可任意反复折叠的超柔性碳材料及其制备方法与流程

文档序号:16627258发布日期:2019-01-16 06:13阅读:672来源:国知局
可任意反复折叠的超柔性碳材料及其制备方法与流程

本发明属于柔性导电材料技术领域,尤其是涉及一种可承受180°反复折叠的超柔性碳材料及其制备方法。



背景技术:

在过去的数十年里,柔性电子学得到迅速发展,为人民的生活带来了翻天覆地的变化。特别是近年来,以轻量、小型便携等为特点的柔性智能电子材料成为新的研究热电和人们的迫切需求,这就对柔性电子产品各组件的折叠特性提出了更高的要求。虽然在柔性电子领域大量的概念和模型被提出,但是进入使用阶段的柔性电子产品则寥寥无几。这主要是因为柔性电子产品在实际实用中可能需要承受数千乃至上万次的反复弯折动作过程,弯折过度或者反复折叠带来的柔性材料不良接触,都会导致整个柔性电子产品的损坏。因此缺乏可数万次反复大角度折叠变形的柔性导电材料已经成为柔性电子发展的瓶颈之一。

常见的柔性导电材料包含金属,导电高分子和柔性碳材料。当金属材料被加工成薄膜或者金属线结构时,会具有良好的柔韧性;但是即便如此,这类材料仍然不能够承受多次的反复折叠,而金属材料的高密度也不利于设备的轻量化。而导电高分子材料,如聚苯胺,聚吡咯等,由于他们刚性的分子链结构和强的分子间作用力通常也是脆性的。因此他们也很难承受反复的折叠,而且他们的导电性较弱。因此,柔性金属和导电高分子都不能满足实用要求。而碳材料种类繁多,柔性可调,传导性高,密度较低,因此是最具潜力的柔性导电材料。目前各类不同结构,维度和形状的柔性碳材料,如碳纳米管纤维,巴基纸,石墨烯膜,石墨烯无纺布,碳纳米纤维纸,碳气凝胶,都得到了广泛的研究。虽然这些材料可能具备良好的弯曲性能,可拉伸或可压缩性能,但是他们仍然不能够承受多次反复的180°完全折叠。因此开发出高效简单适用于规模化生产的超柔性导电碳材料是解决柔性电子发展的关键之一。



技术实现要素:

本发明的目的就是为了解决现有柔性导电材料不具备多次大角度反复折叠的能力,且制备工艺复杂琐的问题。本发明提出的超柔性碳材料不仅可实现180°大角度完全折叠,而且可承受数十万次反复折叠而毫发无损;且制备方法简单,利于规模化生产,在柔性电子领域具有广阔的应用前景。

技术方案一

一种可任意反复折叠的超柔性碳材料,其特征在于:该超柔性碳材料为碳纳米纤维以相互搭接的形式构成的层层组装膜结构,厚度可为1-100μm,其中碳纳米纤维平均直径为50nm-500nm,长径比可达到5000-8000。

该超柔性碳材料不仅可以实现180°大角度完全折叠,而且可承受十万次反复折叠而结构上无任何损伤。而且该碳材料具有良好的导电性,其电导率为10-100sm-1

技术方案二

上述超柔性碳材料的制备,其特征在于,具体步骤为:

(1)将高分子溶质溶解于不同的溶剂中,混合搅拌均匀,形成均一稳定的前驱体溶液;

(2)将上述前驱体溶液通过激光诱导静电纺丝技术制备超柔性高分子前驱体纤维材料;

(3)最后将上述制备的超柔性高分子前驱体纤维材料进行梯度升温热解碳化,得到最终的超柔性碳材料。

步骤(1)中,所述的高分子为可溶性高分子,所述的溶剂为易挥发液体;

根据不同的可溶性高分子源与所述溶剂存在的对应类型有:

聚丙烯腈:n,n-二甲基甲酰胺

聚酰亚胺:n,n-二甲基乙酰胺

聚乙烯醇:去离子水

聚苯乙烯:n,n-二甲基甲酰胺,氯仿或四氢呋喃

醋酸纤维素:n,n-二甲基乙酰胺或丙酮

沥青:n,n-二甲基甲酰胺

步骤(1)中形成的高分子前驱体溶液的浓度为4%-35%。

步骤(2)中所述的激光诱导纺丝技术,即在高压静电场中另外增加激光发射,作用于纺丝。高分子液滴在静电场中螺旋飞行形成纳米纤维,在此过程中受激光器照射影响,改变高分子液滴中溶剂的挥发速度和液滴导电性,以影响纳米纤维飞行路径,从而形成搭接编织结构的特殊材料。

具体是采用低功率激光器(功率范围为5-250mw)照射在纺丝电场范围内(在本领域静电纺丝技术本身属于现有技术,如喷头设置、纺丝所需高压静电场的布置等细节,皆可采用常规方式即可)。例如,可在喷口附近,采用激光,在垂直于电场方向向刚从纺丝针头喷出的高分子液滴附加激光。

步骤(2)中所述的静电纺丝工艺,根据不同的前驱体高分子浓度,采用不同的纺丝工艺:纺丝温度为15-30℃,相对湿度为30-60%,喷丝孔直径为0.6mm,纺丝速度为0.1-2ml·h-1,接收距离为10-25cm,纺丝电压为10-30kv。

步骤(3)中所述的梯度升温过程分两个阶段:

第一阶段为预氧化阶段,该过程发生包括环化,脱氢,氧化等复杂的化学变化增强分子内和分子间作用力,以提高高分子纤维的热稳定来满足后续高温碳化的需要。该阶段从室温逐步升至200-350℃,升温速率为0.2-5℃/min,并在相应温度下保温1-8h,使用气氛为空气或氧气;

第二阶段为碳化阶段,在高温下发生脱氢脱水分子间交联等反应只留下碳。该阶段在预氧化阶段结束后,继续升温至600-1500℃,升温速率为1-20℃/min,并且在最高煅烧温度下保持1-4h,所用气氛为氮气,氩气或氦气中的一种或多种。

通过上述激光诱导静电纺丝法可以改变高分子液滴在电场中的运动状态,最终得到完全由高长径比的一维纤维搭接组装的高分子二维前驱体膜,其厚度可根据实际情况进行调整。而梯度升温原位高温热解法实现了高分子前驱体膜原位转化为碳材料,且在碳化过程中保持了原始纺丝结构,并在纤维中产生大量孔,碳纳米纤维平均直径为50nm-500nm。这种多孔结构,高长径比,独特的二维搭接组装结构,再加上厚度控制共同决定了所得碳材料的超柔性。所得超柔性碳网络材料不仅可以实现180°大角度完全折叠,而且可承受数十万次反复折叠而结构上无任何损伤。本发明制备的超柔性碳材料在柔性电子领域具有广阔的应用前景,如可穿戴设备,柔性储能材料,可弯曲显示屏等。

与现有技术相比,本发明具有以下优点及有益效果:

1、这种首次合成的超柔性碳材料,不仅可实现180°大角度完全折叠,而且可承受数十万次反复折叠而毫发无损。

2、本发明提出的激光诱导静电纺丝技术结合热解碳化制备超柔性碳材料方法,通过激光诱导一步即可得到满足碳化后具有超柔性的前驱体材料,且热解碳化后无需其他后处理。故制备方法简单,合成步骤少,无副产物,有机溶剂可回收利用,绿色无污染。

3、本发明提出的制备方法,生产效率高,稳定性好,利于规模化生产制备。

4、本发明制备的超柔性碳材料在柔性电子领域具有广阔的应用前景,如可穿戴设备,柔性储能材料,可弯曲显示屏等。

附图说明

图1为实施例1所得超柔性碳材料在依次横向180°对折再继续纵向180°对折再恢复原状时的宏观照片。

图2为实施例1所得超柔性碳材料在10um的倍数下的sem照片。

图3为实施例1所得超柔性碳材料在50um的倍数下180°折叠sem照片。该图从微观上充分表明所制备超柔性碳材料在折叠后上下两碳层间的距离小于0.005cm,在宏观上已经完全对折在一起。

