像素驱动电路及显示装置的制作方法

文档序号:16888069发布日期:2019-02-15 22:49阅读:166来源:国知局
像素驱动电路及显示装置的制作方法

本发明涉及显示技术领域,尤其涉及一种像素驱动电路及显示装置。



背景技术:

有机发光二极管(organiclightemittingdisplay,oled)显示装置具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。

oled显示装置按照驱动方式可以分为无源矩阵型oled(passivematrixoled,pmoled)和有源矩阵型oled(activematrixoled,amoled)两大类,即直接寻址和薄膜晶体管(thinfilmtransistor,tft)矩阵寻址两类。其中,amoled具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。amoled是电流驱动器件,当有电流流过有机发光二极管时,有机发光二极管发光,且发光亮度由流过有机发光二极管自身的电流决定。大部分已有的集成电路(integratedcircuit,ic)都只传输电压信号,故amoled的像素驱动电路需要完成将电压信号转变为电流信号的任务。

如图1所示,现有的一种像素驱动电路包括:第一薄膜晶体管t10、第二薄膜晶体管t20、第三薄膜晶体管t30、第四薄膜晶体管t40、第五薄膜晶体管t50、第六薄膜晶体管t60、存储电容c10及有机发光二极管d10,所述第一薄膜晶体管t10的栅极接收扫描信号gate,源极电性连接第一节点a0,漏极电性连接第二节点b0;所述第二薄膜晶体管t20的栅极电性连接第一节点a0,漏极接收电源高电压vdd,源极电性连接第二节点b0;所述第三薄膜晶体管t30的栅极接收发光信号em,源极接收数据信号data,漏极电性连接第三节点c0;所述第四薄膜晶体管t40的栅极接收发光信号em,源极电性连接第二节点b0,漏极电性连接有机发光二极管d1的阳极;所述第五薄膜晶体管t50的栅极接收发光信号em,源极接收参考信号ref,漏极电性连接第三节点c0;所述第六薄膜晶体管t60的栅极接收复位信号reset,源极接收初始化信号int,漏极电性连接第一节点a0;所述存储电容c10的第一端电性连接第一节点a0,第二端电性连接第三节点c0;所述有机发光二极管d1的阴极接收电源低电压vss,该像素驱动电路的发光亮度不仅可以通过数据信号data进行调整还可以通过参考信号ref进行调整,但为了输入参考信号ref,需要在该像素驱动电路中额外增加一条信号线,造成像素驱动电路的结构复杂,制造工艺难度增加。



技术实现要素:

本发明的目的在于提供一种像素驱动电路,能够通过电源高电压调整发光亮度,且结构简单,易于制造。

本发明的目的还在于提供一种显示装置,能够通过电源高电压调整发光亮度,且结构简单,易于制造。

为实现上述目的,本发明提供一种像素驱动电路,包括载入模块、与所述载入模块电性连接的补偿模块和与所述补偿模块电性连接的发光模块;

所述载入模块用于接收复位信号及发光信号,并在复位信号的控制下向补偿模块输入初始化信号,在发光信号的控制下向补偿模块输入数据信号;

所述补偿模块用于接收扫描信号,并在扫描信号的控制下接收电源高电压进行阈值电压的补偿;

所述发光模块用于接收发光信号,并在发光信号的控制下接收电源高电压并发光,且发光亮度能够通过改变电源高电压的大小进行调节。

所述补偿模块包括第一薄膜晶体管、第二薄膜晶体管及存储电容;

所述第一薄膜晶体管的栅极接收扫描信号,源极电性连接第一节点,漏极电性连接第二节点;

所述第二薄膜晶体管的栅极电性连接第一节点,漏极接收电源高电压,源极电性连接第二节点;

所述存储电容的第一端电性连接第一节点,第二端电性连接第三节点;

所述载入模块电性连接所述第一节点及第三节点,所述发光模块电性连接所述第二节点和第三节点。

所述发光模块包括:第三薄膜晶体管、第四薄膜晶体管及有机发光二极管;

