用于高速公路路面应变测量的数字图像采集分析方法

文档序号:10646733阅读:425来源:国知局
用于高速公路路面应变测量的数字图像采集分析方法
【专利摘要】本发明公开了一种用于高速公路路面应变测量的数字图像采集分析方法,通过分析变形前后高速公路路面图像进行应变测量,使用工业相机分别采集高速公路路面建成及待检测时刻两组序列图像,利用图像合成系统合成为两幅图像,对变形前后这两幅图像进行数字图像相关分析得到整个高速公路路面应变分布。本发明方法可在路面裂缝出现之前进行监测,从而为高速公路路面养护、决策提供非常及时、准确的数据。
【专利说明】
用于高速公路路面应变测量的数字图像采集分析方法
技术领域
[0001] 本发明设及用于高速公路路面应变测量的数字图像采集装置及分析方法,尤其是 利用数字图像技术实现的非接触式高速公路路面应变测量的装置及分析方法。
【背景技术】
[0002] 由于环境溫度变化及荷载(行驶车辆)等作用,高速公路路面会出现不同的应变分 布,在应变较大的地方容易出现裂缝等缺陷。目前对高速公路路面养护主要集中在裂缝出 现W后,不能在裂缝出现之前对公路路面进行及时有效的养护。而传统的应变测量大多采 用如电阻应变计等接触式测量方式,不能提供全场的应变数据,且在高速公路路面上很难 头施。

【发明内容】

[0003] 技术问题:本发明提供一种操作简单,易于实现,图像的视场范围包含整个高速公 路路面,可W为高速公路路面养护提供及时有效的数据的用于高速公路路面应变测量的数 字图像采集分析方法。
[0004] 技术方案:本发明的用于高速公路路面应变测量的数字图像采集分析方法,包括 W下步骤:
[0005] 步骤1:测量车置于待测高速公路路面上,图像采集装置固定于测量车的正前面;
[0006] 步骤2:用所述图像采集装置采集标定板图像,计算得到图像采集装置的参数,所 述图像采集装置的参数包括镜头崎变参数矩阵及内部参数矩阵和外部参数矩阵;
[0007] 步骤3:在路面建成时,测量车W速度V在路面行驶,v = fXw/2,其中f为图像采集 装置的采集帖频,W为图像采集装置的视场大小,图像采集装置连续拍摄路面图像并进行保 存,得到初始状态的一系列图像,作为状态0;
[0008] 步骤4:在路面待检测时刻,测量车W同样速度在路面行驶,图像采集装置连续拍 摄路面图像并进行保存,得到该状态的一系列图像,作为状态1;
[0009] 步骤5:利用所述步骤2得到的镜头崎变参数矩阵,将步骤3及步骤4得到的状态0和 状态1的序列图像分别进行崎变校正,对崎变校正后的状态0和状态1序列图像分别进行图 像拼接,得到包含整个路面的图像0和图像1;
[0010] 步骤6:用数字图像相关法对所述步骤5处理得到的图像0和图像1进行分析,得到 路面的全场应变。
[0011] 本发明方法通过分析高速公路路面刚刚建成及待检测时刻两个状态的变形前后 图像,非接触测量整个高速公路路面应变。
[0012] 进一步的,本发明方法中,步骤1)中的图像采集装置为单相机,多相机,或相机阵 列。
[0013] 进一步的,本发明方法中,步骤1)中的图像采集装置分辨率至少为2000*2000像 素。
[0014] 进一步的,本发明方法中,步骤5)中图像拼接的方法为:对于每组序列图像,利用 SURF特征点检测,找到所有图像上的特征点,利用最近距离比次近距离的特征点匹配方法 对相邻图像间进行特征点提纯,得到两幅图像特征点的粗匹配关系,使用随机抽样一致算 法对粗匹配的特征点进行进一步提纯,得到两幅图像特征点的细匹配关系,对细匹配的特 征点使用数字图像相关法找到两幅图像更为精确的匹配特征点对的图像坐标(XI,和 (XI,2,yi,2),采用如下公式计算图像的单应变换矩阵H:
[0015]
[0016] 其中i为匹配的特征点编号;
[0017] 最后利用双=次样条插值方法进行图像插值及融合。
[0018] 进一步的,本发明方法中,步骤2中镜头崎变参数矩阵包括6阶径向崎变参数Ki、K2、 1(3、1(4、拉、1(6和2阶切向崎变参数口1、口2。
[0019] 有益效果:本发明与现有技术相比,具有W下优点:
[0020] (1)高速公路路面无损。与其他公路路面接触式测量技术相比,本发明采用光学测 试技术,无需与高速公路路面接触,且对路面没有损伤,也不会阻止路面变形。
