显影装置和图像形成设备的制作方法

文档序号:17770625发布日期:2019-05-28 19:23阅读:158来源:国知局
显影装置和图像形成设备的制作方法

本发明涉及显影装置和图像形成设备。



背景技术:

日本未审查专利申请公开No.11-007194披露了一种显影装置,其包括显影剂循环转印部件和层控制部件。显影剂循环转印部件设置为与显影剂载体相对并且容纳有磁体。层控制部件设置在显影剂循环转印部件与显影剂载体之间并从该位置向下游延伸。层控制部件控制显影剂层的厚度。

日本未审查专利申请公开No.2002-174951披露了一种显影装置,该显影装置包括设置在显影辊的外表面附近的色调剂密封辊。色调剂密封辊沿显影辊的旋转方向设置在显影辊上与供应辊相对的位置的下游以及显影辊上与感光体相对的位置的上游。色调剂密封辊在与显影辊相对的位置沿与显影辊的移动方向相反的方向移动以产生气流。该气流使得飘浮的色调剂几乎不会落到显影装置的外部。



技术实现要素:

相应地,本发明的目的是提供一种显影装置和包括该显影装置的图像形成设备,该显影装置使得在重复显影之后在供应部件与显影剂控制部件之间几乎不会形成显影剂的不动层。

根据本发明的第一方面,提供一种显影装置,所述显影装置包括:大致呈管状的显影剂承载部件,其容纳有磁源,所述磁源生成用于将包含磁性颗粒的显影剂保持在所述显影剂承载部件的外表面上的磁力,并且所述显影剂承载部件沿着其周向而旋转;显影剂控制部件,其设置为与所述显影剂承载部件相对并且控制承载在所述显影剂承载部件的外表面上的显影剂的层的厚度;供应部件,其沿所述显影剂承载部件的旋转方向设置在所述显影剂控制部件的上游并与所述显影剂承载部件相对,并且所述供应部件旋转以便沿其旋转轴线方向传送显影剂并将显影剂供应至所述显影剂承载部件;以及旋转部件,其可旋转地设置在浸没于所述显影剂控制部件与所述供应部件之间的显影剂中的位置并且与所述显影剂承载部件相对,并且所述旋转部件旋转以便将显影剂从所述显影剂控制部件与所述供应部件之间供应至所述供应部件。

根据本发明的第二方面,所述供应部件包括旋转轴和围绕所述旋转轴设置的叶片部分;所述显影剂控制部分沿竖直方向设置在所述显影剂承载部件的下方;并且所述显影装置满足关系式:大约1/4≤A/B≤大约1/2,其中A是所述显影剂承载部件的外表面在与所述显影剂控制部件相对的层控制位置处的切线与所述旋转部件的外表面之间的最短距离,B是所述显影剂承载部件的外表面在与所述显影剂控制部件相对的所述层控制位置处的切线与所述供应部件的旋转轴的外表面之间的最短距离。

根据本发明的第三方面,所述旋转部件在其外表面上具有不规则布置的凹凸。

根据本发明的第四方,所述旋转部件呈大致圆筒形。

根据本发明的第五方面,所述显影装置还包括驱动所述旋转部件的驱动单元。

根据本发明的第六方面,提供一种图像形成设备,所述图像形成设备包括:图像承载部件,其其以外表面承载潜像;根据权利要求1所述的显影装置,其利用显影剂对所述潜像显影以形成显影剂图像;以及转印单元,其将所述显影剂图像从所述图像承载部件转印到记录介质上。

与不将显影剂从显影剂控制部件与供应部件之间返回至供应部件的显影装置相比,根据第一方面的显影装置使得在重复显影之后在供应部件与显影剂供应部件之间可以形成较少的显影剂不动层。

与显影剂承载部件的外表面的切线与旋转部件的外表面之间的距离等于显影剂承载部件的外表面的切线与供应部件的旋转轴的外表面之间的距离的显影装置相比,根据第二方面的显影装置使得显影剂承载部件上的显影剂的量沿轴向的变化较小。

与包括外表面上不具有凹凸的旋转部件的显影装置相比,根据第三方面的显影装置的显影剂承载部件所传送的显影剂的量更大。

与包括非圆筒形旋转部件的显影装置相比,根据第四方面的显影装置使得显影剂承载部件上的显影剂的量沿轴向的变化较小。

与不包括用于旋转部件的驱动单元的显影装置相比,根据第五方面的显影装置的旋转部件所供应的显影剂的量更大。

与使用不包括旋转部件的显影装置来形成图像的图像形成设备相比,根据第六方面的图像形成设备能够更有效地保持大量显影之后的图像浓度。

附图说明

将基于下列附图详细地描述本发明的示例性实施例,其中:

图1是根据本发明的示例性实施例的图像形成设备的整体结构的示意图;

图2是根据本发明的示例性实施例的图像形成单元的示意图;

图3A是根据本发明的示例性实施例的显影装置的剖视图;

图3B是根据本发明的示例性实施例的旋转部件的示意图;

图4是根据本发明的示例性实施例的显影装置的纵向剖视图;

图5是示出根据本发明的示例性实施例的旋转部件的位置的示意图;

图6是示出由根据本发明的示例性实施例的旋转部件引起的显影剂的流动的示意图;

图7是示出根据本发明的示例性实施例的旋转部件如何使显影剂较少形成积聚的示意图;

图8A和图8B是示出在比较例中显影剂的积聚如何形成不动层的示意图;以及

图9是示出根据本发明的示例性实施例的图像形成设备的下述评价的表格:即,相对于旋转部件的变化的位置,由显影套筒所传送的显影剂的量沿轴向的变化和所传送的显影剂的量随时间的推移而发生的变化。

具体实施方式

现在将对根据本发明示例性实施例的显影装置和图像形成设备进行描述。

<整体结构>

图1示出了根据示例性实施例的图像形成设备10。该图像形成设备10按照沿竖直方向(图中箭头Y所表示的方向)从图像形成设备10的底部到顶部的顺序依次包括纸张收容部分12和图像形成部分14。纸张收容部分12收容作为记录介质的实例的记录纸张P。图像形成部分14设置在纸张收容部分12的上方并且在从纸张收容部分12供给的记录纸张P上形成图像。图像形成设备10还包括排出部分16、文档读取部分18以及控制器20。排出部分16一体地设置在图像形成部分14的左上侧并且将其上形成有图像的记录纸张P排出。文档读取部分18设置在排出部分16的上方并且读取文档GN。控制器20设置在图像形成部分14中并且控制图像形成设备10的各个部分的操作。在下述描述中,竖直方向被称为“Y方向”,水平方向被称为“X方向”并且与X方向和Y方向垂直的深度方向被称为“Z方向”。

纸张收容部分12包括第一容器22、第二容器24、第三容器26和第四容器28。容器22、24、26和28收容不同尺寸的记录纸张P并且沿Y方向平行排列。容器22、24、26和28具有送纸辊32,送纸辊32将记录纸张P从容器22、24、26供给至设置在图像形成设备10中的传送路径30。在送纸辊32的沿图像形成设备10中的传送路径30的下游设置有一对传送辊34和一对传送辊36。传送辊34和36逐页地传送记录纸张P。在图像形成部分14中,沿着传送路径30,在传送辊36的沿记录纸张P的传送方向的下游设置有一对配准辊38。配准辊38将记录纸张P停止然后在预定的定时将记录纸张P供给至二次转印部分37(将在下文中进行详细描述)。

图像形成部分14和排出部分16包括形成图像形成设备10的主体的壳体16A。当沿Z方向观察时,壳体16A的位于图像形成部分14的左上侧的部分相对于图像形成部分14的中央上部和右上部而向上突出。壳体16A的上端与文档读取部分18的下端接合。图像形成部分14的顶表面、文档读取部分18的底表面和排出部分16的右表面在图像形成设备10中形成排出区域19。记录纸张P从排出部分16排出至排出区域19并且堆叠在排出区域19中。

相对于第四容器28的传送辊36隔着传送路径30设置有辅助传送路径40。记录纸张P沿着辅助传送路径40从可折叠的手动供给部分39被传送至传送路径30。当沿Z方向观察时,手动供给部分39设置在图像形成设备10的左侧表面上。辅助传送路径40包括送纸辊42和传送辊44。送纸辊42将记录纸张P从手动供给部分39供给至辅助传送路径40。传送辊44设置在送纸辊42的下游并且逐页地传送记录纸张P。辅助传送路径40的下游端与传送路径30连接。

在图像形成部分14中,沿着传送路径30在二次转印部分37的下游设置有定影装置90。定影装置90熔化并按压记录纸张P上的显影剂(色调剂)以便将显影剂定影在记录纸张P上。