所述第三薄膜晶体管的栅极接收发光信号,源极接收电源高电压,漏极电性连接第三节点;

所述第四薄膜晶体管的栅极接收发光信号,源极电性连接第二节点,漏极电性连接有机发光二极管的阳极;

所述有机发光二极管的阴极接收电源低电压。

所述载入模块包括:第五薄膜晶体管及第六薄膜晶体管;

所述第五薄膜晶体管的栅极接收发光信号,源极接收数据信号,漏极电性连接第三节点;

所述第六薄膜晶体管的栅极接收复位信号,源极接收初始化信号,漏极电性连接第一节点。

所述第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、第四薄膜晶体管及第六薄膜晶体管均为p型薄膜晶体管,所述第五薄膜晶体管为n型薄膜晶体管。

所述像素驱动电路的工作过程依次包括载入阶段、补偿阶段及发光阶段;

在载入阶段,所述复位信号为低电位,扫描信号和发光信号为高电位;

在补偿阶段,所述扫描信号为低电位,所述复位信号和发光信号为高电位;

在发光阶段,所述发光信号为低电位,所述扫描信号和复位信号为高电位。

在载入阶段,所述第一节点的电压为vint,所述第三节点的电压为vdata,其中vint为初始化信号的电压,vdata为数据信号的电压。

在补偿阶段,所述第一节点的电压为vdd-|vth|,所述第二节点的电压为vdd,所述第三节点的电压为vdata,其中vth为第二薄膜晶体管的阈值电压,vdd为电源高电压,vdata为数据信号的电压。

在发光阶段,所述第一节点的电压为vdd-|vth|-vdata+vdd,所述第二节点的电压为vdd,所述第三节点的电压为vdd,其中vth为第二薄膜晶体管的阈值电压,vdd为电源高电压,vdata为数据信号的电压。

本发明还提供一种显示装置,包括上述的像素驱动电路。

本发明的有益效果:本发明提供一种像素驱动电路,包括载入模块、与所述载入模块电性连接的补偿模块和与所述补偿模块电性连接的发光模块;所述载入模块用于接收复位信号及发光信号,并在复位信号的控制下向补偿模块输入初始化信号,在发光信号的控制下向补偿模块输入数据信号;所述补偿模块用于接收扫描信号,并在扫描信号的控制下接收电源高电压进行阈值电压的补偿;所述发光模块用于接收发光信号,并在发光信号的控制下接收电源高电压并发光,且发光亮度能够通过改变电源高电压的大小进行调节,该像素驱动电路不仅能够有效补偿阈值电源,还通过电源高电压调整发光亮度,且结构简单,易于制造。本发明还提供一种显示装置,能够通过电源高电压调整发光亮度,且结构简单,易于制造。

附图说明

为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。

附图中,

图1为现有的像素驱动电路的电路图;

图2为本发明的像素驱动电路的示意图;

图3为本发明的像素驱动电路的电路图;

图4为本发明的像素驱动电路的工作波形图。

具体实施方式

为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。

请参阅图2至图4,本发明提供一种像素驱动电路,包括载入模块1、与所述载入模块1电性连接的补偿模块2和与所述补偿模块2电性连接的发光模块3;

所述载入模块1用于接收复位信号reset及发光信号em,并在复位信号reset的控制下向补偿模块2输入初始化信号int,在发光信号em的控制下向补偿模块2输入数据信号data;

所述补偿模块2用于接收扫描信号gate,并在扫描信号gate的控制下接收电源高电压vdd进行阈值电压的补偿;

所述发光模块3用于接收发光信号em,并在发光信号em的控制下接收电源高电压vdd并发光,且发光亮度能够通过改变电源高电压vdd的大小进行调节。

具体地,如图3所示,在本发明的具体实施例中,所述补偿模块2包括第一薄膜晶体管t1、第二薄膜晶体管t2及存储电容c1;

