电致发光显示器及电子设备的制作方法

文档序号:2611037阅读:209来源:国知局
专利名称:电致发光显示器及电子设备的制作方法
技术领域
本发明涉及一种由制造在基片上的半导体元件(使用半导体薄膜的一种元件)形成的EL(电(致)发光)显示器件,并涉及含有作为显示器使用的EL显示器件的电子设备。
近年来在基片上形成TFT(薄膜晶体管)的技术已有很大进展,而将它应用于有源矩阵型的显示设备的开发也正在继续。特别是,使用多晶硅薄膜的TFT比起使用传统的非晶硅膜的TFT有更高的电场效应迁移率(也称为迁移率),它能够实现高速运行。因此就有可能由与象素在同一基片上形成的驱动电路来实现对象素的控制,尽管传统上是由在基片以外的驱动电路控制的。
这种类型的有源矩阵显示设备具有许多优点,例如降低了的制造成本、使显示器体积减小、增加成品率、和降低了输贯量,这些都是因把各种电路和元件制造在同一基片上而得到的。
此外,对具有EL元件作为自发光元件的有源矩阵型EL显示设备的研究已变得生机昂然。EL显示器也称作为有机EL显示器(OELD)或有机发光二极管(OLED)。
EL显示器属于自发光类型,它与液晶显示器不同。EL元件具有这样的结构,其中EL层是夹在一对电极之间的,而EL层通常是叠片式结构。由Eastman Kodak Co.(柯达公司)的Tang(唐)等人提出的“一层空穴转移层、一层发光层、和一层电子转移层”这样的叠层结构可以看成是一种典型的结构。这种结构具有极高的发光效率,目前几乎所有正在进行研究和开发的EL显示器都使用这种结构。
另外,也可以使用更多的结构,例如在一个象素的电极上依次形成一个空穴注入层、一个空穴转移层、一个发光层、以及一个电子转移层,或者在一个象素电极上依次形成一个空穴注入层、一个空穴转移层、一个发光层、一个电子转移层、和一个电子注入层。诸如荧光颜料这样的元素也可以搀杂进EL层中。
然后通过一对电极把预定的电压加到具有上述结构的EL层上,这样,在发光层中就发生载流子的重新组合,从而发出光线。请注意,在本说明书中EL元件的发光都称作为驱动EL元件。
此外,请注意,在整个本说明书中由一个阳极、一个EL层和一个阴极形成的发光元件都称作为一个EL元件。
粗略地划分,EL显示器件有4种颜色显示方法形成相当于R(红)、G(绿)、和B(蓝)三种EL元件的方法;把发白光的EL元件和滤色器相结合的方法;把发蓝色或蓝绿色的EL元件和荧光体(荧光颜色变化层、CCM即颜色变化物质)相结合的方法;以及对阴极采用透明电极(对面极)并覆盖相当于RGB的EL元件的方法。
不过一般说来,有许多有机EL材料,它们发出的红光的亮度要比发出的蓝光和绿光的亮度低。因此,当在EL显示器中使用了具有这种类型的发光特性的有机EL材料时,红色图象的亮度就会变得较弱。
另外,由于红色光的亮度与蓝色和绿色光的亮度相比要低,所以通常采用一种方法,即使用比起红色光来具有更短一点波长的橙色光。但是,显示在EL显示器上的红色图象本身的亮度就比较低,而当试图显示红色图象时,它却把它显示成橙色。
考虑到上面所说,本发明的一个目的是提供一种用于显示图象的EL显示器,它使用具有不同亮度的红、蓝和绿光亮度的有机EL材料,并在红、蓝和绿光的所需亮度之间有良好的平衡。
本发明的申请人在一种实施时间划分色调显示的EL显示设备中将加在要实现显示具有较低发光亮度的EL元件上的电压比加在要实现显示具有较高发光亮度的EL元件上的电压更高。
对EL元件的电流实施控制的EL驱动器TFT比起对驱动EL驱动器TFT以便使EL元件发光用的开关TFT有相对较大的电流流动。请注意,对驱动TFT的控制指的是TFT的开状态或关状态是通过对加在TFT的栅极上的电压进行控制而设定的。具体说,对于上述结构本发明在显示具有较低发光亮度颜色的象素的EL驱动器TFT中比显示其它颜色的象素的EL驱动器TFT中流过更多的电流。因此,就出现这样的问题,即由于热载流子注入显示具有较低发光亮度颜色的象素的EL驱动器TFT要比显示其它颜色的象素的EL驱动嚣TFT更快地老化。
本发明的申请人,除了上述结构之外,将显示具有较低发光亮度颜色的象素的EL驱动器TFT的LDD区的长度做得比显示具有高发光亮度颜色的象素的EL驱动器TFT的LDD区的长度更长一些,以此作为防止由于热载流子注入而引起的EL驱动器TFT的劣化的措施。
请注意,在整个本说明书中,LDD区的长度指的是LDD区中连接源区和漏(电极)区方向上的长度。
更进一步,与此同时,显示具有较低发光亮度颜色的象素的EL驱动器TFT的沟道宽度(W)比起显示具有相对较高发光亮度颜色的象素的EL驱动器TFT的沟道宽度(W)要做得更宽一些。
注意在整个本说明书中,沟道宽度(W)指的是垂直于连接源区和漏区方向的沟道区域的长度。
尽管控制EL驱动器TFT的电流的数量由于按照上述结构增加了所加的电压而有所增大,但本发明能够抑制EL驱动器TFT的劣化。此外,现在有可能改变加在EL元件上的电压来调节EL元件所发光线的亮度,并显示出具有鲜艳颜色和在所发出的红、蓝和绿色光之间有良好平衡的图象。注意,本发明不仅可用时间划分色调显示而且可用其它显示方法。
本发明的结构显示如下。
按照本发明,提供了一种EL显示器,它具有多个象素,每个象素含有一个EL元件,其特征在于EL显示器通过控制多个EL元件发射光线的时间的长短来实现色调显示;以及加到多个EL元件上的电压按照多个含有EL元件的象素所显示的颜色而有所不同。
同时,按照本发明,提供了一种EL显示器,它具有多个象素,每一象素含有一个EL元件;一个EL驱动器TFT,用来控制从EL元件的发光;以及一个开关TFT,用于控制对EL驱动器TFT的驱动;其特征在于EL显示器通过控制多个EL元件发光时间的长短来实现色调显示;加到多个EL元件上的电压按照多个含有EL元件的象素所显示的颜色而有所不同;多个EL驱动器TFT是由n沟道TFT组成的;以及加到多个EL元件上的电压越高,则多个EL驱动器TFT的LDD区在沟道纵向上的长度越长。
此外,按照本发明,提供了一种EL显示器,它具有多个象素,每个象素含有一个EL元件;一个EL驱动器TFT,用于控制从EL元件的发光;以及一个开关TFT,用于控制对EL驱动器TFT的驱动;其特征在于EL显示器通过控制多个EL元件发光时间的长短来实现色调显示;加到多个EL元件上的电压按照多个含有EL元件的象素所显示的颜色而有所不同。
多个EL驱动器TFT是由n沟道TFT组成的;以及加到多个EL元件上的电压越高,则多个EL驱动器TFT的沟道区的宽度就越宽。
另外按照本发明,提供了一种EL显示器,它具有多个象素,每个象素含有一个EL元件;一个EL驱动器TFT,用于控制从EL元件的发光;以及一个开关TFT,用于控制对EL驱动器TFT的驱动;其特征在于EL显示器通过控制多个EL元件发光时间的长短来实现色调显示;加到多个EL元件上的电压按照多个含有EL元件的象素所显示的颜色而有所不同;多个EL驱动器TFT是由n沟道TFT组成的;加到多个EL元件上的电压越高,则多个EL驱动器TFT的LDD区在沟道纵向上的长度越长;以及加到多个EL元件上的电压越高,则多个EL驱动器TFT的沟道的宽度就越宽。
按照本发明,提供了一种EL显示器,具有多个象素,每个象素含有一个EL元件;
一个EL驱动器TFT,用于控制从EL元件的发光;以及一个开关TFT,用于控制对EL驱动器TFT的驱动;其特征在于EL显示器通过控制多个EL元件发光时间的长度来实现色调显示;加到多个EL元件上的电压按照多个含有EL元件的象素所显示的颜色而有所不同;以及加到多个EL元件上的电压越高,则多个EL驱动器TFT的沟道区的宽度就越宽。
本发明也可以具有这样的特征,即多个EL元件发光时间的长短是由输入到开关TFT的数字信号所控制的。
本发明也可以是使用上述EL显示器的一种电子设备。
在所附插图中

