一种像素阵列及其虚拟现实中的显示电路的制作方法

文档序号:14187348阅读:315来源:国知局

本发明涉及显示领域,尤其涉及一种像素阵列及其虚拟现实中的显示电路。



背景技术:

目前的像素阵列一般包括多行多列的像素电路,像素电路利用一扫描信号进行逐行扫描,以驱动像素阵列中的像素电路逐行显示,例如,常用的2t1c和7t1c的电路架构均是以逐行显示的方式进行显示的。

但是在一些情况下,比如在虚拟现实中的显示电路,像素阵列中的多行像素电路需要在一帧的时间里同时点亮,即多行同时点亮,而目前的像素电路是无法实现逐行点亮和多行同时点亮切换的,降低了市场的占有率。

如果在一像素电路中提供两个显示电路,以分别实现上述两种显示方式,像素电路的成本有所增加,进而,一像素阵列需要包括多行多列的像素电路,随之附加的成本也会越来越多。



技术实现要素:

针对现有技术存在的问题,现提供了一种像素阵列及其虚拟现实中的显示电路。

具体的技术方案如下:

一种像素阵列,包括多行的像素电路,所述像素电路包括:

第一晶体管,所述第一晶体管的第一端连接一供电电源端,所述第一晶体管的控制端接入一第一使能信号;

第二晶体管,所述第二晶体管的第一端连接一显示器件,所述第二晶体管的第二端连接所述第一晶体管的第二端,所述第二晶体管的控制端接入所述第一使能信号;

第三晶体管,所述第三晶体管的第一端连接所述供电电源端,所述第三晶体管的第二端连接所述第一晶体管的第二端,所述第三晶体管的控制端连接一第二使能信号;以及

第四晶体管,所述第四晶体管的第一端连接所述显示器件,所述第四晶体管的第二端连接所述第二晶体管的第二端,所述第四晶体管的控制端接入所述第二使能信号;

其中,所述第一晶体管和所述第二晶体管为同一沟道类型的晶体管,所述第三晶体管和所述第四晶体管为同一沟道类型的晶体管;

所述第一使能信号驱动各行的所述像素电路中的所述显示器件逐行点亮,并且各行的所述像素电路中接入的所述第二使能信号相同,即所述第二使能信号驱动各行的所述像素电路中的所述显示器件同时点亮。

优选的,所述显示器件为有机发光二极管。

优选的,所述第一晶体管和所述第二晶体管为pmos管。

优选的,所述第三晶体管和所述第四晶体管为pmos管。

优选的,还包括:

第五晶体管,所述第五晶体管的第一端连接所述第二晶体管的第二端,所述第五晶体管的第二端连接所述第一晶体管的第二端,所述第五晶体管的控制端通过电容连接所述供电电源端。

优选的,还包括:

第六晶体管,所述第六晶体管的第一端连接所述电容的阴极,以及所述电容的阳极连接所述供电电源端,所述第六晶体管的控制端接入所述第一控制信号;

第七晶体管,所述第七晶体管的第一端连接所述第六晶体管的第二端,所述第七晶体管的第二端连接一初始电压电源端,所述第七晶体管的控制端接入所述第一控制信号;以及

第八晶体管,所述第八晶体管的第一端连接所述初始电压电源端,所述第八晶体管的第二端连接所述显示器件。

优选的,所述第五晶体管、所述第六晶体管、所述第七晶体管和所述第八晶体管均为pmos管。

优选的,还包括:

第九晶体管,所述第九晶体管的第一端连接所述第一晶体管的第二端,所述第九晶体管的第二端连接一数据信号输入端,所述第九晶体管的控制端接入第二控制信号;

第十晶体管,所述第十晶体管的第一端连接所述电容的阴极,所述第十晶体管的控制端接入所述第二控制信号;以及

第十一晶体管,所述第十一晶体管的第一端连接所述第十晶体管的第二端,所述第十一晶体管的第二端连接所述第二晶体管的第二端,所述第十一晶体管的控制端接入所述第二控制信号。

优选的,所述第九晶体管、所述第十晶体管和所述第十一晶体管均为pmos管。

一种虚拟现实的显示电路,包括上述的像素阵列。

上述技术方案的有益效果是:

上述技术方案中,在第一使能信号控制的两个晶体管(即第一晶体管和第二晶体管)的两端分别并联一晶体管(即第三晶体管和第四晶体管),由于第一晶体管和第二晶体管接入的使能信号是逐行扫描的使能信号,而第三晶体管和第四晶体管接入的使能信号能够驱动多行像素电路中的显示器件同时点亮,通过控制上述四个晶体管的导通与截止,可实现逐行点亮和多行同时点亮两种显示模式,在节约电路制造的显示成本的前提下,实现了两种显示模式,提高了市场的占有率。

附图说明

图1为本发明像素电路的实施例的结构示意图;

图2为本发明各行的第一使能信号的示意图;

图3为本发明各行的第二使能信号的示意图;

图4为本发明中7t1c的电路架构图;

图5a-图5b为逐行显示模式下使能信号和控制信号的变化图;

图6为本发明t1时刻的电路示意图;

图7为本发明t2时刻的电路示意图;

图8为本发明t3时刻的电路示意图;

图9a-9b为本发明多行同时显示模式下使能信号和控制信号的变化图;

图10为本发明t5时刻的电路示意图;

图11为本发明t6时刻的电路示意图;

图12为本发明t7时刻的电路示意图。

具体实施方式

需要说明的是,在不冲突的情况下,下述技术方案,技术特征之间可以相互组合。

下面结合附图对本发明的具体实施方式作进一步的说明:

实施例一

本实施例提供了一种像素阵列,本实施例的像素阵列可以包括多行多列的像素电路,每个像素电路的电路架构可以相同,各个像素电路的电路示意图可以如图1所示,图1中的像素电路可以以7t1c的电路架构为基础,在驱动显示器件点亮的两个晶体管的两端并联一晶体管,通过控制对应的晶体管的导通与截止,从而实现多行同时点亮和逐行点亮切换。

需要说明的是,本实施例中的晶体管可以为薄膜晶体管,如下实施例均以薄膜晶体管为pmos管进行举例说明,nmos管的原理与pmos管的原理类似,本实施例在此不进行赘述。并且本实施例中的pmos管均包括第一端、第二端和控制端,第一端可以为pmos管的漏极,第二端可以为pmos管的源极,控制端可以为pmos管的栅极。

本实施例的像素电路包括一供电电源端elvdd,供电电源端elvdd能够提供电能,尤其是为驱动显示器件点亮提供电能,本实施例中的显示器件为有机发光二极管(organiclight-emittingdiode,oled)显示器件。

本实施例中的供电电源端elvdd连接一电容c的阳极,电容c能够存储供电电源端elvdd提供的电能,一第一mos管q1的漏极连接供电电源端elvdd,第一mos管q1的栅极接入第一使能信号en,第一使能信号en为逐行扫描的驱动信号。

并且一第五mos管q5的源极连接第一mos管q1的源极第五mos管q5的栅极连接电容c的阴极,第五mos管q5的漏极连接一第二mos管q2的源极第二mos管q2的漏极连接oled显示器件,并且第二mos管q2的栅极接入第一使能信号en。

需要说明的是,本实施例中的oled显示器件的阴极可以连接一参考电压源elvss,该参考电压源elvss提供的参考电压可以为0。

如图2所示,图2对第一使能信号en进行了图示说明,图2中en可以为第一行的像素电路中的第一mos管q1和第二mos管q2接入的第一使能信号,en+1为第二行的像素电路中的第一mos管q1和第二mos管q2接入的第一使能信号。

由于所述技术领域的技术人员都知道,pmos管为低电平导通,则从图2中可以看出,第一行的像素电路中的oled显示器件较于第二行的像素电路中的oled显示器件先被点亮,同样的第一行的像素电路中的oled显示器件较于第二行的像素电路中的oled显示器件先被灭掉,即第一使能信号en通过上述方法实现逐行扫描驱动。

本实施例中的第一mos管q1的两端并联一第三mos管q3,即第三mos管q3的漏极连接供电电源端elvdd,第三mos管q3的源极连接第一mos管q1的源极,第三mos管q3的栅极接入一第二使能信号em。

第二mos管q2的两端并联一第四mos管q4,即第四mos管q4的源极连接第二mos管q2的源极,第四mos管q4的漏极连接第二mos管q2的漏极,并且本实施例中的第四mos管q4的栅极接入上述的第二使能信号em。