定影装置90包括定影辊91和加压辊93。定影辊91设置在记录纸张P的色调剂图像侧并且容纳诸如卤素加热器(未示出)等加热源。加压辊93将记录纸张P按压在定影辊91上。当记录纸张P前进穿过定影装置90中的定影辊91与加压辊93之间的接触(咬合)区域时,记录纸张P被加热和加压以使色调图像定影在记录纸张P上。

如图1和图2所示,图像形成部分14包括设置在图像形成部分14中央的图像形成单元60。图像形成单元60使用黑色(K)、黄色(Y)、品红色(M)和蓝绿色(青色)(C)色调剂在记录纸张P上形成色调剂图像(显影剂图像)。

图像形成单元60包括感光体62K、62Y、62M和62C,感光体62K、62Y、62M和62C是以其外表面承载潜像的图像保持部件的实例。感光体62K、62Y、62M和62C分别与黑色(K)、黄色(Y)、品红色(M)和蓝绿色(C)色调剂对应。在下述描述中,如果需要区分相应的元件,则使用后面附有字母K、Y、M和C的附图标记,如果因元件的相似而不需要区分相应的元件,则附图标记中将省略字母K、Y、M和C。

如图2所示,感光体62K、62Y、62M和62C以该顺序沿着朝向图的右上角的方向布置。感光体62K、62Y、62M和62C沿着箭头b所表示的方向(图中的逆时针方向)旋转并且承载通过光照射而形成在其外表面上的静电潜像。每个感光体62被沿着箭头b所表示的方向顺序排列的充电辊66、发光二极管(LED)头68、显影装置100、中间转印带64(一次转印辊74)和清洁辊76所围绕。显影装置100利用显影剂将感光体62上的潜像显影以形成显影剂图像,将在下文中对此进行详细描述。

充电辊66例如包括不锈钢芯体和形成在不锈钢芯体周围的多个层(未示出),所述多个层包括导电弹性层、中间层和表面树脂层。充电辊66的芯体构造为可以旋转,从而随着芯体旋转,充电辊66在与感光体62的表面接触的情况下旋转。当电压施加单元(未示出)将电压施加在充电辊66上时,发生放电,由此对感光体62的外表面进行充电。

LED头68用与特定的色调剂颜色对应的光照射(曝光)经充电辊66充电的感光体62的外表面。作为选择,可以使用扫描从中穿过的激光束的单个多棱镜使四个感光体62K、62Y、62M和62C曝光。

中间转印带64是由带传送辊82、辅助辊84和驱动辊86张紧和支撑从而可以沿箭头a所表示的方向(图中的顺时针方向)旋转的环带。带传送辊82设置在二次转印部分37中。辅助辊84设置在带传送辊82的右下方。驱动辊86设置在带传送辊82的右上方并且由电动机(未示出)驱动。中间转印带64的外表面是转印有色调剂图像的转印表面。感光体62K、62Y、62M和62C的外表面与的中间转印带64在驱动辊86和辅助辊84之间的转印表面接触。

一次转印辊74(74K、74Y、74M、74C)分别与感光体62K、62Y、62M和62C隔着中间转印带64而设置。一次转印辊74与中间转印带64的内表面接触。当电压施加单元(未示出)将电压施加在一次转印辊74上时,一次转印辊74与接地的感光体62之间的电位差使得色调剂图像从感光体62转印到中间转印带64的转印表面上。在中间转印带64完成一周旋转之前,色调剂图像转印并叠加在中间转印带64上。

相对于辅助辊84隔着中间转印带64设置有色调剂浓度传感器88。色调剂浓度传感器88用于检测转印到中间转印带64的转印表面上的色调剂图像的浓度。相对于驱动辊86隔着中间转印带64设置有清洁部件92。清洁部件92从中间转印带64的转印表面上去除二次转印之后的残余色调剂。

二次转印部分37包括:带传送辊82,中间转印带64张紧在带传送辊82上;以及二次转印辊89,其相对于带传送辊82隔着中间转印带64而设置。当电压施加单元(未示出)将电压施加在带传送辊82或二次转印辊89上时,带传送辊82与二次转印辊89之间的电位差使得色调剂图像从中间转印带64转印到记录纸张P上。中间转印带64、一次转印辊74、带传送辊82和二次转印辊89是转印单元的实例。

如图1所示,在图像形成部分14中,收容有黑色(K)、黄色(Y)、品红色(M)和蓝绿色(C)色调剂的可替换的色调剂盒77K、77Y、77M和77C分别设置在清洁部件92的右侧。在图像形成部分14中传送路径30的左方设置有双面传送路径94。记录纸张P沿着双面传送路径94被传送和翻转以便在记录纸张P的两侧表面上形成图像。