图1A和1B是表示本发明的EL显示器的结构图;图2是说明本发明的时间划分梯度法显示模式的图解;图3是说明本发明的时间划分梯度法显示模式的图解;图4是表示本发明的EL显示器的截面结构的图解;图5A到5E是表示制造EL显示器的一种方法的图解;图6A到6D是表示制造EL显示器的方法的图解;图7A到7D是表示制造EL显示器的方法的图解;图8A到8C是表示制造EL显示器的方法的图解;图9是表示EL模块外观的图解;图10A和10B是表示EL模块外观的图解;以及图11A到11E是表示电子设备特定例子的图解。
数据信号侧驱动器电路102基本上包括一个移位寄存器102a,一个锁存器(A)102b和一个锁存器(B)102c。此外,时钟脉冲(CK)和起动脉冲(SP)是输入到移位寄存器102a,数字数据信号是输入到锁存器(A)102b,而锁存信号则是输入到锁存器(B)102c的。
输入到象素部分的数字数据信号是由时间划分色调数据信号发生器电路114形成的。这个电路,和把本来是模拟信号或数字信号的视频信号(含有图象信息的信号)转变成数字数据信号以便实施时间划分色调显示一起,是一种产生定时脉冲或类似信号的电路,这种脉冲或类似信号是实施时间划分色调显示所必需的。
一般说来,在时间划分色调数据信号发生器电路114中包括了将一个帧周期划分成相当于n比特色调(此处n是等于或大于2的实数)的多个子帧周期的装置,在多个子帧周期中选择一个寻址周期和一个持续周期的装置,和设置持续周期使得Ts1∶Ts2∶Ts3∶…∶Ts(n-1)∶Ts(n)=20∶2-1∶2-2∶…∶2-(n-2)∶2-(n-1)的装置。
时间划分色调数据信号发生器电路114也可以在本发明的EL显示器的外部形成。在这种情况下,这就成为这样一种结构,在那里形成的数字信号是输入到本发明的EL显示器去的。这样,具有将本发明的EL显示设备作为显示器的电子设备就要含有本发明的EL显示设备和作为独立部件的时间划分色调数据信号发生器电路。
此外,本发明的EL显示设备也可采取诸如用IC芯片作为时间划分色调数据信号发生器电路114这种形式来实现。在这种情况下,它成为这样一种结构,即由IC芯片形成的数字数据信号是输入到本发明的EL显示器的。这样,利用本发明的EL显示设备作为显示器的电子设备就含有本发明的EL显示器,其中实现了含有时间划分色调数据信号发生器电路的IC芯片。
另外,时间划分色调数据信号发生器电路114也可以由和象素部分101、数据信号侧驱动器电路102、和栅极信号侧驱动器电路103在同一基片上的TFT来形成。在这种情况下,如果含有图象信息的视频信号输入到EL显示嚣的话,那么所有的处理都可以在基片上实现。当然,更可取的是把时间划分色调数据信号发生器电路用具有在本发明中作为有效层所用的多晶硅薄膜的TFT来形成。此外,在这种情况下,具有将本发明的EL显示设备用作显示器的电子设备把时间划分色调数据信号发生器电路合并到EL显示器本身之内,这就可能将电子设备做得更小。
多个象素是以矩阵的状态排列在象素部分101中的。图1B示出了象素104的扩展图。参考数字105指出了图1B中的开关TFT。开关TFT105的栅极连接到栅极的布线106上并由它输入栅极信号。开关TFT105的漏区和源区之一连接到数据布线(也称作为源布线)107以便输入数字数据信号,另一个则连接到EL驱动器TFT108的栅极。
数字数据信号含有信息“0”和“1”,而数字数据信号“0”和“1”之一具有Hi(高)电位,而另一个则有Lo(低)电位。
此外,EL驱动器TFT108的源区接到电源线111,而漏区则接到EL元件110。
EL元件110包括一个连接到EL驱动器TFT的漏区的象素电极和一个在象素电极的对面形成的一个相对电极,中间夹一个EL层,而相对电极连接到一个公共的电源112,该电源保持一个固定的电位(公共电位)。
注意如果使用EL元件110的阳极作为象素电极,并用阴极作为相对电极,则EL驱动器TFT108最好是p沟道的TFT。
注意如果使用EL元件110的阴极作为象素电极,并用阳极作为相对电极,则驱动器TFT108最好是n沟道TFT。
加到电源线111的电位称作为EL驱动器的电位。在EL元件正发光时的EL驱动器电位称作为通EL驱动器电位。另外,在EL元件不发光时EL驱动器电位则称作为断EL驱动器电位。
此外,在EL驱动器电位和公共电位之间的差称作为EL驱动器电压。当EL元件正在发光时的EL驱动器电压称作为通EL驱动器电压。另外,当EL元件不发光时EL驱动器电压称作为断EL驱动器电压。
加到电源线111上的通EL驱动器电压的值根据在相应的象素上所显示的颜色(红、绿、蓝)而变化。例如,当由一个所用的有机EL材料发出的红光的亮度低于蓝色和绿色发光的亮度时,则加到连接在显示红光的象素上的电源线上的EL通驱动器电压就被置成高于加到连接在显示蓝和绿色象素上的电源线上的通EL驱动器电压。
请注意在EL驱动器TFT108的漏区和具有象素电极的EL元件110之间可以形成一个电阻性的物体。这就有可能控制从EL驱动器TFT提供给EL元件的电流的数量,并通过形成该电阻体而防止因EL驱动器TFT在特性上的分散而引起的任何影响。电阻体可以是一个元件,它表现出足够大的阻值,即大于EL驱动器TFT的通电阻,因此对它的结构没有限制。注意通电阻是在那个时刻TFT的漏电压除以流过的漏电流所得的值。电阻体的阻值可以在1千欧到50兆欧之间选择(可取的值是10千欧到10兆欧,更好是50千欧到1兆欧)。使用具有高阻值的半导体层作为电阻体是可取的,因为它易于形成。
为了在开关TFT105处于非选通状态(断状态)时维持EL驱动器TFT108的栅极电压,提供了一个电容器113。电容器113接到开关TFT105的漏区和电源线111。
下面将利用图1A到2来解释时间划分色调显示。这里要解释由n比特的数字驱动方法来实现2n种色调显示的例子。
首先,一个帧周期被划分为n个子帧周期(SF1到SFn)。注意一个帧周期是指在该周期内象素部分的全部象素显示一个图象。在正常的EL显示器中发光频率等于或大于60赫,即在一秒钟内形成了60个或更多的帧周期,并且在一秒钟期间显示了60或更多幅图象。如果在1秒钟期间显示的图象幅数变成小于60,那么图象的闪烁就会在视觉上变得明显。注意把一个帧周期额外地划分成多个周期,这些周期就称之为子帧。随着色调数量变大,一个帧的划分数也增大,同时驱动器电路必须以更高的频率来驱动(见图2)。
一个子帧周期分成寻址周期(Ta)和持续周期(Ts)。寻址周期是在一个子周期期间把数据输入到所有象素中去所需的时间,而持续周期(也称作为接通周期)表明使EL元件发光的周期。
分别具有n个子帧周期(SF1到SFn)的提交周期的长度都是固定的。具有SF1到SFn的持续周期则分别成为Ts1到Tsn。
持续周期的长度是这样设定的,即要使得Ts1∶Ts2∶Ts3∶…∶Ts(n-1)∶Ts(n)=20∶2-1∶2-2∶…2-(n-2)∶2-(n-1)。注意SF1到SFn出现的顺序可以任意设定。通过对持续周期进行组合可以实现2n色调之外的所需数值的色调显示。
首先,电源线111设定为维持断EL驱动器电位的状态,栅极信号加到栅极布线106,而接到栅极布线106上的开关TFT105都设定为通状态。请注意断驱动器电位是这样等级的一种电位,在这样的电位时EL元件不发光,接近于与公共电位相同的电位。
然后,在把开关TFT105设定成为通状态之后,或者在开关TFT被设成通状态的同时,具有“0”或“1”信息的数字数据信号就输入到开关TFT105的源区。
数字数据信号通过开关TFT105而输入到连接在EL驱动器TFT108的栅极上的电容器113中并存储在其中。把数字数据信号输入到全部象素中去的周期是提交周期。
在提交周期完成之后,电源线111维持在通EL驱动器电位,开关TFT置成断状态,而储存在电容器113中的数字数据信号则被输入到EL驱动器TFT108的栅极。
注意通EL驱动器电位的大小是处于这样一个量级,它使EL元件在EL驱动器电位和公共电位之间时能发光。可取的方法是加到阳极的电位要高于加到阴极的电位。换句话说,当把阳极用作象素电极时,可取的是把通EL驱动器电位设成大于公共电位,反之,当把阴极用作象素电极时,可取的是把通EL驱动器电位设成小于公共电位。
