具有改进了韧性和延展性的纤维加强粘结材料的制作方法

文档序号:1830393阅读:226来源:国知局
专利名称:具有改进了韧性和延展性的纤维加强粘结材料的制作方法
技术领域
本发明的领域本发明涉及用于粘结材料的纤维加强系统,更具体的说是涉及一种改进了韧性和延展性的混合纤维加强系统和纤维加强混凝土。
背景技术
由水硬水泥粘接剂和粗细集料制得的混凝土,被公认为是一种相当脆的材料。如果超过其最大拉伸强度,就会开裂并扩展。对于理解混凝土的开裂来说,“弯曲强度”和“断裂韧性”的概念是很有用的。
弯曲强度涉及临界应力强度因子,例如,结构抵抗裂纹发生的能力。由于其与最大承受载荷成正比,所以弯曲强度在弯曲承载条件下被测量作为开始产生裂纹所需最小载荷或者应力。
断裂韧性另外一方面与一种混凝土的具体“断裂能”,例如,抵抗开裂扩展或加宽的能力有关。这种韧性性能与裂缝扩展或加宽所需要的能量成正比。这种性能能够通过同时测量在一个开口裂缝处使包含纤维的混凝土(FRC)变形或“弯曲”所需要的载荷以及弯曲的量来衡量确定。因此,韧性也可以通过在一个载荷弯曲曲线下的面积除以其横截面面积来确定,所述的载荷弯曲曲线是由绘制克服试样弯曲的载荷产生的。
一种材料的“延展性”与特性长度lch紧密相关,该特性长度与断裂能GF和在最大载荷时存储的弹性能的比值成正比,GIC(lch∞GF/GIC)。
无筋混凝土的断裂韧性或者断裂能非常低,大致在50-200N/m范围内。这种低的断裂韧性是混凝土在拉伸和压缩时高脆性的主要原因。一旦达到无筋混凝土(在拉伸情况下)的断裂点,混凝土就会开裂和失效(崩碎)。然而,已知道,在混凝土中采用强化纤维来增大使混凝土达到其断裂表面完全分离的状态所需的能量值。建议使用由钢,聚烯烃,碳,尼龙,芳族聚酰胺,玻璃制得的各种纤维。
在一篇标题为“Flexural Characteristics of Steel Fibre and Polyethylene FiberHybrid-Reinforced Concrete(钢纤维和聚乙烯纤维混合强化的混凝土的弯曲特性)”的文章中,Kobayashi和Cho描述了一种纤维强化混凝土,这种混凝土通过以随机的排列状态将非连续钢纤维和聚乙烯纤维分散在混凝土中而赋予混凝土强度和韧性。摘自K.Kobayashi和R.Cho,复合材料,第13卷(Butterworth& Co.Ltd.1982),164-168页。
Kobayashi和Cho采用了体积上占1%的钢纤维,该纤维有剪切冷轧钢制得,尺寸为0.35mm×0.7mm×30mm,还采用了体积上占1-3%的聚乙烯纤维,该纤维长度为40mm,(圆形)直径为0.9mm。钢纤维通过抵抗裂缝产生而确保了弯曲强度,而聚乙烯纤维通过提供抗拉拔性能和粘弹性能而提供断裂韧性。这种混合钢/聚烯烃系统克服了单一钢纤维或者聚烯烃纤维的不足。换句话说,钢纤维增加了在仅仅使用聚乙烯纤维时不能获得的第一抗裂强度;聚乙烯纤维增加了在裂缝形成之后的强度,这种强度的增加在仅仅使用钢纤维时是不能获得的。但是,Kobayashi和Cho提到他们的钢纤维应当被使用在体积上占1%,超过该数字在混凝土中将会有很大的流动性下降。
在世界专利申请WO98/27022中,J.Seewald公开了一种高强度的混凝土,该混凝土具有增强的延展性,其使用了30-200kg/m3的无机(例如钢)纤维(大约为体积百分比0.4-2.6%)以及较少量的具有低弹性模量的无机纤维。虽然Seewald教导优选使用的钢纤维是聚乙烯纤维的7倍,但是还不清楚他是如何解决了流动性能问题,这种问题在上文中是Kobayashi和Cho一定要考虑的问题。
本发明概述本发明提供了一种改进的混合纤维系统,用于提高混凝土抗小裂纹变宽的性能以及抵抗大变形的性能,从而不论是在小裂缝开口还是在大裂缝开口都增强了混凝土的韧性和延展性,同时避免了使用大量体积(1%)的钢纤维以及它们的维护开销并避免了流动性的损失等缺点。