双面传送路径94的一端连接至传送辊95与传送辊96之间的传送路径30,并且双面传送路径94的另一端连接至配准辊38上游的传送路径30。传送辊95沿记录纸张P的传送方向设置在定影装置90的下游。传送辊96设置在传送辊95的下游并且构造成在相反的旋转方向之间切换。双面传送路径94还包括传送辊97,传送辊97朝向配准辊38传送由传送辊96供给的记录纸张P。在双面图像的形成期间,正面已由定影装置90定影有色调剂图像的记录纸张P通过传送辊96的反转和路径切换部件(未示出)的操作而进入双面传送路径94。记录纸张P然后再次进入配准辊38之间。由此,记录纸张P被翻转。

在排出部分16中,在从传送辊95下游的传送路径30朝向排出区域19分岔开的传送路径31上设置有下排出辊54。下排出辊54将记录纸张P排出到设置在图像形成部分14上方的下台板52上。在下排出辊54附近设置有检测堆叠在下台板52上的记录纸张P的高度的下检测器55。在排出部分16中,在传送辊96下游的传送路径30上设置有上排出辊57。上排出辊57将记录纸张P排出到设置在下台板52上方的上台板56上。在上排出辊57附近设置有检测堆叠在上台板56上的记录纸张P的高度的上检测器58。

文档读取部分18包括文档传送装置45、台板玻璃47和文档读取装置49。文档传送装置45逐页地自动传送待读取的文档GN。台板玻璃47设置在文档传送装置45的下方,并且文档GN放置在台板玻璃47上。文档读取装置49读取由文档传送装置45传送或放置在台板玻璃47上的文档GN。文档传送装置45具有自动传送路径48,多对传送辊46沿着该自动传送路径48布置。自动传送路径48的一部分定位为使得记录纸张P通过台板玻璃47。文档读取装置49在静止于台板玻璃47的左端的同时读取由文档传送装置45传送的文档GN,或者文档读取装置在沿X方向移动越过放置在台板玻璃47上的文档GN的同时读取文档GN。

下面对图像形成设备10的图像形成处理进行描述。

如图1所示,当图像形成设备10启动时,从外部或者从图像处理器(未示出)将黑色(K)、黄色(Y)、品红色(M)和蓝绿色(C)的图像数据传输给LED头68(参见图2)。随后,LED头68基于图像数据发射光,以便使由充电辊66充电的感光体62的外表面曝光。结果,在感光体62的表面上形成与各个颜色的图像数据对应的静电潜像。由显影装置100K、100Y、100M和100C将形成在感光体62的表面上的静电潜像显影成色调剂图像。通过一次转印辊74(参见图2)将色调剂图像从感光体62的表面一次转印到中间转印带64上。

与将色调剂图像多重转印到中间转印带64上同步地,由配准辊38将从纸张收容部分12供给并沿着传送路径30传送的记录纸张P传送至二次转印部分37。由二次转印辊89将通过多重转印而形成的色调剂图像从中间转印带64转印到已传送至二次转印部分37的记录纸张P上。

将转印有色调剂图像的记录纸张P传送至定影装置90。在定影装置90中,定影辊91和加压辊93对色调剂图像进行加热和加压以便将色调剂图像定影到记录纸张P上。将其上定影有色调剂图像的记录纸张P从排出部分16排出到下台板52或上台板56上。为了在记录纸张P的两侧表面上形成图像,在定影装置90将图像定影到记录纸张P的正面之后,记录纸张P的下端从传送辊96传送至双面传送路径94然后传送至配准辊38(传送路径30)以便使记录纸张P的前端与记录纸张P的后端互换。然后,在记录纸张P的背面形成图像并将图像定影在记录纸张P的背面。

<相关结构>

下面对显影装置100进行描述。

除了在使用的显影剂中所包含的色调剂不同之外,图2所示的显影装置100K、100Y、100M和100C彼此相似;因此,它们将被共同地描述为“显影装置100”而不做彼此区分。

如图3A所示,每个显影装置100包括壳体102、显影辊106、修整件108、第一螺旋推运器109、第二螺旋推运器111和旋转部件110。壳体102收容有显影剂G。作为显影剂控制部件的实例的修整件108控制承载在显影辊106的外表面上的显影剂G层的厚度。作为供应部件的实例的第一螺旋推运器109将显影剂G供应至显影辊106。第二螺旋推运器111与第一螺旋推运器109一起使显影剂G循环。旋转部件110旋转以便将显影剂G供应至第一螺旋推运器109。