在本实施例方式中,当数字数据信号具有“0”信息时,就把EL驱动器TFT108设定成为断开状态,而加到电源线111上的通EL驱动器电压就不加到EL元件110的阳极上。
在“1”信息的情况下,则情况相反,即EL驱动器TFT108变成设定在通状态,而加到电源线111上的EL驱动器电压就加到EL元件110的阳极(象素电极)上。
因此,加上所含信息为“0”的数字数据信号的象素的EL元件110不发光。加上所含信息为“1”的数字数据信号的象素的EL元件110则发光。一直到发光结束的这个周期就是持续周期。
使EL元件110发光(象素被接通)的周期是任何从Ts1到Tsn的周期。这里,预定的象素被接通Tsn个周期。
然后又进入提交周期,当数据信号输入到所有的象素时,则再进入持续周期。在这一时刻任何从Ts1到Ts(n-1)的周期都可以成为持续周期。这里预定的象素被接通Ts(n-1)周期。
在此之后对剩余的n-2个子帧重复类似的操作,一个接一个地设定持续周期Ts(n-2),Ts(n-3),…,一直到Ts1,在相对应的子帧期间各预定的象素分别接通。
在出现了n个子帧后,就完成了一个帧周期。通过计算象素接通期间持续周期的长度,也就是将含有信息“1”的数字数据信号加到象素上的提交周期之后立即开始的持续周期的长短,就可以实现各象素的色调显示。例如,在象素在整个持续周期都发光的情况下其亮度为100%(此时n=8),则在象素在Ts1和Ts2时发光其亮度可表示为75%,而当选择Ts3、Ts5和Ts8时,可以表示的亮度为16%。
此外,在本发明中加到电源线111上的EL驱动器电压的数值根据相应的象素所显示的颜色(红、绿、蓝)而变化。例如,从所用的有机EL材料所发出的红色光的亮度低于从蓝色或绿色发光的亮度时,那么加到连接在发出红光象素上的电源线上的通EL驱动器电压就要设置成比连接在发出蓝和绿色光象素上的电源线上的通驱动器电压更高。
请注意在改变通EL驱动器电位的同时也有必要适当地改变数字数据信号和栅极信号的电位的数值。
下面将解释本发明的EL驱动器TFT的结构。EL驱动器TFT在本发明中是由p沟道TFT或n沟道TFT组成的。由p沟道TFT构成的EL驱动器TFT并不含有LDD区,而由n沟道TFT构成的EL驱动器TFT则含有LDD区。
对于EL驱动器TFT,它的控制电流的数量要大于开关TFT。尤其是,显示具有低发光亮度颜色的象素的EL驱动器TFT要比显示其它颜色的象素的EL驱动器TFT具有更大数量的控制电流。
当EL驱动器TFT是p沟道TFT时,显示具有较低发光亮度的颜色的象素的EL驱动器TFT的沟道宽度(W)比起显示具有较高发光亮度的颜色的象素的EL驱动器TFT的沟道宽度(W)做得更宽。利用上述结构,即使显示具有较低发光亮度颜色的象素的EL驱动器TFT的控制电流的数量要大于显示其它颜色的象素的EL驱动器TFT的控制电流,仍然可以防止显示具有低发光亮度颜色的象素的EL驱动器TFT由于热载流子的注入而很快劣化。
在EL驱动器TFT是n沟道的TFT的情况下,通过也使显示具有较低发光亮度颜色的象素的EL驱动器TFT的沟道宽度(W)比起显示具有相对较高发光亮度颜色的象素的EL驱动器TFT的沟道宽度(W)更宽,就有可能防止显示具有较低发光亮度颜色的象素的EL驱动器TFT由于热载流子注入而很快劣化。
当EL驱动器TFT是n沟道TFT时,即使没有上述结构,通过使显示具有较低发光亮度颜色的象素的EL驱动器TFT的LDD区的长度要比显示具有较高发光亮度颜色的象素的EL驱动器TFT的LDD区的长度更长,就可以防止显示具有较低发光亮度颜色的象素的EL驱动器TFT由于热载流子注入而劣化。对于EL驱动器TFT是n沟道TFT的情况,它们可以同时有两种结构,一种是如上所述的EL驱动器TFT的沟道宽度(W)随象素而不同,另一种是EL驱动器TFT的LDD区的长度随象素而不同。
根据本发明,就有可能通过加在上述结构中的EL元件上的通EL驱动器电位的数值来调节目标象素的EL元件的发光亮度,从而能够显示在红、蓝和绿色的发光中有良好平衡和鲜艳的图象。此外,通过使通EL驱动器电压变得更高,即使在EL驱动器TFT中的受控制的电流数量增大,EL驱动器TFT的劣化仍可得到抑制。
根据本发明通过时间划分色调显示就有可能实现清晰的多种色调的显示。而且即使由于所加的电压变得更高。EL驱动器TFT的受控电流的数量增大,EL驱动器TFT的劣化仍然可以被抑制。[实施例1]用于由8比特数字驱动器方法的实现256种色调(16,770,000种颜色)的全色显示器情形下的时间划分色调显示在实施例1中加以说明。实施例1说明了驱动一种使用有机EL材料的EL显示器,其中红色的发光亮度要低于蓝色和绿色的发光亮度。
首先,一个帧周期被划分为8个子帧周期(SF1到SF8)。在实施例1的EL显示器中发光频率设定为60赫,即在1秒钟内形成60个帧周期,1秒钟内显示60幅图象(见图3)。
一个子帧周期被划分为一个提交周期(Ta)和一个持续周期(Ts)。SF1到SF8的提交周期(Ta1到Ta8)都分别是固定的。SF1到SF8的持续周期(Ts)分别称作为Ts1到Ts8。
持续周期的长度是这样规定的,即Ts1∶Ts2∶Ts3∶Ts4∶Ts5∶Ts6∶Ts7∶Ts8=1∶1/2∶1/4∶1/8∶1/16∶1/32∶1/64∶1/128。注意SF1到SF8的出现顺序可以是任意的。通过对持续周期进行组合,可以实现出自256种色调的所需的色调显示。
首先,电源线被设置成这样一种状态,即它维持着断EL驱动器电位,在栅极布线上加一个栅极信号,而连接到栅极布线上的开关TFT都设成通状态。在实施例1中断EL驱动器电位规定为0V。注意在实施例1中EL元件的阳极是作为象素电极连接到电源线的,而阴极则作为相对电极而连接到公共电源。
在开关TFT置成通状态之后,或在开关TFT置成通状态的同时,具有“0”或“1”信息的数字数据信号被输入到开关TFT的源区。
数字数据信号是通过开关TFT输入到连接到EL驱动器TFT的栅极上的电容器上的,并存储在那里。一直到数字数据信号输入到全部象素去的周期就是提交周期。
在提交周期完成以后,电源线维持在通EL驱动器电位上,开关TFT置于断开状态,而存储在电容器中的数字数据信号则输入到EL驱动器TFT的栅极。在实施例1中在持续周期期间连接到显示红色的象素的电源线维持在通EL驱动器电位的10V。另外,连接到显示绿和蓝色的象素的电源线则维持在通EL驱动器电位的5V。
在实施例1中当数字数据信号含有“0”信息时,EL驱动器TFT被置成断开状态,而加到电源线上的通EL驱动器上的电压就不加到EL元件上的阳极(象素极)。
相反,对于信息为“1”的情况,EL驱动器TFT成为设定到通状态,而加到电源线上的EL驱动器电压就加到EL元件的阳极(象素极)。
因此,所加的数字数据信号含有“0”信息的象素的EL元件不发光。所加的数字数据信号含有“1”信息的象素的EL元件则发光。直到发光结束为止的周期是持续周期。
使EL元件发光(象素接通)周期可以是从Ts1到Ts8的任何一个周期。这里预定的象素是对Ts8周期被接通。
然后再一次进入提交周期,当数据信号输入到所有象素时,就进入持续周期。在这一时刻从Ts1到Ts7的任何周期都可以成为持续周期。这里预定的象素是对Ts7周期被接通。
在此之后对剩余的6个子帧重复相似的操作,持续周期Ts6,Ts5,…,Ts1被逐一设置在相应的子帧期间预定的象素被接通。
在出现了8个子帧周期后,一个帧周期即告完成,象素的色调可以通过对象素被接通的持续周期的长度的计算而实现,也就是计算紧接着含有信息“1”的数字数据信号加到象素的提交周期之后的持续周期的长度而实现。例如,在全部持续周期象素都发光的情况下亮度算作为100%,则在Ts1和Ts2中象素发光时亮度可表示为75%,而当选择Ts3、Ts5和Ts8时,亮度可表示为16%。
请注意,在改变EL驱动器电位值的同时,也有必要适当地改变数字数据信号和栅极信号的电位的数值。