所述第一薄膜晶体管t1的栅极接收扫描信号gate,源极电性连接第一节点a,漏极电性连接第二节点b;

所述第二薄膜晶体管t2的栅极电性连接第一节点a,漏极接收电源高电压vdd,源极电性连接第二节点b;

所述存储电容c1的第一端电性连接第一节点a,第二端电性连接第三节点c;

所述载入模块1电性连接所述第一节点a及第三节点c,所述发光模块3电性连接所述第二节点b和第三节点c。

进一步地,在本发明的具体实施例中,所述发光模块3包括:第三薄膜晶体管t3、第四薄膜晶体管t4及有机发光二极管d1;

所述第三薄膜晶体管t3的栅极接收发光信号em,源极接收电源高电压,漏极电性连接第三节点c;

所述第四薄膜晶体管t4的栅极接收发光信号em,源极电性连接第二节点b,漏极电性连接有机发光二极管d1的阳极;

所述有机发光二极管d1的阴极接收电源低电压vss。

进一步地,在本发明的具体实施例中,所述载入模块1包括:第五薄膜晶体管t5及第六薄膜晶体管t6;

所述第五薄膜晶体管t5的栅极接收发光信号em,源极接收数据信号data,漏极电性连接第三节点c;

所述第六薄膜晶体管t6的栅极接收复位信号reset,源极接收初始化信号int,漏极电性连接第一节点a。

具体地,在本实施例中,所述电致发光元件d1为有机发光二极管,所述第一薄膜晶体管t1、第二薄膜晶体管t2、第三薄膜晶体管t3、第四薄膜晶体管t4、第五薄膜晶体管t5及第六薄膜晶体管t6为非晶硅薄膜晶体管、低温多晶硅薄膜晶体管或金属氧化物半导体薄膜晶体管。

优选地,在本实施例中,所述第一薄膜晶体管t1、第二薄膜晶体管t2、第三薄膜晶体管t3、第四薄膜晶体管t4及第六薄膜晶体管t6均为p型薄膜晶体管,其在低电平状态下导通,高电平状态下截止,所述第五薄膜晶体管t5为n型薄膜晶体管,其在高电平状态下导通,低电平状态下截止。

具体地,所述复位信号reset、扫描信号gate及发光信号em均通过外部时序控制器提供。

需要说明的是,请参阅图4,所述像素驱动电路的工作过程依次包括载入阶段10、补偿阶段20及发光阶段30;

所述载入阶段10,所述复位信号reset为低电位,扫描信号gate和发光信号em为高电位,在所述载入阶段10所述数据信号data写入第三节点c,初始化信号int写入第一节点a,所述初始化信号为int一低电平信号。

所述补偿阶段20,所述扫描信号gate为低电位,所述复位信号reset和发光信号em为高电位,在所述补偿阶段20,所述电源高电压vdd写入第二节点b,所述第三节点继续写入数据信号data,使得第一节点a的电压变为电源高电压vdd与第二薄膜晶体管t2的阈值电压(p型薄膜晶体管的阈值电压为负)的绝对值的差。

所述发光阶段30,所述发光信号em为低电位,所述扫描信号gate和复位信号reset为高电位,在发光阶段30,所述电源高电压vdd写入第三节点c,使得第一节点a电压随之改变,并驱动有机发光二极管d1发光。

请继续参阅图4,并结合图2详细说明所述像素驱动电路的工作过程

请参阅图2及图4,在载入阶段10,所述复位信号reset为低电位,扫描信号gate和发光信号em为高电位,所述第六薄膜晶体管t6及第四薄膜晶体管t4导通,所述第一薄膜晶体管t1、第三薄膜晶体管t3及第五薄膜晶体管t5截止,初始化信号int经导通的第四薄膜晶体管t4写入第一节点a,使得第一节点a的电压变为vint,数据信号data经导通的第六薄膜晶体管t6写入第三节点c,使得第三节点c的电压变为vdata,其中vint为初始化信号int的电压,vdata为数据信号data的电压,且vint为低电平。