图4为实施例1所得超柔性碳材料180°反复折叠100,000次在10um的倍数下的sem照片。

具体实施方式

下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

实施例1

一种超柔性碳材料及其制备方法,具体步骤如下:

将聚丙烯腈溶解于n,n-二甲基甲酰胺,混合搅拌12h,形成质量百分比是10%均一稳定的前驱体溶液。

将上述前驱体溶液通过激光诱导纺丝技术制备超柔性高分子前驱体纤维材料,采用低功率激光器,并照射在纺丝电场范围内。采用的静电纺丝工艺为:,纺丝温度为20℃,相对湿度为50%,喷丝孔直径为0.6mm,纺丝速度为1ml·h-1,接收距离为20cm,纺丝电压为20kv。

最后将上述制备的超柔性高分子前驱体纤维材料在优化的实验条件进行梯度升温热解碳化:第一阶段从室温逐步升至280℃,升温速率为2℃/min,并在相应温度下保温2h,使用气氛为空气;第二阶段继续升温至1000℃,升温速率为10℃/min,并且在最高煅烧温度下保持2h,所用气氛为氩气。

图1-图4从宏观和微观层次分别展示了所得新型碳材料的超柔性。

图1展示了实施例1所得超柔性碳材料的宏观折叠能力。一张平整的碳材料膜可以对折后继续对折,再展开时,该膜自动展开并保持原始的平整结构。

图2展示了实施例1所得超柔性碳的微观结构,在扫描电子显微镜下超柔性碳由相互搭接的高长径比碳纳米纤维组装构成的网络结构,碳纳米纤维表面光滑,直径约为250nm。这种高长径的相对较直的细纤维和它们相互之间的搭接(非交联)结构,以及折叠时形成的特殊“m”形分层和多角度分散应力的折叠结构(图3)是具备超柔性的关键。

图3为实施例1所得超柔性碳材料在50um的倍数下180°折叠sem照片。该图从微观上充分表明所制备超柔性碳材料在折叠后上下两碳层间的距离小于0.005cm,在宏观上已经完全对折在一起。

图4为实施例1所得超柔性碳材料经过100,000次180°反复折叠后的碳材料折痕处的微观结构。由图可见,折叠后的超柔性碳材料在折痕处出现了一条宏观不可见的沟壑结构,该结构由构成膜的碳纤维的位置移动造成的,而且所有的碳纤维都没有出现结构损伤或断裂,充分表明这种碳材料具备既可180°折叠又可以任意反复折叠的超柔性特征。

实施例2

一种超柔性碳材料及其制备方法,具体步骤如下:

将聚丙烯腈溶解于n,n-二甲基甲酰胺,混合搅拌12h,形成15%均一稳定的前驱体溶液。将上述前驱体溶液通过激光诱导纺丝技术制备超柔性高分子前驱体纤维材料,采用低功率激光器,并照射在纺丝电场范围内。采用的静电纺丝工艺为:,纺丝温度为30℃,相对湿度为30%,喷丝孔直径为0.6mm,纺丝速度为0.2ml·h-1,接收距离为25cm,纺丝电压为30kv。最后将上述制备的超柔性高分子前驱体纤维材料在优化的实验条件进行梯度升温热解碳化:第一阶段从室温逐步升至270℃,升温速率为2℃/min,并在相应温度下保温2h,使用气氛为空气;第二阶段继续升温至1500℃,升温速率为5℃/min,并且在最高煅烧温度下保持1h,所用气氛为氮气。

实施例3

一种超柔性碳材料及其制备方法,具体步骤如下:

将溶解于n,n-二甲基乙酰胺的10%聚酰亚胺前驱体通过激光诱导纺丝技术制备超柔性高分子前驱体纤维材料,采用低功率激光器,并照射在纺丝电场范围内。采用的静电纺丝工艺为:,纺丝温度为30℃,相对湿度为30%,喷丝孔直径为0.6mm,纺丝速度为0.2ml·h-1,接收距离为20cm,纺丝电压为15kv。最后将上述制备的超柔性高分子前驱体纤维材料在优化的实验条件进行梯度升温热解碳化:第一阶段从室温逐步升至350℃,升温速率为1℃/min,并在相应温度下保温2h,使用气氛为空气;第二阶段继续升温至900℃,升温速率为10℃/min,并且在最高煅烧温度下保持2h,所用气氛为氮气。