按照上述结构,利用本发明就有可能通过加在上述结构的EL元件上的通EL驱动器电位的数值来调节目标象素的EL元件的发光亮度,同时也有可能通过时间划分色调显示来实现清晰的多色调显示。具体地说,从使用具有红色发光亮度比蓝色和绿色发光亮度较低的有机EL元件中发出的红光、蓝光和绿光的发光亮度将有更好的平衡,而且将有可能显示鲜艳的图象。此外,按照数字信号实现了时间分割色调显示,并且可以得到具有良好的色采再现和没有因EL驱动器TFT的特性参差不齐而引起的色调缺陷的高清晰度图象。[实施例2]下面将参考图4,它原理性地表示了本发明的EL显示器的截面结构。这个实施例说明了连接到EL驱动器TFT的漏区的EL元件的阴极的例子。
在图4中,参考数字11是一个基片,12是一层绝缘膜,它是管基(此后这个薄膜被称为基膜)。对于基片11,可以使用透光的基片,其代表性的是玻璃基片、水晶基片、玻璃陶瓷基片、或者晶化玻璃基片。不过,它一定要能耐受制造过程中的最高处理温度。
基膜12是有效层,尤其在使用含有可迁移的离子的基片或使用有导电性能的基片时,但它不一定要分布在水晶基片上。可以使用含有硅的绝缘膜作为基膜12。应该指出,在本说明书中,“含有硅的绝缘膜”指的是一种绝缘膜,其中氧或氮按预定的比例(SiOxNy,x和y是任意整数)加到硅中,例如氧化硅薄膜、氢化硅薄膜、或氮氧化硅薄膜。
参考数字201是开关TFT,202是EL驱动器TFT。这两者都是由n沟道型TFT形成的。也可能同时使用n沟道型TFT和p沟道型TFT来做开关TFT和EL驱动器TFT。
由于n沟道型TFT的电子场效应迁移率大于p沟道型TFT的迁移率,所以n沟道型TFT可以工作在更高的运行速度并且容易让大电流流过。考虑到相同数量的电流流过时所需要的TFT的尺寸,n沟道型的TFT会比较小。因此,希望使用n沟道型TFT来做EL驱动器TFT,因为图象显示板的有效发光面积可加宽。
开关TFT201是由一个有效层构成的,它包括一个源区13、漏区14、LDD区15a-15d、绝缘层16、沟道形成层17a、17b,栅极绝缘膜18、栅极19a、19b,第一层间绝缘膜20、源连接布线21、和漏连接布线22。栅极绝缘膜18或第一层间绝缘膜20可以对在基片上的所有TFT都是公共的,或者可以根据线路或元件而变化。
在图4所示的开关TFT201中,栅极19a、19b在电气上是连接的,换句话说,建立了一种所谓的双栅结构。当然,不仅可以建立双栅结构,也可以建立所谓的多栅结构,例如三栅结构。多栅结构指的是这样一种结构,它包括具有两个或更多个串连连接的沟道形成区的有效层。
多栅结构对减少断开状态电流是非常有效的,而如果开关TFT的断开状态的电流能够减到足够小,则连接到EL驱动器TFT栅极的电容器所需的电容量就可以减小。这就是说,由于电容器所占的面积可以减少,所以多栅结构对加宽EL元件的有效发光面积也是有效的。
在开关TFT201中,LDD区15a-15d被安排成不和栅极17a和17b相重叠,在它们之间有栅绝缘膜18。这样形成的结构对减少断态电流极为有效。LDD区15a-15d的长度(宽度)为0.5到3.5μm,代表性的数字为2.0-2.5μm。
更为希望的是在沟道形成层和LDD区之间形成一个偏置区(即以半导体层生成的区,其成分与沟道形成区相同,但在其上不加栅极电压),以便减少断态电流。在具有两个或更多栅极的多栅极结构中,在沟道形成区之间形成的隔离区16(即和源区或漏区具有相同浓度且加入同样的杂质元素的区)对减少断态电流是有效的。
EL驱动器TFT202是由有效层构成的,该有效层包括源区26、漏区27,LDD区28,以及沟道形成层29,栅绝缘膜18、栅电极30、第一层间绝缘膜20、源连接布线31和漏连接布线32。在这一实施例中,EL驱动器TFT202是n沟道型TFT。
开关TFT201的漏区是连接到EL驱动器TFT202的栅极30的。为了不用附图来表示而说明得更加准确,EL驱动器TFT202的栅极30在电气上是通过漏极布线22(也叫做连接布线)而接到开关TFT201的漏区14的。另外,栅极30可以是多栅极结构而不一定是单栅结构。EL驱动器TFT202的源布线则连接到电流馈线(未示出)。
EL驱动器TFT202是一个控制提供给EL元件的电流数量的元件,并且有较大的电流流经那里。因此,最好把沟道宽度(W)设计得比开关TFT的沟道宽度更宽。另外,最好把沟道长度(L)设计得长一些,以使过多的电流不流经EL驱动器TFT202。所希望的值是每象素0.5-2mA(更可取的是1-1.5mA)。
具体到实施例1显示低发光亮度颜色的象素的EL驱动器TFT比起显示其它颜色的EL驱动器TFT要控制更大量的电流。因此,显示较低发光亮度颜色的象素的EL驱动器TFT由于热载流子注入而引起的劣化要比显示其它颜色的象素的EL驱动器TFT来得更早。
显示较低发光亮度颜色的象素的EL驱动器TFT的LDD区的长度要比显示较高发光亮度颜色的象素的EL驱动器的LDD区的长度做得更长一些。这就可能抑制由于由EL驱动器TFT控制的增大了的电流数量所引起的热载流子注入所致的EL驱动器TFT的劣化。
为了抑制TFT的劣化,加厚EL驱动器TFT202的有效层的薄膜厚度(具体说,沟道形成区)也是有效的(可取的是50-100nm,更为可取的是60-80nm)。另一方面,从减少开关TFT201中的断态电流的观点来看,把有效层的薄膜厚度(具体地是沟道形成区)减薄也是有效的(可取的是20-50nm,尤为可取的是25-40nm)。
在象素中形成的TFT的结构已如上述。在这种形成过程中,同时也形成了驱动电路。图4示出了形成驱动电路的基本单元的CMOS电路。
在图4中一种具有减少热载流子注入而不会极度地降低运行速度结构的TFT被用作为CMOS电路的n沟道型TFT。这里所描述的驱动电路是数据信号侧驱动电路和栅极信号侧驱动电路。当然,也可以生成别的逻辑电路(电平转换器、模/数转换器、信号分割电路等等)。
CMOS电路的n沟道型TFT204的有效层包括源区35、漏区36、LDD区37和沟道形成层38。LDD区37与栅极39重叠,在它们间有栅绝缘膜18。
仅仅在漏区36一侧形成LDD区37的理由是不要降低运行速度。在n沟道型TFT204中没有必要去担心断态电流。相反,比这优先要考虑的是运行速度。因此,更为可取的是LDD区37要完全覆盖在栅极之上,从而尽可能地减小电阻成分。这就是说,应该省掉所谓的偏置。
在CMOS电路的p沟道TFT 205中没有特别必要提供LDD区,因为由热载流子引起的劣化是基本上可忽略的。因此,有效层包括源区40、漏区41、以及沟道形成区42。在那上面布置了栅绝缘膜18和栅极43。当然也可以放置LDD区就象n沟道型TFT204那样,以便采取对付热载流子的反措施。
在n沟道型TFT204和p沟道型TFT205上覆盖着第一层间绝缘膜20,并形成了源布线44和45。n沟道型TFT204和p沟道型TFT205的漏区由漏极布线46在电气上相互连接。
参考数字47是第一钝化膜。它的膜厚度是10nm到1μm(可取值是200-500nm)。含有硅(尤其希望的是氮化硅薄膜或氧化硅薄膜)的绝缘膜可以用来作为它的材料。钝化膜47用来保护已形成的TFT以避免遭受碱金属和水。EL层最后在TFT(尤其是驱动TFT)上要沉积钠。换句话说,第一钝化膜47也用作为保护层,由于它使碱金属(可迁移离子)就不能进入TFT侧。
参考数字48是第二层间绝缘膜,它用作为平整膜以便把由TFT形成的层厚度差整平。最好是使用有机树脂膜作为第二层间膜48,如聚酰亚胺、聚酰胺、丙烯酸树脂或BCB(苯并环丁烯)。这些有机树脂膜具有一个优点,就是很容易形成一个良好光滑的平面,而且其介电常数低。最好是利用第二层间绝缘膜将TFT所引起的层高差别彻底弄平,因为EL层对粗糙度是非常敏感的。此外,最好是形成使用厚而低介电常数的材料,以便减少在栅极布线或数据布线与EL元件的阴极之间所形成的寄生电容。因此,它的薄膜厚度最好是0.5-5μm(尤为可取是1.5-2.5μm)。