本实施例中的第二使能信号em能够驱动多行像素电路的oled显示器件同时点亮,即各行的像素电路中的第三mos管q3和第四mos管q4接入的第二使能信号em是相同的信号,如图3所示,本实施例中的em可以为第一行的像素电路中的第三mos管q3和第四mos管q4接入的第二使能信号,em+1为第二行的像素电路中的第三mos管q3和第四mos管q4接入的第二使能信号。

可以看出两行的像素电路接入的第二使能信号是相同的,所以该第二使能信号能够驱动各行的像素电路中的oled显示器件同时点亮。

此外,本实施例中的像素电路还可以包括第六mos管q6,第六mos管q6的漏极连接电容c的阴极,第六mos管q6的栅极接入第一控制信号sn1,第六mos管q6的源极连接一第七mos管q7的漏极,第六mos管q6的源极连接一初始电压电源端vin,该初始电压电源端vin能够提供初始电压,第七mos管q7的栅极接入上述的第一控制信号sn1。

此外,本实施例的像素电路还包括一第八mos管q8,该第八mos管q8的源极连接oled显示器件,第八mos管q8的漏极连接上述的初始电压电源端vin,并且第八mos管q8的栅极接入第一控制信号sn1,通过第一控制信号sn1控制第六mos管q6、第七mos管q7和第八mos管q8的导通与截止,从而使得初始电压能够写入第五mos管q5的栅极。

本实施例中的像素电路还包括第九mos管q9,第九mos管q9的源极连接一数据信号输入端data,该数据信号输入端data能够输入数据信号,第九mos管q9的漏极连接第一mos管q1的源极,第九mos管q9的栅极接入一第二控制信号sn。

第二控制信号sn还能够驱动第十mos管q10和第十一mos管q11的导通与截止,第十mos管q10的漏极连接电容c的阴极,第十mos管q10的源极连接第十一mos管q11的漏极,第十一mos管q11的源极连接第二mos管q2的源极。

基于上述电路连接关系,本实施例现对正常显示状态下,即逐行显示模式进行说明,正常显示状态的前提是第二使能信号为高电平,这样能够使得第四mos管q4和第三mos管q3截止,此时的电路示意图如图4所示。

7t1c的电路架构的显示原理如下:

如图4、图5a-5b所示,其中图5a-图5b中,第二使能信号em为高电平,即将第三mos管q3和第四mos管q4关断,像素电路为逐行显示模式。

如图6所示,在t1时刻sn1为低电平,sn为高电平,en为高电平,此时,第六mos管q6导通,第七mos管q7导通,第八mos管q8导通,第一mos管q1截止,第二mos管q2截止,第五mos管q5导通,第九mos管q9截止,第十mos管q10截止,第十一mos管q11截止。

初始电压电源的初始电压能够写入至电容c的阴极,而电容c的阴极连接第五mos管q5的栅极,所以写入的初始电压能够使得第五mos管q5导通。

如图5b中的t2时刻,sn1为高电平,sn为低电平,en为高电平,此时的电路示意图如图7所示,此时,第六mos管q6截止,第七mos管q7截止,第八mos管q8截止,第一mos管q1截止,第二mos管q2截止,第五mos管q5导通,第九mos管q9导通,第十mos管q10导通,第十一mos管q11导通。

数据信号输入端data输入的数据信号能够沿着箭头方向,数据信号即依次通过第九mos管q9、第五mos管q5、第十一mos管q11和第十mos管q10写入电容c的阴极。

于t3时刻,sn1为高电平,sn为高电平,en为低电平,此时的电路示意图如图8所示,此时,第六mos管q6截止,第七mos管q7截止,第八mos管q8截止,第一mos管q1导通,第二mos管q2导通,第五mos管q5导通,第九mos管q9截止,第十mos管q10截止,第十一mos管q11截止。

供电电源端elvdd的供电电压依次流经第一mos管q1、第五mos管q5和第二mos管q2使得oled显示器件点亮,而t4时刻为下一行的oled显示器件的点亮时间,可以看出如果第二使能信号处于高电平的状态的时候像素阵列中的各个像素电路为逐行点亮的。