实施例4

一种超柔性碳材料及其制备方法,具体步骤如下:

将聚乙烯醇溶解于去离子水,在80℃混合搅拌12h,形成4%均一稳定的前驱体溶液。将上述前驱体溶液通过激光诱导纺丝技术制备超柔性高分子前驱体纤维材料,采用低功率激光器,并照射在纺丝喷口处。采用的静电纺丝工艺为:,纺丝温度为15℃,相对湿度为40%,喷丝孔直径为0.6mm,纺丝速度为1ml·h-1,接收距离为20cm,纺丝电压为15kv。最后将上述制备的超柔性高分子前驱体纤维材料在优化的实验条件进行梯度升温热解碳化:第一阶段从室温逐步升至220℃,升温速率为2℃/min,并在相应温度下保温4h,使用气氛为空气;第二阶段继续升温至800℃,升温速率为10℃/min,并且在最高煅烧温度下保持2h,所用气氛为氮气。

实施例5

一种超柔性碳材料及其制备方法,具体步骤如下:

将聚苯乙烯溶解于n,n-二甲基甲酰胺,混合搅拌24h,形成30%均一稳定的前驱体溶液。将上述前驱体溶液通过激光诱导纺丝技术制备超柔性高分子前驱体纤维材料,采用低功率激光器,并照射在纺丝电场范围内。采用的静电纺丝工艺为:,纺丝温度为20℃,相对湿度为35%,喷丝孔直径为0.6mm,纺丝速度为0.5ml·h-1,接收距离为20cm,纺丝电压为12kv。最后将上述制备的超柔性高分子前驱体纤维材料在优化的实验条件进行梯度升温热解碳化:第一阶段从室温逐步升至260℃,升温速率为1℃/min,并在相应温度下保温2h,使用气氛为空气;第二阶段继续升温至600℃,升温速率为5℃/min,并且在最高煅烧温度下保持2h,所用气氛为氩气。

实施例6

将醋酸纤维素溶解于丙酮,混合搅拌12h,形成15%均一稳定的前驱体溶液。将上述前驱体溶液通过激光诱导纺丝技术制备超柔性高分子前驱体纤维材料,采用低功率激光器,并照射在纺丝电场范围内。采用的静电纺丝工艺为:,纺丝温度为20℃,相对湿度为30%,喷丝孔直径为0.6mm,纺丝速度为0.5ml·h-1,接收距离为20cm,纺丝电压为20kv。最后将上述制备的超柔性高分子前驱体纤维材料在优化的实验条件进行梯度升温热解碳化:第一阶段从室温逐步升至220℃,升温速率为2℃/min,并在相应温度下保温2h,使用气氛为空气;第二阶段继续升温至800℃,升温速率为5℃/min,并且在最高煅烧温度下保持2h,所用气氛为氦气。

实施例7

一种超柔性碳材料及其制备方法,具体步骤如下:

将沥青溶解于n,n-二甲基甲酰胺,混合搅拌24h,形成35%均一稳定的前驱体溶液。将上述前驱体溶液通过激光诱导纺丝技术制备超柔性高分子前驱体纤维材料,采用低功率激光器,并照射在纺丝电场范围内。采用的静电纺丝工艺为:,纺丝温度为20℃,相对湿度为30%,喷丝孔直径为0.6mm,纺丝速度为0.5ml·h-1,接收距离为20cm,纺丝电压为15kv。最后将上述制备的超柔性高分子前驱体纤维材料在优化的实验条件进行梯度升温热解碳化:第一阶段从室温逐步升至300℃,升温速率为1℃/min,并在相应温度下保温4h,使用气氛为空气;第二阶段继续升温至900℃,升温速率为5℃/min,并且在最高煅烧温度下保持3h,所用气氛为氮气。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1