参考数字49是一个保护电极,用于连接每个象素的象素电极51。对于保护电极49,最好是使用低电阻材料,包括铝(Al)、铜(Cu)、或银(Ag)。利用保护电极49可以预期有一种冷却效果以降低EL层的热量。保护电极49是连接到EL驱动器TFT202的漏极布线32而形成的。
第三层间绝缘膜50是布置在保护电极49之上的,其厚度为0.3-1μm。薄膜50由氧化硅膜、氮氧化硅膜、或有机树脂膜制成。第三层间绝缘膜50用刻蚀法在保护电极49的上方有开孔,开孔的边缘刻蚀成斜坡形。斜坡的角度最好是10到60度(尤为可取的是30-50°)。
象素电极(EL元件的阴极)51生成于第三层间膜50的上方。具有较小逸出功的材料,如镁(Mg)、锂(Li)或钙(Ca),用来作为阴极51。最好是使用MgAg作为电极材料(这种材料是把Mg和Ag以Mg∶Ag=10∶1的比例混合而成)。或者也可以使用MgAgAl电极、LiAl电极或LiFAl电极。
在象素电极51上形成一个EL层52。EL层52的使用采取单层结构或分层结构。分层结构在发光效率上有优越性。一般说来在象素电极上以正空穴注入层/正空穴迁移层/发光层/电子迁移层这样的顺序形成。另外,也可以使用这样的结构,其顺序为正空穴迁移层/发光层/电子迁移层,或者用如下的顺序正空穴注入层/正空穴迁移层/发光层/电子迁移层/电子注入层。在本发明中,任何一种已知结构都可以使用,同时荧光着色材料等也可以掺杂到EL层中。
EL显示器主要有4种显示颜色的方法形成三种分别对应于R(红)、G(绿)、和B(蓝)的EL元件的方法;将发白光的EL元件和滤色器(着色层)相结合的方法将发蓝或蓝绿光的EL元件与荧光体(荧光颜色转换层CCM)相结合的方法;以及把相当于RGB的EL元件叠层并使用透明的电极作为阴极(相对极)的方法。
图4的结构是使用形成相应于RGB三种EL元件的方法的一个例子。在图4中只表示了一个象素。实际上,要生成每个都有相同结构的多个象素以对应于红、绿、蓝各种颜色,从而能够实现彩色显示。
本发明可以在不考虑哪种发光方法下实现,而且可以使用所有4种方法。不过,由于荧光体的响应速度比EL的速度要慢,而且存在余辉的问题,所以最好不要使用荧光体的方法。
下一步,在EL层上形成一个相对电极(EL元件的阳极)。在本实施例中,ITO(氧化铟锡)用作为透明导电膜。
必须要为每个象素单独地形成由EL层52和相对电极53组成的分层体。但是,EL层52很不耐水,因此已常的光刻技术不能使用。所以,最好使用一种物理掩膜材料,例如金属掩膜,并且按照气相法有选择地生成它,气相法可以是例如真空沉积法、溅射法或等离子体CVD(化学汽相沉积)法。
也可能使用墨水喷射法、丝网印刷法、旋转涂层法或类似方法作为有选择地生成EL层的方法。
参考数字54是第二钝化膜,它的膜厚最好是10nm-1μm(尤为可取的是200-500nm)。沉积第二钝化膜54的主要目的是为EL层52防水。它对使它有冷却效果也是有效的。但是,如上所述EL层不耐热,因此膜的形成应在低温下进行(最好是从室温到120℃)。因此,可以说,希望的膜生成法是等离子体CVD法、溅射法、真空沉积法、离子镀法、或溶液作用法(旋转涂层法)。
因此,本发明并不局限于图4的EL显示器的结构,这只不过是优选实施例之一。
按照上述情况,在这一实施例中,有可能按照加在EL元件上的EL驱动通电压的值来控制目标象素的EL元件的发光。同时也可能实现按照时间划分色调显示使多色调显示成为可见的。更详细说,有可能显示一个细致的、在红光、蓝光和绿光之间有良好平衡发光的彩色图象,而这是通过按照加在EL元件上的EL驱动通电压的数值以控制EL的亮度而实现的。此外,时间划分色调显示是用数字信号来实现的,以得到高度细致的图象,它具有良好的色彩再现性而不会因EL驱动TFT的特性的分散而造成色调的差错。
有可能自由地把本实施例的结构和实施例1相结合。[实施例3]在本实施例中,这里要给出一种围绕着象素部分同时制造象素部分的和驱动电路部分的TFT的方法,考虑到驱动电路,将把作为基本单元的CMOS电路表示在图中作为一个简单的说明。
首先,如图5(A)所示,要制作一个基片501,在其表面上要沉积一个基膜(未示出)。在本实施例中,在晶化玻璃上叠着一层厚度为200nm的氮氧化硅薄膜和另一层厚度为100nm的氮氧化硅用作为基膜。在这一时刻,接触晶化玻璃的薄膜中氮的浓度最好保持在按重量的10-25%。当然,也可以直接在水晶基片上形成元件而没有任何薄膜。
此后,在基片501上要用众所周知的薄膜形成法形成一个厚度为45nm的非晶硅薄膜502。没有必要限制它一定是非晶硅薄膜。相反,在本实施例中可以用具有非晶结构的半导体薄膜(包括微晶半导体膜)。这里也可以使用具有非晶结构的复合半导体薄膜,例如非晶的硅锗薄膜。
有关从这里到图5(C)的各步,可以完全引用日本公开的专利出版物3032801号,这是由本申请人提交的。这个出版物揭示了有关使半导体薄膜生成结晶方法的技术,其中使用例如镍(Ni)这样的元素作为催化剂。
首先,形成具有开孔503a和503b的保护膜504。在本实施例中使用的是厚150nm的氧化硅薄膜。利用旋转涂层法在保护膜504上形成含有镍(Ni)的层505(含镍层)。有关含镍层的生成,可参考上述出版物。
此后,如图5(B)所示,要实施14个小时的在570℃的惰性气体环境下的热处理,这时非晶硅薄膜502结晶。在这一时刻,结晶过程基本上和基片相平行而进行,从与镍相接触的区506a和506b开始(此后这个区叫做Ni添加区)。结果,形成了多晶硅薄膜507,它具有晶体结构,其中聚集着棒状结晶并形成线。
此后,如图5(C)所示,一种属于15族的元素(最好是磷)添加到加镍层506a和506b,而让保护膜504留作为掩膜。区508a和508b(此后称之为磷添加层)就通过加入高浓度的磷而形成。
此后,如图5(C)所示,在惰性气体氛围中进行12小时在600℃下的热处理,存在于多晶硅薄膜507中的Ni被这个热处理所移走,而它们的几乎全部都被磷添加层508a和508b所俘获,如箭头所示。据认为这是一种由磷对金属(在本实施例中为Ni)元素的吸气效应所引起的现象。
通过这一过程,根据由SIMS(二次离子质谱分析)的测定值残留在多晶硅薄膜509中的Ni的浓度降低到至多仅为2.1017个原子/cm3。尽管Ni对于半导体来说是个寿命杀手,但当它降低到这样的范围时将不会对TFT的特性还有什么不良影响。另外,这样的浓度是SIMS分析的这种技术当前的测量极限,实际上可以表明这个浓度还会更低(小于2.1017原子/cm3)。
这样就可以得到由催化剂使其结晶的多晶硅薄膜509,而且催化剂降低到这样的水平可以使它不会妨碍TFT的运行。在此之后,利用刻图过程来只使用多晶硅薄膜509的情况下形成有效层510-513,这时,要利用上面的多晶硅薄膜来生成标记以便在以后的刻图过程中进行掩膜的对准(图5(D))。
此后,用等离子体CVD法形成氮氧化硅薄膜,其厚度为50nm,如图5(E)所示,然后在氧化气氛中在950℃高温下进行1小时的热处理,并实现热力氧化过程。氧化气氛可以是氧气的氛围,也可以是添加了卤族的氧气氛围。
在这个热力氧化过程中,氧化是在有效层和氮氧化硅薄膜之间的界面中进行的,大约有15nm厚的多晶硅膜被氧化,这样就形成了约30nm厚的氧化硅薄膜。这就是说,形成了厚度为80nm的门绝缘膜514,其中厚30nm的氧化硅膜和厚50nm的氮氧化硅膜叠合在一起。有效层510-513则由热力氧化过程做成30nm的厚度。
此后,如图6(A)所示,形成一个抗蚀膜515,然后通过栅极绝缘膜514的介质添加进能给出p型的杂质元素(此后称作为p型杂质元素)。作为p型杂质元素,可以使用属于以13族为其代表性的元素,例如硼或镓,它们是典型杂质元素。这(称为沟道搀杂过程)是控制TFT的阈电压的过程。
在本实施例中,利用离子掺杂方法添加了硼,其中实施了等离子体激化而未作乙烷硼(B2H6)的质量分离。当然,也可以使用实施质量分离的离子注入法。按照这一过程,形成了杂质区516-518,它含有硼的浓度为1·1015-1·1018原子/cm3(代表性为5·1016-5·1017原子/cm3)。