本发明的混合系统考虑使用两种不同的纤维组份,其中首要考虑的是在一种纤维组份中获得大的纤维表面积与纤维体积比和较高弹性模量,这比考虑用某种特定材料制成的纤维更加重要。确实,本发明可使用全钢纤维,或没有钢纤维,同时提高整个延展性。因为本发明人意识到通过考虑在小裂缝和大裂缝开口时纤维增强混凝土(FRC)的性能能更有效地提高韧性,因此,利用远小于现有技术系统的纤维量便能提高延展性。
本发明的一个示例纤维系统包含(A)第一组份,该组份包括杨氏模量至少为30京帕,宽度与厚度比10-200,平均长度为5-50mm(优选为5-25mm)的纤维;(B)第二组份,该组份包括长度与直径比25-125(直径可以是等效直径,参看ACI544.1R-5),平均长度10-100mm的纤维;组份A与组份B的体积比至少为1∶2,更优选为至少1∶3。
本发明也提供了一种包含上述纤维系统的粘结复合材料,以及一种通过结合纤维系统而提高粘结复合材料韧性的方法。本发明的其它优点和特性将在下文进行更详细的描述。
附图简要描述通过下述附图,有助于理解本发明具体实施例的详细说明,其中

图1是四种不同混凝土试样的载荷弯曲曲线的比较图表,这四种混凝土是普通(无筋)混凝土,仅有组份A纤维的混凝土,仅有组份B纤维的混凝土,和本发明的一种包含A和B组份的混合纤维加强混凝土试样。
本发明具体实施例的详细描述如前文提到的那样,术语“混凝土”是指一种复合材料,它包含一种水泥粘接剂,通常具有紧密排列的微粒。但是在此之后,该术语是指任何粘结材料,诸如,水泥,砂浆水泥,和砌筑体,在其中将会加入纤维用于加强这些材料。
本发明涉及用于加强混凝土(例如任何粘结材料)的改进的混合纤维系统和方法,本发明也涉及具备改进的韧性和延展性的混凝土或者粘结复合材料。
第一种纤维组份A最好具有的杨氏模量(由ASTM C469(1994)确定)至少等于混凝土的杨氏模量,从而有效地增加混凝土在小裂缝开口(例如开始时的微裂缝和裂缝)处抵抗弯曲的能力。其特征在于较高的宽度与厚度比率,该比率能转换成一个高的纤维表面积与纤维体积的比率。该高纤维表面积与纤维体积比率特性意味着采用较小的用量比(按体积为0.1-0.4%)便能提高混凝土的弯曲强度以及韧性和延展性(与无筋混凝土相比)。在最佳实施例中,纤维组份A具有一种“扁平面条”或者“扁平”形状。纤维组份A优选包含钢(更优选是非晶态钢),碳,或其它具有所需模量即至少30京帕(更优选为至少35Gpa,最优选为至少40GPa)的材料。
第二种纤维组份B用于有效增强FRC材料在较大变形(如较宽的裂缝开口)时的韧性,从而有效增加使裂缝的FRC材料完全失效(如完全破碎或者断裂)所需的断裂能。这些纤维具有的纵横比(长度/等效直径)为25-125(优选为30-80),以及长度为10-100mm,更优选为20-55mm,以便在FRC材料中弥补较大的裂缝开口并将应力传递通过断裂表面,从而通过纤维嵌入在混凝土中来增加抵抗断裂的力以及它们吸收断裂能的能力。纤维组份A与组份B的体积比应当至少为1∶2和优选为至少1∶3。
优选地,当用于本发明中时,钢和聚烯烃纤维具有异形形状,诸如一种具有钩状端部,卷曲,双锥形的,或其它非直线形来改进与水泥浆的结合。
因此,本发明中纤维的形状和纤维相对(体积)百分比(未提及材料的变化性)与背景技术中现有的混合纤维系统完全不同。
如上文提到的那样,本发明并不局限于字眼上的纤维材料。本发明例子中的组份A纤维可以由钢制得,如,宽度与厚度比范围在10-200,长度在5-50mm更优选在5-25mm的非晶态钢(例如非结晶态)纤维。具有较高弹性模量的碳纤维也能用作该纤维系统的组份A。组份A中这些纤维的主要目的是提高基体的强度,以及提高在小裂缝开口处的抗开裂能力。也能采用其它具有必要的最小杨氏模量(至少30GPa)的材料。
本发明例子中的组份B纤维应当为能够有效将应力传递过断裂表面(传递过断裂开口)的纤维。这些纤维必须增加抵抗裂缝扩展的能力,这会在较大裂缝开口处提供韧性。这被认为是一种“跨隙效应(crack bridging effect)”。组份B的这些纤维能够由钢(优选为端部带钩的钢纤维,其具有增强的抵抗拉拔性能)制得,或者由聚烯烃纤维(优选为形成原纤维的),诸如聚乙烯,聚丙烯等。这些纤维的用量比为体积0.5-5.0%,更优选为体积上0.75-2%。它们的长度为10-100mm,更优选为20-55mm,优选具有的长度与等效直径比为30-80。在混凝土中,组份B纤维的优选体积量为组份A纤维的至少两倍。