[0021] (2)高速公路路面全场应变测量。与传统的单点式测试技术相比,本发明在测试过 程中对整个公路路面进行整体成像,利用路面颗粒形成的纹理作为散斑图像,通过数字图 像相关方法即可测量路面全场应变。
[0022] (3)可W对高速公路路面进行及时有效养护。大多数路况检测方法只采集路面出 现裂缝后图像,不能再裂缝出现之前对路面进行养护。而本发明采集路面建成时及路面待 检测时刻两个状态图像,在裂缝出现之前即可检测出最大应变即将要出现裂缝位置。
[0023] (4)高精度高速公路路面应变测量。与传统的图像拼接方法相比,本发明在找到图 像的对应点之后采用数字图像相关法提高对应特征点的精度,数字图像相关方法可W达到 位移的测量精度为0.01像素,因而该方法可W进行高精度应变测量。
【附图说明】
[0024] 图1为本发明测量装置示意图。
[0025] 图2为编码点标定板示意图,是已知尺寸的标准件。
[00%]图3为发明方法的流程图。
【具体实施方式】
[0027] 下面结合实施例和说明书附图对本发明作进一步的说明。
[0028] 步骤1:图1中,1所示的为测量车,置于待测高速公路路面,2所示的为图像采集装 置,通过刚性支座固定于测量车的正前面距离地面约1米处。其中图像采集装置2为并排布 置的至少5台工业相机,工业相机分辨率至少为2000巧000像素,每台相机前装有低崎变定 焦镜头,镜头光轴垂直于车底平面。每个相机的视场约为0.5m X 0.5m,相邻相机间的距离略 小于单个相机视场大小,运样可W保证最终图像的连续性且不损失有效分辨率。其中图像 采集装置也可W用由多台相机组成的相机阵列代替;
[0029] 步骤2:将图2所示编码点标定板在相机视场和景深范围内W任意姿态转动8次,通 过同步触发装置控制工业相机同步采集不同姿态的编码点标定板图像。编码点标定板中每 个特征点的世界坐标和图像坐标都可W唯一确定,基于现有的标定方法利用标定板图像标 定计算工业相机之间的外部参数矩阵、每个工业相机的内部参数矩阵和镜头崎变参数矩阵 Di;镜头崎变参数矩阵包括6阶径向崎变参数Ki、K2、拉、K4、Ks、K6和2阶切向崎变参数Pi、P2;镜 头崎变参数矩阵主要用来校正由于镜头崎变造成的图像失真。
[0030] 步骤3:在高速公路路面建成时,测量车最高W速度V在路面行驶,v = fXw/2,其中 f为工业相机的采集帖频,W为工业相机的视场大小,通过同步触发装置控制工业相机连续 拍摄路面图像并进行图像保存,得到初始状态的一系列图像,作为状态0。序列相邻图像之 间至少要有一半的重叠区域,若采用采集频率为70帖的工业相机,则测量车的最高运行速 度为0.5 X 70/2 = 17.5m/s = 63km/h。对于不同的工业相机和镜头可依据上述公式中的视场 大小及图像采集频率计算测量车的最高运行速度。
[0031 ]步骤4:在高速公路路面待检测时刻,测量车W同样速度在路面行驶,通过同步触 发装置控制工业相机连续拍摄该时刻路面图像并进行图像保存,得到该状态的一系列图 像,作为状态1;
[0032] 步骤5:利用所述步骤2得到的相机间的外部参数矩阵、相机的内部参数矩阵和镜 头崎变参数矩阵,首先将步骤3及步骤4得到的状态0和状态1的多台相机采集的同一时刻的 图像分别利用现有方法进行图像崎变校正,利用基于标定的图像拼接方法进行图像拼接, 得到状态0和状态1的时间序列图像,文章《相机阵列测量二维应变场的高精度分析方法》公 开了基于标定的图像拼接方法,然后对状态0和状态1的时间序列图像分别进行图像拼接, 得到包含整个路面的图像0和图像1;
[0033] 其中图像拼接的方法为:对于每组序列图像,利用SURF特征点检测,SURF特征点检 测为现有技术,文章《SURF:Speeded Up Robust FeaUires》公开了该算法。找到所有图像上 的特征点,利用最近距离比次近距离的特征点匹配方法对相邻图像间进行特征点提纯,得 到两幅图像特征点的粗匹配关系,使用随机抽样一致算法对粗匹配的特征点进行进一步提 纯,得到两幅图像特征点的细匹配关系,对细匹配的特征点使用数字图像相关法找到两幅 图像更为精确的匹配特征点对的图像坐标和(扎2,71,2),由于数字图像相关方法 的定位精度为O.Olpixel,因此图像坐标(xi,i,yi,i)和(xi,2,yi,2)的匹配精度比洲RF特征点 算法的匹配精度更高,最终计算出来的图像单应变换矩阵重投影误差更小,采用如下公式 计算图像的单应变换矩阵H:
[0034]
[0035] 其中i为匹配的特征点编号;
[0036] 最后利用双=次样条插值方法进行图像插值及融合。
[0037] 步骤6:用数字图像相关法对所述步骤5处理得到的图像0和图像1进行分析,得到 高速公路路面的全场应变。其中数字图像相关法为现有技术,期刊名称为《Optics and Lasers in Engineering》,2015年第71其月,文章 《Noise robustness and parallel computation of the inverse compositional Gauss-Newton algorithm in digital image correlation》公开了该算法,数字图像相关方法的位移测量精度可达0.01像素,因 此可W高精度测量高速公路的路面应变,在裂缝出现之前即可检测出最大应变即将要出现 裂缝的位置,为路面养护提供及时的数据。
[0038]上述实施例仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术 人员来说,在不脱离本发明原理的前提下,还可W做出若干改进和等同替换,运些对本发明 权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。
【主权项】
1. 一种用于高速公路路面应变测量的数字图像采集分析方法,其特征在于,该方法包 括以下步骤: 步骤1:测量车置于待测高速公路路面上,图像采集装置固定于测量车的正前面; 步骤2:用所述图像采集装置采集标定板图像,计算得到图像采集装置的参数,所述图 像采集装置的参数包括镜头畸变参数矩阵及内部参数矩阵和外部参数矩阵; 步骤3:在路面建成时,测量车以速度V在路面行驶,v = f X w/2,其中f为图像采集装置 的采集帧频,w为图像采集装置的视场大小,图像采集装置连续拍摄路面图像并进行保存, 得到初始状态的一系列图像,作为状态〇; 步骤4:在路面待检测时刻,测量车以同样速度在路面行驶,图像采集装置连续拍摄路 面图像并进行保存,得到该状态的一系列图像,作为状态1; 步骤5:利用所述步骤2得到的镜头畸变参数矩阵,将步骤3及步骤4得到的状态O和状态 1的序列图像分别进行畸变校正,对畸变校正后的状态〇和状态1序列图像分别进行图像拼 接,得到包含整个路面的图像〇和图像1; 步骤6:用数字图像相关法对所述步骤5处理得到的图像O和图像1进行分析,得到路面 的全场应变。2. 根据权利要求1所述的用于高速公路路面应变测量的数字图像采集分析方法,其特 征在于,所述步骤1)中的图像采集装置为单相机,多相机,或相机阵列。3. 根据权利要求1所述的用于高速公路路面应变测量的数字图像采集分析方法,其特 征在于,所述步骤1)中的图像采集装置分辨率至少为2000*2000像素。4. 根据权利要求1、2或3所述的用于高速公路路面应变测量的数字图像采集分析方法, 其特征在于,所述的步骤5)中图像拼接的方法为:对于每组序列图像,利用SURF特征点检 测,找到所有图像上的特征点,利用最近距离比次近距离的特征点匹配方法对相邻图像间 进行特征点提纯,得到两幅图像特征点的粗匹配关系,使用随机抽样一致算法对粗匹配的 特征点进行进一步提纯,得到两幅图像特征点的细匹配关系,对细匹配的特征点使用数字 图像相关法找到两幅图像更为精确的匹配特征点对的图像坐标( Xl,和(Xl,2,yi,2),采 用如下公式计算图像的单应变换矩阵H: 其中i为匹配的特征点编号;最后利用双三次样条插值方法进行图像插值及融合。5. 根据权利要求1、2或3所述的用于高速公路路面应变测量的数字图像采集分析方法, 其特征在于,所述步骤2中镜头畸变参数矩阵包括6阶径向畸变参数K 1、K2、K3、K4、K5、K6和2阶 切向畸变参数Ρι、Ρ2。
【文档编号】E01C23/01GK106012778SQ201610331578
【公开日】2016年10月12日
【申请日】2016年5月18日
【发明人】何小元, 刘聪
【申请人】东南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1