此后,形成了抗蚀掩膜519a和519b,如图6(B)所示,并通过栅极绝缘膜514的介质添加进能给出n型的杂质元素(此后称之为n型杂质元素)。作为n型杂质元素,可以使用属于以15族为代表的元素,典型地是磷和砷。在本实施例中,使用了等离子体搀杂法,其中实现了等离子体激化而未作磷化氢(PH3)的质量分离。加磷的浓度为1·1018原子/cm3。当然也可以使用实施质量分离的离子注入法。
剂量要加以调节以便由这个过程所形成的n型杂质区520、521中所包括的n型杂质元素的浓度为2·1016-5·1019原子/cm3(代表值为5·1017-5·1018)。
此后,要实现一个使所加的n型杂质元素和所加的p型杂质元素活化的过程,如图6(C)所示。没有必要对活化装置作出限制,但是,由于已沉积了栅绝缘膜514,所以希望使用电热炉来进行炉内退火处理。此外,最好是以尽可能高的温度来实施热处理,因为存在这样的可能性,即在有效层和一部分栅绝缘膜之间的界面上会有损坏,这一部分是图6(A)过程中的沟道形成区。
由于在本实施例中使用了耐高温的晶化玻璃,所以活化过程是由在800℃温度下的炉内退火处理持续1小时而实现的。热力氧化过程可以通过把处理氛围保持在氧化氛围中而实现,或者热处理也可以在惰性气体中实现。
这个过程使n型杂质区520、521的边缘清晰化,这个边缘就是n型杂质区520、521和围绕n型杂质区520、521的(由图6(A)的过程所形成的p型杂质区的)区之间的边界,而p型杂质区中没有加入n型杂质元素。这意味着以后当完成了TFT时LDD区和沟道形成区可以成为极好的结。
此后,形成一个厚200-400nm的导电膜,并实现刻图,以便形成栅极522-525。TFT沟道的长度取决于那些栅极522-525的线宽。
栅极可以由单层的导电膜制成,不过,最好是在必要时用两层或三层这样的叠层膜来制成。已知的导电膜可以用作为栅极的材料。具体地说,可以利用从下列一群元素中选出的元素的薄膜如钽(Ta)、钛(Ti)、钼(Mo)、钨(W)、铬(Cr)、和具有导电性的硅(Si);也可以使用上述元素的氮化物的薄膜(代表性的如氮化钽膜、氮化钨膜、或氮化钛膜),上述各元素的组合的合金膜(代表性的如Mo-W合金或Mo-Ta合金),或者上述各元素的硅化物薄膜(代表性的为硅化钨膜或硅化钛膜)。当然,它们可以有单层结构的也可有叠层结构的。
在本实施例中使用了叠层薄膜,它是由50nm厚的氮化钨(WN)和350nm厚的钨(W)膜构成的。这可以用溅射法来形成。通过加入Xe或Ne这样的惰性气体作为溅射气体,就可以防止因应力而引起的薄膜剥离。
在这一时刻,形成了栅极523,525,它们分别和n型杂质区520、521有部分重叠,它们之间则是栅绝缘膜514。重叠部分以后被制成LDD区并和栅极重叠。按照图中的截面图,栅极524a和524b看起来是分开的,而实际上它们在电气上是相互连接的。
此后,把栅极522-525作为掩膜,以自行调节的方式加入n型杂质元素(在本例中为磷),如图7(A)所示。此时,要实施一定的调节以便使加到这样形成的杂质区527-533中的磷的浓度为n型杂质区520、521的浓度的1/2-1/10(代表性为1/3-1/4)。可取的浓度是1·1016-5·1018原子/cm3(典型为3·1017-3·1018原子/cm3)。
此后,如图7(B)所示,形成了抗蚀掩膜534a-534d以覆盖栅极,然后加入n型杂质元素(在本实施例中为磷),这就形成了含有高浓度磷的杂质区534-541。这里也采取了利用氢化磷(PH3)的离子搀杂法,并且要实现调节以使在这些区中的磷的浓度为1·1020-1·1021原子/cm3(代表值为2·1020-5·1020原子/cm3)。
通过这一过程形成了n沟道型TFT的源区和漏区,而开关TFT则留下了由图7(A)所示的过程中所形成的n型杂质区530-532的一部分。左边部分相当于图4的开关TFT的LDD区15a-15d。
此后,如图7(C)所示,去掉抗蚀掩膜534a-534d,而新形成一个抗蚀掩膜543。然后加入p型杂质元素(在本实施例中为硼),从而形成含有高浓度硼的杂质区544、545。这里,根据使用乙硼烷(B2H6)的离子搀杂法,加入了硼以得到浓度3·1020-3·1021原子/cm3(代表值为5·1020-1·1021原子/cm3)。
在杂质区544、545中已加入了磷,其浓度为1·1020-1·1021原子/cm3。这里加入的硼的浓度至少为所加磷的浓度的3倍。因此,原先所形成的n型的杂质区完全改变成了p型的,并且起着p型杂质区的作用。
此后,如图7(D)所示,去掉抗蚀掩膜543,并且形成第一层间绝缘膜546。作为第一层间绝缘膜546,使用了含有硅的绝缘膜,其形式可以是单层结构,也可以是它们的组合的叠层结构。较可取的膜厚是400nm-1.5μm。在本实施例中,建立了一种结构,其中用800nm厚的氧化硅膜叠在200nm厚的氮氧化硅膜上。
此后,每一种浓度的n型或p型杂质元素都被激活。激活装置希望采用炉内退火法。在本实施例中,热处理是在电热炉中在氮气的氛围下在550℃下进行4小时。
热处理还要在含有3-100%氢的氛围下在300-400℃下进行1-12小时以便进行氢化作用。这是一个通过热激发的氢气来以氢终结半导体薄膜中未配对的结合子。作为氢化作用的另一装置,可以实施等离子体氢化作用(使用由等离子体激发的氢气)。
氢化作用可以在形成第一层间绝缘膜546期间进行。更详细地说,先形成200nm厚的氮氧化硅膜,再如上述实现氢化作用,然后可以形成800nm厚的氧化硅膜。
然后,如图8(A)所示,在第一层间绝缘膜上制造通孔,再形成源连接布线547-540和漏连接布线551-553。在本实施例中,按照溅射方法连续地形成100nm厚的钛膜、300nm厚的含有钛的铝膜和150nm厚的Ti膜这样一种三层结构的叠层薄膜作为这样的电极。当然,也可以使用其它导电薄膜。
在此之后,形成一个第一钝化膜554,其厚度是50-500nm(代表值为200-300nm厚)。在本实施例中,使用300nm厚的氮氧化硅膜作为第一钝化膜554。可以用氮化硅膜取代它。
这时,在形成氮氧化硅膜以前,可以利用包含氢的气体,如H2或NH2,来有效地实现等离子体处理。由这个预备过程激发的氢提供给第一层间绝缘膜546,通过热处理,第一钝化膜554的膜质量得到了提高。与此同时,由于加到第一层间绝缘膜546的氢扩散到下面一侧,所以有效层可以有效地得到氢化。
此后,如图8(B)所示,形成了由有机树脂制成的第二层间绝缘膜555。聚酰亚胺、丙烯酸纤维、或BCB(苯并环丁烯)可以用作为这种有机树脂。尤其是,由于要求第二层间绝缘膜555能把由TFT所形成的层面差异展平,所以希望使用极其光滑的丙烯酸纤维。在本实施例中形成了厚2.5μm的丙烯酸膜。
然后,在第二层间绝缘膜555和第一钝化膜554上制造能达到漏极连接布线553的通孔,然后形成保护电极556。作为保护电极556,主要由铝制成的导电膜可被使用。保护电极556可以按照真空沉积法来形成。
此后,含有硅的绝缘膜(在本实施例中为氟化硅)被形成,其厚度为500nm,然后在对应于象素电极的位置上形成开孔,并形成第三层间绝缘膜557。在形成开孔时,利用湿式刻蚀法就有可能方便地形成带斜坡的侧壁。如果开孔的侧壁没有足够缓和的斜坡,则由层面差异所引起的EL层的劣化将导致重要的问题。
此后,作为EL元件的阴极的象素电极(MgAg电极)558被生成。MgAg电极558是由真空沉积法形成的并使其膜的厚度为180-300nm(典型为200-250nm)。
下一步,在不暴露于空气中的情况下用真空沉积法形成EL层569。EL层的膜厚为80-200nm(典型为100-120nm)。
在这一过程中,EL层是顺序地形成一个对应于红色的象素、一个对应于绿色的象素和一个对应于蓝色的象素。但是,由于EL层对溶液的耐受性很差,所以它们必须独立形成每种颜色而不使用光刻技术。因此,最好是把除了所希望的象素以外的其余象素都用金属掩膜遮蔽起来,并对所希望的象素形成EL层。