在多行同时点亮的显示方式下,需要使得第一使能信号en保持为高电平,即关断第一mos管q1和第二mos管q2,如图9a-图9b所示,图9a和图9b为各控制信号和使能信号的变化示意图。

如图9b所示,在t5时刻,此时sn1为低电平,sn为高电平,en为高电平,此时的电路示意图如图8所示,此时,第六mos管q6导通,第七mos管q7导通,第八mos管q8导通,第三mos管q3截止,第四mos管q4截止,第五mos管q5导通,第九mos管q9截止,第十mos管q10截止,第十一mos管q11截止。

t5时刻的电路连接示意图如图10所示,原理如上,初始电压通过第七mos管q7和第六mos管q6写入电容c的阴极,即第五mos管q5的栅极由于写入了初始电压,继而第五mos管导通,便于后续oled显示器件的点亮。

t6时刻sn1为高电平,sn为低电平,em为高电平,此时的电路示意图如图11所示,此时,第六mos管q6截止,第七mos管q7截止,第八mos管q8截止,第三mos管q3截止,第四mos管q4截止,第五mos管q5导通,第九mos管q9导通,第十mos管q10导通,第十一mos管q11导通。

数据信号输入端data输入的数据信号能够沿着箭头方向,数据信号即依次通过第九mos管q9、第五mos管q5、第十一mos管q11和第十mos管q10写入电容c的阴极。

如图12所示,t7时刻sn1为高电平,sn为高电平,em为低电平,第二使能信号em控制第三mos管q3和第四mos管q4导通,供电电压点亮oled显示器件,如图9a-9b所示,各行的像素电路接入的第二使能信号em是相同的,所以各行的像素电路中的oled显示器件能够在第二使能信号em的驱动下同时点亮。

本实施例的技术方案提供了两种可进行切换的显示方式,分别为逐行显示和多行同时显示,可以看出,通过改变第一使能信号和第二使能信号能够切换显示方式,并且能够控制oled显示器件的发光时间。

实施例二

目前的虚拟现实(vr)技术中需要显示电路将图像进行显示,但是虚拟现实显示的时候需要启动gi(globalinsertion,整体拉黑)模式,所谓整体拉黑是指在一帧的时间里,所有行的像素电路中的oled显示器件同时点亮,本实施例提供的像素阵列能够满足普通像素电路的逐行显示,并且还能切换至上述的gi模式。

本实施例中的虚拟现实的显示电路采用实施例一中的像素阵列,逐行显示的时候,即第二使能信号给高电平,这样第二使能信号控制第三mos管和第四mos管关断,相当于将第三mos管和第四mos管拿掉,此时剩下的电路为7t1c架构的电路,充电和发光的过程可以和目前7t1c的电路构架相同,驱动电路输出的第一使能信号逐行扫描各行的像素电路,即每一行的像素电路都会对应一个驱动电路,各行的像素电路连接不同的驱动电路,以实现第一使能信号的逐行扫描。

在gi模式下,第一使能信号给高电平,第一使能信号控制第一mos管和第二mos管关断,驱动电路产生的第二使能信号是通过一个信号线输出给各个像素电路的,所以各行像素电路接入的第二使能信号是相同的,各行像素电路中的oled显示器件能够在第二使能信号的驱动下同时点亮。

综上,上述技术方案中,在第一使能信号控制的两个晶体管(即第一晶体管和第二晶体管)的两端分别并联一晶体管(即第三晶体管和第四晶体管),由于第一晶体管和第二晶体管接入的使能信号是逐行扫描的使能信号,而第三晶体管和第四晶体管接入的使能信号能够驱动多行像素电路中的显示器件同时点亮,通过控制上述四个晶体管的导通与截止即可实现逐行点亮和多行同时点亮两种显示模式,在节约电路制造的显示成本的前提下,实现了两种显示模式,提高了市场的占有率。

通过说明和附图,给出了具体实施方式的特定结构的典型实施例,基于本发明精神,还可作其他的转换。尽管上述发明提出了现有的较佳实施例,然而,这些内容并不作为局限。

对于本领域的技术人员而言,阅读上述说明后,各种变化和修正无疑将显而易见。因此,所附的权利要求书应看作是涵盖本发明的真实意图和范围的全部变化和修正。在权利要求书范围内任何和所有等价的范围与内容,都应认为仍属本发明的意图和范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1