当加入组份A和B纤维时,混凝土系统的韧性和延展性在下述的说明性例子中被测量。
例1弯曲韧性的测量采用了四个不同的混凝土试样,这些试样被模制成100mm×100mm×300mm的梁形。第一试样为普通(无筋)混凝土;第二试样只包含组份A纤维(钢);第三试样只包含组份B纤维(聚烯烃);第四试样包含组份A纤维和组份B纤维的混合物。
图1利用日本Yoke弯曲测试系统测试描述了四种不同测试试样的载荷位移曲线。普通混凝土梁的断裂性能是非常脆的,这种特性是由达到最大载荷之后载荷迅速减小显示的。裂缝扩展的抗裂性非常小,因此,与载荷形变曲线下的面积成正比的断裂韧性也非常小。
当将纤维的宽度和厚度比为70的体积百分比为0.25%、30mm长的非晶态钢纤维加至混凝土时,弯曲强度以及弯曲韧性与没有强化纤维的对照混凝土梁相比有所提高,组份A承载能力随着梁弯曲的增加而下降。
当将体积百分比为1%,长度为51mm的聚烯烃纤维加至混凝土中,弯曲强度没有增加,但是韧性却在载荷降到其最大载荷50%之后随着弯曲的增加而增大。这清楚地表明组份B在非常小的裂缝开口处未提高延展性,但仅在较大的裂缝开口时提高了延展性。
当将组份A和B都加至混凝土时,弯曲韧性在较小弯曲和较大弯曲时都有所提高。虽然这确保了不同纤维组份的结合比单单使用每种纤维组份性能更好,但是其更大大地支持了本发明人的观点,即,在考虑到小裂缝开口和大裂缝开口时,使用相对较小的整个纤维量的混合系统仍能提高延展性。
例如,端部带钩的钢纤维提供了很大的纤维抗拉拔性能以致于纤维强化混凝土梁即使在大裂缝开口处也能承受大量载荷。
通过讨论脆性和延展性能更好地理解本发明的特征和其它的优点。存在几种推导脆性和延展性的表达式的方法。最初,脆性值b被定义为正比于存储弹性能与达到完全失效所需的断裂能GF的比值。b=σmax2·LGF·E----(1)]]>此处σMAX为弹性强度,E为杨氏模量,L为试样长度。显然,一个较低的强度和一个较高的断裂能会增加材料的延展性。脆性值b与特征长度lch成反比,其用于在不考虑试样形状的情况下表示材料性能的影响lch=DF·Eσmax2----(2)]]>特征长度lch为用于材料“延展性”的性能系数。lch与由Hasselman定义作为抗热冲击性能的性能系数的参数R″″紧密相关,R″″=2·GF·Eσmax2---(3)]]>参数R””与裂缝扩展的断裂能GF和裂缝开始的断裂能GIc的比值成正比R″″∝GFGK----(4)]]>作为裂缝起始能的测量,根据Irwin,临界能量释放率GIc由在裂缝开始时临界应力强度因子KIc算出(假设在最大载荷下,可应用线性弹性断裂力学理论的假设) 其中k为试样几何结构形状的相关参数,Pmax是最大载荷。不言而喻,混凝土的lch仅能通过增加断裂能而被增大。由于降低抗拉强度或裂缝发生的能量也会降低抗压强度的负面影响,因此,降低抗拉强度或裂缝发生的能量是不希望的。公式4和5基本上给出了如果强度变化,断裂能GF必须改变的量,假设延展性保持恒定。
而且,考虑到在小裂缝变形和大裂缝变形处断裂能特性,本发明人已经考虑了为在小裂缝开口处增大延展性而考虑杨氏模量特性的必要性,以及具有较大纤维表面积与纤维体积的比值和在混合纤维系统中采用不同的相应长度(以便跨接较大的裂缝变形)的必要性,以便在不依赖钢纤维的大(1%)体积且没有在FRC中伴随这种大体积所产生的缺点的情况下,在纤维强化混凝土(FRC)中获得全面增强的韧性和延展性。