详细地说,首先设置一个掩膜把除了对应于红色象素以外的所有象素都遮蔽掉,然后由该掩膜有选择地形成发红色光的EL层。此后,设置一个掩膜用来遮蔽掉除了对应于绿色象素之外的所有象素,再由掩膜有选择地形成发绿色光的EL层和阴极。然后,和上面一样,设置一个掩膜以遮蔽除对应于蓝色象素以外的所有象素,然后由掩膜有选择地形成发蓝色光的EL层。在这一情况下,对相应的颜色使用不同的掩膜。不过也可以对它们使用同一个掩膜。最好是在不破坏真空的情况下进行处理直到所有象素的EL层都已形成为止。
EL层559可以用已知材料来形成。这最好是一种考虑到驱动电压的有机材料。例如,EL层可以由4层结构来形成,它包括一个正空穴注入层,一个正空穴转移层、一个发光层和一个电子注入层。
下一步要形成相对的电极560(阳极)。相对电极560(阳极)的膜厚为110nm。在本实施例中,氧化铟/锡(ITO)膜作为EL元件的相对电极(阳极)560而形成。可以使用透明的导电膜,其中2-20%的氧化锌(ZnO)和氧化铟相混合,别的人们熟知的材料也可以使用。
在最后阶段,形成由氮化硅膜构成的第二钝化膜561,其厚度为300nm。
这样就完成了如图8(C)所示那样结构的EL显示器。实际上,最好把显示器用高度抗漏气的保护膜(夹层膜、紫外线处理过的树脂膜等)或诸如陶瓷密封管壳那样的外壳材料进行封装(密封),以便在如图8(C)那样完成后不暴露在空气中。在那种情况下,通过使外壳中的材料为惰性气体或在其中放置吸水材料(例如氧化钡)而改进EL层的可靠性(寿命)。
在通过例如封装而改进了气密性之后,就安装上连接线(柔性印刷电路FPC)以便把从元件引出的接线端或在基片上形成的电路和外部的信号接线端相连,然后产品就告完成。在本说明书中这样完整地向市场提供的EL显示器件被称作为EL模块。
请注意,可以自由地把本实施例的内容与实施例1的内容相结合。[实施例4]现在本实施例的EL显示器的结构将参考图9的透视图而加以说明。
本实施例的EL显示器是由象素部分602、栅极信号侧驱动电路603和源侧驱动电路604组成的,每个都形成于玻璃基片601上。象素部分602的开关TFT605是n沟道型TFT,并被安排在连接到栅极侧驱动电路603的栅极连接布线606和连接到源侧驱动电路604的源连接布线607的交会处。开关TFT605的漏区和源区连接到源布线607而另一个则连接到EL驱动器TFT608的栅极。
EL驱动器TFT608的源区连接到电流馈线609。提供一个电容器616,它连接到EL驱动器TFT608的栅极和电流馈线609。在本实施例中,EL驱动电位是加到电流馈线609的。此外,公共电极的公共电位(本实施例为OV)加到EL元件611的相对电极(在本实施例中为阴极)。
为了把信号发送到驱动电路,对输入连接布线(用于连接的布线)613、614和连接到电流馈线609的输入输出连接布线提供了作为外部输入输出接线端的FPC612。
本实施例的含有外壳材料的EL模块将参考图10(A)和10(B)在这里作说明。图9中所用的标号在需要时仍将使用。
在基片1200上形成象素部分1201,数据信号侧驱动电路1202,以及栅极信号侧驱动电路1203。从每个驱动电路来的各种布线通过输入布线613-615和FPC612连接到外部设备。
在这时,外壳材料1204被安排以便封装至少象素部分,更好的是封装象素部分和驱动电路。外壳材料1204的外形做成有一个凹形部分其内部尺寸大于EL元件的外部尺寸,或者可成为片状,外壳材料1204是用粘合剂1205固定在基片1200上的以便和基片1200共同形成一个闭合空间。这时EL元件处于被完全封闭在一个闭合空间内的状态,并完全与外界空气隔绝。可以使用多种外壳材料1204。
外壳材料1204的品质最好是一种绝缘材料如玻璃或聚合物。例如,可以用非晶玻璃(硼硅玻璃-水晶等),晶化玻璃、陶瓷玻璃、有机树脂(丙烯酸树脂、苯乙烯树脂、聚碳酸酯树脂、环氧树脂等)或硅树脂。此外,也可以用陶瓷。如果粘合剂1205是绝缘物,则也可以使用金属材料,如不锈钢。
至于粘合剂1205的品质,可以使用环氧树脂、丙烯酸树脂等。此外,也可以用热固化树脂或光固化树脂作为粘合剂。不过需要使材料尽最大可能不发出氧或水。
在外壳材料和基片1200之间的间隙最好充以惰性气体(氩、氦或氮)。但并不局限于气体。也可以使用惰性液体(例如以过氟烷烃为典型的液态氟碳化合物)。例如,在日本专利公开Hei8-78519中所说明的一种液体可以用作为惰性液体。
在间隙1206中放置干燥剂也是有效的。在日本专利公开Hei-148066中所说明的干燥剂可以用作为干燥剂。一般说来,可以使用氧化钡。
如图10(B)所示,象素部分有多个象素,每一象素有单独隔开的EL元件。所有这些元件都有一个保护电极1207作为公共电极。在本实施例中,其说明给出如下最好是在不暴露于空气中的情况下连续地形成EL层、阴极(MgAg电极),以及保护电极。相反,如果EL层和阴极是用同一个掩膜形成的,只有保护极是用另一个掩膜形成的,则将实现图10(B)所示的结构。
在这时,EL层和阴极可以只安排在象素部分1201上,而不需要安排在驱动电路1202和1203上。当然,即使把它们安排在驱动电路上也不会发生什么问题。但是,考虑到这样一个事实即在EL层中含有碱金属,它们就不应该放在那上面。
保护电极1207通过由与象素电极同样材料制成的连接布线1209的介质连接到由参考数字1208所表示的区域中的输入输出布线1210上。输入输出布线1210是电流馈线,用于向保护电极1207提供EL驱动电位,它通过导电膏材料1211的介质连接到FPC611。
注意可以自由地把本实施的内容与实施例1的内容相结合。[实施例5]也可以将本发明应用到有机EL材料中,在这种材料中红、绿和蓝色的发光亮度全都不同。例如,在EL材料的一种情况中,红色发光亮度最低,蓝色的发光亮度最高,为了调节显示红色的象素的亮度和显示绿色的象素的亮度相对于显示蓝色的象素的亮度,EL显示器实施了时间划分色调显示,并将加在实现红色显示的EL元件上和实现绿色显示的EL元件上的EL驱动器电压规定得大于加在实现蓝色显示的EL元件上的EL驱动器电压。然后,作为对付由于热载流子注入而引起的EL驱动器TFT的劣化的反措施,对上述结构加上这样的措施显示红色象素的EL驱动器TFT的沟道宽度(W)和显示绿色象素的EL驱动器TFT的沟道宽度(W)做得要比显示蓝色的象素的EL驱动器TFT的沟道宽度(W)更宽。此外,当EL驱动器TFT是n沟道TFT时,显示红色的象素的EL驱动器TFT的LDD区的长度和显示绿色的象素的EL驱动器TFT的LDD区的长度可以做得比蓝色显示象素的驱动器TFT的LDD区的长度更长。对于操作者就有可能合适地规定EL驱动器TFT的沟道宽度(W)和EL驱动器TFT的LDD区的长度。
按照本发明的上述结构,就有可能通过加到EL元件上的EL驱动器电压值来调节EL元件的发光亮度,并且有可能显示具有红色、蓝色和绿色发光强度良好平衡的鲜艳的图象。此外,即使由EL驱动器TFT控制的电流量由于所加电压变得更高而增大,但EL驱动器TFT的劣化可以得到抑制。
此外,可以自由地把实施例5的内容和实施例1到5的任意一个相结合。[实施例6]在实施例1中曾经说过,最好是使用有机的EL材料作为EL层。但是本发明也可以使用无机材料来实现。在这种情况下,由于当前的无机EL材料都是要很高的驱动电压的,所以所用的TFT必须具有能够耐受如此高的驱动电压的耐压特性。
如果将来能够开发出具有更低驱动电压的无机EL材料,它将可用于本发明。
本实施例的结构可以自由地和实施例1-5的任何一种结构相结合。[实施例7]在本发明中用作为EL层的有机物可以是低分子量的有机物,或者也可以是聚合物(高分子量)的有机物。聚合物(高分子量)有机物可以通过简单的薄膜形成法来生成,如旋转涂布(也叫做溶液涂敷)、浸渍、印刷、和喷墨印刷,并且和低分子量有机物相比它具有高耐热性。
PPV(聚苯乙烯)、PVK(聚乙烯咔唑)、和聚碳酸酯及其类似物可以认为是典型的聚合有机物。