在补偿阶段20,所述扫描信号gate为低电位,所述复位信号reset和发光信号em为高电位,第一节点a为低电平,所述第六薄膜晶体管t6、第二薄膜晶体管t2及第三薄膜晶体管t3导通,所述第一薄膜晶体管t1、第四薄膜晶体管t4及第五薄膜晶体管t5截止,数据信号data经导通的第六薄膜晶体管t6继续写入第三节点c,使得第三节点c的电压继续保持为vdata,电源高电压vdd经导通的第二薄膜晶体管t2和第三薄膜晶体管t3为第一节点a充电,直至第一节点a和第二节点b的差值等于第二薄膜晶体管t2的阈值电压,也即所述第一节点a的电压为vdd-|vth|,所述第二节点b的电压为vdd,存储电容c1存储的电压为vdd-ivthi-vdata,所述第三节点c的电压为vdata,其中vth为第二薄膜晶体管t2的阈值电压;

在发光阶段30,所述发光信号em为低电位,所述扫描信号gate和复位信号reset为高电位,所述第一薄膜晶体管t1、第二薄膜晶体管t2及第五薄膜晶体管t5导通,第三薄膜晶体管t3、第四薄膜晶体管t4及第六薄膜晶体管t6截止,所述电源高电压vdd经过导通的第五薄膜晶体管t5写入第三节点c,在存储电容c1的作用下,第一节点a的电压随着第三节点c的变化而变化,以保持存储电容c1中存储的电压不变,也即所述第一节点a的电压为vdd-|vth|-vdata+vdd,所述第二节点b的电压为vdd,所述第三节点c的电压为vdd

流过有机发光二极管d1的电流为:

i=1/2μ*cox*(w/l)*(|vgs|-|vth|)2

=1/2*μ*cox*(w/l)*[vdd-(vdd-|vth|-vdata+vdd)-|vth|]2

=1/2*μ*cox*(w/l)*(vdd-vdata)2

其中,μ为第二薄膜晶体管t2的载流子迁移率,cox为第二薄膜晶体管t2的栅氧化层电容,w/l为第二薄膜晶体管t2的沟道宽长比,i为流过有机发光二极管d1的电流,vgs为第二薄膜晶体管t2的栅极与源极的电压差。

据此可知,流过有机发光二极管d1的电流i与第二薄膜晶体管t2的阈值电压vth无关,从而可以消除第二薄膜晶体管t2的阈值电压vth改变而引起的画面显示不良的问题,并且流过有机发光二极管d1的电流i同时受到电源高电压vdd和数据信号data的电压vdata的影响,因此流过有机发光二极管d1的电流i可通过改变电源高电压vdd和数据信号data的电压vdata进行改变,从而能够通过改变电源高电压vdd的大小调节有机发光二极管d1的发光亮度,提升亮度调节的灵活性,且相比于现有技术,无需额外增加信号线,制程难度较低。

本发明还提供一种显示装置,包括上述的像素驱动电路。

综上所述,本发明提供一种像素驱动电路,包括载入模块、与所述载入模块电性连接的补偿模块和与所述补偿模块电性连接的发光模块;所述载入模块用于接收复位信号及发光信号,并在复位信号的控制下向补偿模块输入初始化信号,在发光信号的控制下向补偿模块输入数据信号;所述补偿模块用于接收扫描信号,并在扫描信号的控制下接收电源高电压进行阈值电压的补偿;所述发光模块用于接收发光信号,并在发光信号的控制下接收电源高电压并发光,且发光亮度能够通过改变电源高电压的大小进行调节,该像素驱动电路不仅能够有效补偿阈值电源,还通过电源高电压调整发光亮度,且结构简单,易于制造。本发明还提供一种显示装置,能够通过电源高电压调整发光亮度,且结构简单,易于制造。

以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1