中的趋势。因此,银层甚至在经受高热应力后仍在其极易受到影响的上部邻接表面上保持(很大程度上)其初始结构。因此系统中好的光学和能量性质基本得到保持。
牺牲金属层优选由下列物质组成Cr、Ni、Al、Ti、Mg、Mn、Si、Zn或Cu,或这些金属的合金。
还可在银层之下设一层牺牲金属层。此牺牲金属层也优选由提到的金属中的一种金属或这些金属的合金组成。在此情况下,也在牺牲金属层和银层之间设置金属氮化物层。
当在多层薄膜中,银层设置在部分结晶的ZnO层上时,无需在银层之下使用金属氮化物层。
抗反射下层和抗反射上层可以由氧化物单层和/或氮化物单层和/或氧氮化物单层,或多个此类单层叠加组成。
各单层种类和厚度的选择在所述范围内进行,以在热处理过程中,显著且可重复地改进光学值,如涂覆有涂层的基材(玻璃)的透射率和反射颜色。特别是光的透射率显著提高,在热处理后,反射颜色发生“颜料盒(bo tes de couleur)变化”。术语“颜料盒变化”专业人士理解为是指一层或多层薄膜色彩或色调(反射颜色)的改变。在特殊坐标系中可描述可能的颜色,例如,L,a*,b*色标系统(systèmede coloriméterie)。因为在此坐标组(ompi1emont de coordonnéess)中不可能绝对精确地重复层的颜色,颜色的偏差范围由供应者与顾客制订,然后这标注为”颜料盒”(英文为color box)。颜料盒的变化是指颜色或色调的变化超越第1颜料盒(起始状态)的限度进入另一个颜料盒(目标状态或设定状态(état consigne))。
热处理后,漫色散至多为0.3%而且发射率至多为5%。当然,多层薄膜还必须满足一般此类多层薄膜所要求的所有其他关于耐化学性和使用性质的要求。
这就是为什么本发明的多层薄膜在无例外地进行沉积后的热处理的情况下(sans qu’un traitement thermique post-dépot ne soitimpliqué)仍可以使用的原因,特别是用于合适的塑料基材上(例如聚碳酸酯制成的),因为热处理不会显著改变它非常好的隔热性。
将在下面参考两个实施例更详细地描述本发明,实施例与按照现有技术的对比实施例进行比较。在此情况下,为了评估在涂覆有涂层的窗玻璃上的多层薄膜的性质,进行了下列测量和试验A.550nm的光透射率T的测量;B.L,a*,b*系统中反射颜色参数的测量;C.表面电阻的测量;D.使用Sten Lofving MK2仪器测量发射率E;E.按照DIN 50017标准目测评估凝结水试验;F.抗电化学性的测量(EMK试验);此试验见于Z.Silikattechnik32(1981)第216页。此试验用于评估银层之上的上层的抗钝化性和银层的腐蚀性;G.按照ASTM 2486标准目测评估Erichsen洗涤试验(test delavage Erichsen);H.抗划痕的测量;在此情况下,用载荷针以定义的速度在薄膜上划。划线可见时的重量(克)用作划痕硬度的量度;和I.用Gardner的光散射仪测量散射光(%)。
对比实施例1用阴极溅射法的工业多层涂层装置,按现有技术方法,利用磁场辅助的反应性溅射方法,在浮法玻璃上涂覆下面的多层薄膜,单层厚度以nm表示玻璃/25 SnO2/9 ZnOAl/11.6 Ag/6 AlMgMn/38 SnO2/2 ZnSnSbOx。
ZnOAl层通过反应溅射法使用包含2重量%Al的ZnAl金属靶进行涂覆。牺牲金属层使用包含94重量%Al、4.5重量%Mg和1重量%Mn的金属靶通过溅射进行涂覆。抗反射上层的最上层部分(la couchepartielle la plus supérieure de la couche anti-réflexionsupérieure)通过反应溅射法使用由68重量%Zn、30重量%Sn和2重量%Sb组成的金属靶淀积。
在热处理前,对多个样品进行上述试验,得到如下数值A.透射率 T550=76-77%B.颜色参数a*=4.06b*=-7.17C.电阻R=6.8-6.9欧姆/面积D.发射率 E=7.7%E.凝结水试验 红色斑点F.EMK试验 132mVG.洗涤试验350往复运动,中度划痕H.划伤硬度65-132gI.散射光 0.17%将多个涂覆有涂层的玻璃样品加热到650℃,而且通过突然冷却(急冷)加预应力。对加预应力玻璃样品进行试验或测量,得到下述结果A.透射率 T550=88.9%B.颜色参数a*=1.0b*=-5.1C.电阻R=4.3欧姆/面积D.发射率 E=5.3%H.划伤硬度64-208gI.散射光 0.35%玻璃样品从没有预应力状态到加预应力状态,a*和b*颜色坐标明显不同,这表明所述的多层薄膜的“颜料盒”变化。
实施例1使用与对比实施例中相同的涂覆设备,根据本发明制备下述多层薄膜
玻璃/25 SnO2/9 ZnOAl/11.5 Ag/3 Si3N4/5 AlMgMn/38 SnO2/2ZnSnSbOx。