此外,可以自由地将实施例7的内容和任何一个实施例1到5的内容相结合。[实施例8]由实施本发明而形成的EL显示器(EL模块)在光亮场合下的可视性要比液晶显示器更优越,因为它有自发光性能。因此,本发明可以用作为直接观看型EL显示器的显示部分(即指显示器带有EL模块)。作为EL显示器,可以是个人计算机的监视器、电视接收监视器、广告显示监视器,等等。
本发明可以工作在所有包含显示器作为其组成部分的电子设备中,包括上述的EL显示器。
作为电子设备,可以包括EL显示器、摄象机、数字相机、头戴式显示器、车辆导航器、个人计算机、便携式信息终端(移动计算机、移动电话、电子书籍、等等),以及备有记录介质的图象再生设备(具体说,指的是可以再现记录介质并装有能显示图象的显示器的设备,如光盘(CD)、激光视盘(LD)、或数字视盘(DVD))。这种电子设备的例子示于图11中。
图11(A)表明一台个人计算机,它包括主机2001、外壳2002、显示部分2003、以及键盘2004。本发明可以用作显示器2003。
图11(B)表明一台摄像机,它含有主机2101、显示器2102、声音输入部分2103、操作开关2104、电池2105、和图象接收部分2106。本发明可以用作显示器2102。
图11(C)表示一个头戴式EL显示器(右侧),它包括一个主机2301、信号电缆2302、头部固定带2303、显示监视器2304、光学系统2305、以及显示器2306。本发明可用作显示器2306。
图11(D)表明一台图象再现设备(具体地是DVD再现器)并带有纪录介质,该设备包括主机2401、记录介质2402(CD、LD、DVD等),操作开关2403、显示器(a)2404和显示板(b)2405。显示器(a)主要显示图象信息,而显示器(b)主要显示字符信息。本发明可以用作为显示器(a)和(b)。本发明可以用于CD播放机或游戏机以作为具有记录介质的图象重放设备。
图11(E)表明一台便携式(移动式)计算机,它包括主机2501、相机2502、图象接收部分2503、操作开关2504、以及显示部分2505。本发明可以用作为显示器2505。
如果EL材料的发光亮度在将来得到提高,则本发明可以用于前投式或背投式投影仪。
本发明如上所述,具有相当广阔的使用范围,并可用于所有领域的电子设备。本实施例的电子设备可以用实施例1到7的自由组合而得到的任意结构来实现。
根据本发明的上述结构,就有可能按照加到EL元件上的EL驱动器电压的数值来调节EL元件的发光亮度,并且也可能显示在红色、蓝色和绿色发光亮度之间有良好平衡的鲜艳的图象。此外,即使由于因所加电压变得更大而使由EL驱动器TFT所控制的电流量增加,仍可抑制EL驱动器TFT的劣化。
权利要求
1.一种含有多个象素的EL显示器,每个象素含有EL元件,其中EL显示器通过控制由多个EL元件发光的时间来实现色调显示;以及加到多个EL元件上的电压按照多个象素显示的颜色而有所不同。
2.一种EL显示器,包括多个象素,每个含有一个EL元件;一个EL驱动器TFT,用于控制从EL元件的发光;以及一个开关TFT,用于控制对EL驱动器TFT的驱动;其中EL显示器通过控制由多个EL元件发光的时间来实现色调显示;加到多个EL元件上的电压按照多个象素显示的颜色而有所不同;多个EL驱动器TFT是由n沟道TFT组成的;以及加到多个EL元件上的电压越高,则多个EL驱动器TFT的LDD区在沟道纵向上的长度就越长。
3.一种EL显示器,包括多个象素,每个含有一个EL元件;一个EL驱动器TFT,用于控制从EL元件的发光;以及一个开关TFT,用于控制对EL驱动器TFT的驱动;其中EL显示器通过控制由多个EL元件发光的时间来实现色调显示;加到多个EL元件上的电压按照多个象素显示的颜色而有所不同;多个EL驱动器TFT是由n沟道TFT组成的;以及加到多个EL元件上的电压越高,则多个EL驱动器TFT的沟道区的宽度就越宽。
4.一种EL显示器,包括多个象素,每个含有一个EL元件;一个EL驱动器TFT,用于控制从EL元件的发光;以及一个开关TFT,用于控制对EL驱动器TFT的驱动;其中EL显示器通过控制由多个EL元件发光的时间来实现色调显示;加到多个EL元件上的电压按照多个象素显示的颜色而有所不同;多个EL驱动器TFT是由n沟道TFT组成的;加到多个EL元件上的电压越高,则多个EL驱动器TFT的LDD区在沟道纵向上的长度就越长;以及加到多个EL元件上的电压越高,则多个EL驱动器TFT的沟道区的宽度就越宽。
5.一种EL显示器,包括多个象素,每个含有一个EL元件,一个EL驱动器TFT,用于控制从EL元件的发光;以及一个开关TFT,用于控制对EL驱动器TFT的驱动;其中EL显示器通过控制由多个EL元件发光的时间来实现色调显示;加到多个EL元件上的电压按照多个象素显示的颜色而有所不同;以及加到多个EL元件上的电压越高,则多个EL驱动器TFT的沟道区的宽度就越宽。
6.一种EL显示器,包括多个象素,每个含有一个EL元件;一个EL驱动器TFT,用于控制从EL元件的发光;以及一个开关TFT,用于控制对EL驱动器TFT的驱动;其中加到多个EL元件上的电压按照多个象素显示的颜色而有所不同;加到多个EL元件上的电压越高,则多个EL驱动器TFT的LDD区的在沟道纵向上的长度就越长。
7.一种EL显示器,包括多个象素,每个含有一个EL元件,一个EL驱动器TFT,用于控制从EL元件的发光;以及一个开关TFT,用于控制对EL驱动器TFT的驱动;其中加到多个EL元件上的电压按照多个象素显示的颜色而有所不同;加到多个EL元件上的电压越高,则多个EL驱动器TFT的沟道区的宽度就越宽。
8.按照权利要求1的EL显示器,其特征在于多个EL元件发光的时间是由输入到开关TFT去的数字信号控制的。
9.按照权利要求2的EL显示器,其特征在于多个EL元件发光的时间是由输入到开关TFT去的数字信号控制的。
10.按照权利要求3的EL显示器,其特征在于多个EL元件发光的时间是由输入到开关TFT去的数字信号控制的。
11.按照权利要求4的EL显示器,其特征在于多个EL元件的发光时间是由输入到开关TFT去的数字信号控制的。
12.按照权利要求5的EL显示器,其特征在于多个EL元件的发光时间是由输入到开关TFT去的数字信号控制的。
13.包括按照权利要求1的EL显示器的电子设备,它是从包括摄象机、数字相机、车辆导航器、个人计算机、以及移动电话的组合中选出的。
14.包括按照权利要求2的EL显示器的电子设备,它是从包括摄象机、数字相机、车辆导航器、个人计算机、以及移动电话的组合中选出的。
15.包括按照权利要求3的EL显示器的电子设备,它是从包括摄象机、数字相机、车辆导航器、个人计算机、以及移动电话的组合中选出的。
16.包括按照权利要求4的EL显示器的电子设备,它是从包括摄象机、数字相机、车辆导航器、个人计算机、以及移动电话的组合中选出的。
17.包括按照权利要求5的EL显示器的电子设备,它是从包括摄象机、数字相机、车辆导航器、个人计算机、以及移动电话的组合中选出的。
18.包括按照权利要求6的EL显示器的电子设备,它是从包括摄象机、数字相机、车辆导航器、个人计算机、以及移动电话的组合中选出的。
19.包括按照权利要求7的EL显示器的电子设备,它是从包括摄象机、数字相机、车辆导航器、个人计算机、以及移动电话的组合中选出的。
全文摘要
提供了一种EL显示器,它能显示具有红色、蓝色、和绿色发光亮度间良好平衡的鲜艳的图象。EL显示器具有多个象素,每个分别含有EL元件,且EL显示器通过控制多个象素发光的时间来实现色调显示。EL显示器的特征在于加到每个EL元件上的电压按照每个分别含有EL元件的多个象素所显示的颜色而有所不同。
文档编号G09G3/32GK1290041SQ001290
公开日2001年4月4日 申请日期2000年9月25日 优先权日1999年9月24日
发明者小山润 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1