在本发明的其它实施例中,本发明人已考虑加入另一种组份,该组份包含一种裂缝控制剂(有时称为收缩控制剂),腐蚀控制剂,或者它们的混合物。这种添加剂在粘结和混凝土工业中通常是已知的。例如,可以往混凝土中加入亚硝酸钙(和/或将其涂敷至纤维上)来提高强度,特别是可使用导电纤维(A或B)(例如钢,碳)以在具有埋入钢筋条的混凝土中使用时能抵抗阴极效应。亚硝酸钙也显现出能增加FRC的强度,韧性和延展性(但是在普通混凝土中仅增加强度)。因此,纤维强化系统的一个优选实施例包含上述纤维组份A和B,其中纤维组份中的至少一个包含钢,和优选1-2%(在混凝土中的s/s水泥)的亚硝酸钙,以便抑制导电纤维的阴极效应(且抑制钢纤维的腐蚀)。在另外的实施例中,可加入裂缝控制混合物(和/或涂敷在纤维上)。例如在US5,556,460;US5,413,634;US5,618,344;US5,779,778;US5,326,397;US5,326,396;US5,389,143;US5,626,663;US5,604,273;US5,622,558;US5,603,760;US5,571,319;US5,679,150中教导的裂缝控制添加剂,所有文献均可在本申请中参考使用。在授予N.Berke等人的US5753368中提出了一种用于增强混凝土粘结强度和提高抗拉拔性能的纤维涂层,该文献也可在本申请中参考使用。因此,在本申请中描述的示范性混合纤维系统的其它实施例中可引入已知的腐蚀控制添加剂,纤维涂层,裂缝控制混合物。
上述的例子仅仅是举例说明且不应构成对本发明保护范围的限制。
权利要求
1.一种用于强化混凝土的混合纤维系统,该系统包括(a)第一组份A,该组份包括杨氏模量至少为30京帕,宽度与厚度比10-200,平均长度为5-50mm的纤维;(b)第二组份B,该组份包括长度与厚度比为25-125,平均长度10-100mm的纤维;组份A与组份B的体积比至少为1∶2。
2.如权利要求1所述的系统,其中,所述第一组份A的纤维包含从金属和碳中选出的材料。
3.如权利要求1所述的系统,其中,所述第二组份B的纤维包含从金属和聚烯烃中选出的材料。
4.如权利要求1所述的系统,其中所述第一组份A的纤维包含非晶态钢,所述第二组份B的纤维包含异形钢,聚烯烃或者它们的混合。
5.如权利要求4所述的系统,其中,所述第二组份B的纤维包含一种聚烯烃,该聚烯烃为聚乙烯、聚丙烯或者它们的混合。
6.如权利要求4所述的系统,其中,所述第二组份B的纤维包含端部带钩的钢纤维。
7.如权利要求1所述的系统,其中,所述第一组份A的纤维为非晶态钢,具有10-35mm的长度。
8.如权利要求1所述的系统,其中,所述第二组份B的纤维为聚烯烃,具有20-55mm的长度。
9.如权利要求1所述的系统,其中,所述第一组份的纤维包括非晶态钢,所述第二组份B的纤维包含一种聚烯烃,组份B与A的体积比为至少3∶1。
10.如权利要求1所述的系统,其还包括一种腐蚀抑制剂,该腐蚀抑制剂涂在所述的纤维上或被加入待强化的混凝土中。
11.如权利要求1所述的系统,其还包括一种裂缝控制剂,该裂缝控制剂涂在所述纤维上或者被加入待强化的混凝土。
12.一种包含一种粘接剂和一纤维系统的粘结复合材料,其包括(a)第一组份A,该组份包括杨氏模量至少为30京帕,宽度与厚度比为10-200,平均长度为5-50mm的纤维;(b)第二组份B,该组份包括长度与厚度比为25-125,平均长度10-100mm的纤维;组份A与组份B的体积比至少为1∶2。
13.如权利要求12所述的复合材料,其还包括一种添加组份,该组份包含裂缝控制剂,腐蚀抑制剂或者它们的混合物。
14.一种增强混凝土延展性的方法,包括加入(a)第一组份A,该组份包括杨氏模量至少为30京帕,宽度与厚度比为10-200,平均长度为5-50mm的纤维;(b)第二组份B,该组份包括长度与厚度比25-125,平均长度10-100mm的纤维;组份A与组份B的体积比至少为1∶2。
全文摘要
一种混合纤维强化系统,通过考虑杨氏模量,采用大表面积与体积的比值来提高粘结,并使用不同的效应长度,能增强混凝土在小裂缝开口和大裂缝开口处的延展性,同时避免使用较大体积(例如1%)含量的钢纤维。
文档编号C04B16/06GK1325465SQ99812766
公开日2001年12月5日 申请日期1999年10月28日 优先权日1998年11月3日
发明者K·A·里德尔, N·S·贝尔克 申请人:格雷斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1