对涂覆有涂层的玻璃样品在热处理前进行试验和测量,得到数值如下A.透射率 T550=75.5%B.颜色参数同对比实施例C.电阻R=6.7欧姆/面积D.发射率 E=7.5%E.凝结水试验 无误差F.EMK试验 44mVG.洗涤试验350往复运动,无划痕H.划伤硬度64-218gI.散射光 0.14%加预应力后,按对比实施例中相同的测量和试验,对多个样品进行测量和试验,结果如下A.透射率 T550=88%B.颜色参数同对比实施例C.电阻R=3.6欧姆/面积D.发射率 E=4.0%H.划伤硬度70-200gI.散射光 0.25%多层薄膜或涂覆有涂层的玻璃样品的光透射率在热处理中增加非常明显,发射率低于对比实施例的发射率。以与对比实施例相似的方式改变颜色数值,这意味着“颜料盒靶”确实是借助于本发明的多层薄膜实现的。
对比实施例2用前面实施例中使用的相同的涂覆设备,按现有技术制造如下多层薄膜玻璃/25 SnO2/9 ZnO:Al/11.5Ag/3 ZnAl/38 SnO2/2 ZnSnSbOx。
牺牲金属层通过溅射法使用包含98重量%Zn和2重量%Al的金属靶进行沉淀。
在涂覆有这种多层系统的玻璃样品上进行EMK试验,此试验得到的数值为120mV。然后将样品进行预应力处理。预应力处理后,薄膜有轻度雾霾。对经预应力处理的玻璃样品的三个最重要的参数进行测量,即发射率E、表面电阻和散射光的测量。测量得到下述数值C.电阻 R=3.2欧姆/面积D.发射率E=7.3%I.散射光0.4 6%实施例2再次使用前面对比实施例中相同的涂覆设备,根据本发明制造下述多层薄膜的玻璃样品玻璃/25 SnO2/9 ZnOAl/11.5 Ag/3 Si3N4/3 ZnAl/38 SnO2/2ZnSnSbOx。
在预应力处理前进行EMK试验,得到的数值为8mV。预应力处理后,目测检查还显示薄膜没有光学缺陷。对加预应力的玻璃样品进行与对比实施例中相同的试验。测量得到下述数值C.电阻 R=3.27欧姆/面积D.发射率E=4.2%I.散射光0.29%如果在加预应力后,本发明涂覆有涂层的玻璃样品的性质与对比实施例中的样品进行比较,可以清楚看出在银层和牺牲金属层之间插入3nm厚Si3N4层的两种情况中都得到明显改善。特别是在抗腐蚀性、发射率和散射光方面更是如此。
本发明还适用于包含多个功能层的薄膜,特别是包含两层银层的薄膜在此情况下,本发明的氮化物层插入在至少一层银层之上,特别是插入两层或它们中的仅一层之上。
权利要求
1.低发射率E的多层薄膜,可抗高热应力,用于作为基材的窗玻璃,特别是由玻璃制得的窗玻璃,其中具有一层或多层银基功能层、设置在银层之上的牺牲金属层、邻近基材表面的抗反射电介质下层和抗反射上层,其特征在于,在银层和设置在银层之上的牺牲金属层之间,设置一层基于一种或多种金属氮化物的层,特别是基于Si3N4和/或AlN的层。
2.根据权利要求1的低发射率E的多层薄膜,其特征在于基于一种或多种金属氮化物的层的厚度为0.5至5nm,特别是1至4nm。
3.根据权利要求1或2的低发射率E的多层薄膜,其特征在于基于一种或多种金属氮化物的层具有至少接近化学计量的组成。
4.根据上述权利要求1-3之一的低发射率E的多层薄膜,其特征在于牺牲金属上层由Cr、Ni、Al、Ti、Mg、Mn、Si、Zn或Cu,或这些金属的合金组成。
5.根据上述权利要求1-4之一的低发射率E的多层薄膜,其特征在于银层沉淀在部分结晶的ZnO:Al层上。
6.根据上述权利要求1-4之一的低发射率E的多层薄膜,其特征在于还在银层之下设置牺牲金属层,此牺牲金属层由Cr、Ni、Al、Ti、Mg、Mn、Si或Cu,或这些金属的合金组成,并通过一层基于一种或多种金属氮化物的层与银层隔开。
7.根据上述权利要求1-5之一的低发射率E的多层薄膜,其特征在于下述多层结构基材/SnO2/ZnO:Al/Ag/Si3N4/AlMgMn/SnO2/ZnSnSbOx。
8.根据上述权利要求1-5之一的低发射率E的多层薄膜,其特征在于下述多层结构基材/25 SnO2/9 ZnO:Al/11.5 Ag/3 Si3N4/3 ZnAl/38 SnO2/2ZnSnSbOx。
9.涂覆有权利要求1-8之一的低发射率E的多层薄膜的透明窗玻璃,特别是由玻璃制成的或基于一种或多种聚合物的窗玻璃,其特征在于它的透射率T550为84-88%,和/或漫色散为0.2-0.35%,和/或层的一侧的发射率E为4.0-5.0%。
全文摘要
本发明涉及可抗高热应力的多层薄膜,它具有作为功能层的银层、设置在银层之上的牺牲金属层和抗反射电介质层,此多层薄膜具有金属氮化物层。此金属氮化物层特别由Si
文档编号C03C17/36GK1501896SQ02804650
公开日2004年6月2日 申请日期2002年1月23日 优先权日2001年2月6日
发明者H·施希特, H·辛德勒, L·伊洛, U·施密德特, H 施希特, 吕, 艿绿 申请人:法国圣戈班玻璃厂
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1