例如,显影剂G是含有作为带负电颗粒的实例的色调剂T以及作为带正电磁性颗粒的实例的磁性载体CA的双组分显影剂。显影剂G将壳体102填充至覆盖(没过)整个旋转部件110的高度,后文中将对此进行详细描述。

壳体102包括容器主体103和覆盖容器主体103的盖104。壳体102具有显影辊腔室122、第一搅拌腔室123、第二搅拌腔室124和显影剂返回腔室125。显影辊腔室122收容显影辊106。第一搅拌腔室123设置在显影辊腔室122的下方。第二搅拌腔室124与第一搅拌腔室123相邻。将在后文中描述的显影剂返回腔室125与第一搅拌腔室123的背向第二搅拌腔室124的一侧相邻。

沿Z方向观察,容器主体103包括底壁103A、延伸部分103B、侧壁103C和分隔壁103D。底壁103A在X方向上的两个位置弯曲从而向下突出成凸形。延伸部分103B设置在底壁103A的左端。侧壁103C直立地设置在底壁103A的右端。分隔壁103D直立地设置在底壁103A的中央并且将第一搅拌腔室123与第二搅拌腔室124分隔开。延伸部分103B具有从修整件108朝向第一螺旋推运器109向下倾斜的顶面M。

盖104包括顶壁104A、倾斜壁104B、弯曲壁104C和配合部分104D。顶壁104A设置在第二搅拌腔室124的上方。倾斜壁104B从顶壁104A的左端向左上方延伸从而覆盖显影辊腔室122。弯曲壁104C与倾斜壁104B的顶端连续。配合部分104D从顶壁104A的端部向下延伸并且与容器主体103相配合。

图4是显影装置100的纵向剖视图。为了说明的目的,在图4中,显影辊106、第一螺旋推运器109和第二螺旋推运器111示出为处于同一平面中;而实际上,如图3A所示,沿Y方向,显影辊106位于第一螺旋推运器109和第二螺旋推运器111的上方。在图4中未示出旋转部件110(参见图3)。

如图4所示,容器主体103包括设置在显影辊106的轴向(+Z方向)上的两端的支撑壁103E和103F。支撑壁103E和103F支撑从磁性辊106A两端沿+Z和-Z方向向外突出的轴106C(将在后文中描述)。容器主体103还包括突出部分126,突出部分126使得第一搅拌腔室123和第二搅拌腔室124在-Z方向上长于支撑壁103E与支撑壁103F之间的距离。支撑壁103E与支撑壁103F通过在显影辊106下方延伸的壁部分(未示出)连接在一起。修整件108(参见图3)借助螺旋件(未示出)固定在壁部分上。

分隔壁103D具有第一流入口132和第二流入口133。第一流入口132沿X方向延伸穿过分隔壁103D的-Z方向上的端部附近。第二流入口133沿X方向延伸穿过分隔壁103D的+Z方向上的端部附近。随着第一螺旋推运器109和第二螺旋推运器111旋转,显影剂G沿着以箭头K表示的方向穿过第一流入口132和第二流入口133而循环。

突出部分126具有形成在第一搅拌腔室123的底部的显影剂排出口134。显影剂G通过显影剂排出口134从显影装置100排出。突出部分126还具有形成在第二搅拌腔室124的顶部的显影剂供应口136。通过显影剂供应口136向显影装置100供应新显影剂G。显影剂供应口136在-Z方向上位于比第一流入口132更远的位置,并且显影剂供应口136通过分隔壁103D与显影剂排出口134隔开。这防止了新显影剂G在刚被供应之后就通过显影剂排出口134而排出。

如图3A和图4所示,显影辊106包括作为磁源的实例的磁性辊106A和作为显影剂承载部件的实例的显影套筒106B。磁性辊106A具有实心的圆筒形或大致圆筒形形状,并且磁性辊106A通过位于磁性辊106A与容器主体103之间的轴106C安装到容器主体103上并由容器主体103支撑。显影套筒106B具有中空的圆筒形或大致圆筒形形状,并且显影套筒106B可旋转地支撑在磁性辊106A的外侧。也就是说,显影套筒106B容纳磁性辊106A。

如图3A所示,磁性辊106A包括沿着其外表面(沿周向)布置的磁极。具体地说,当沿着轴106C的轴向观察时,磁性辊106A按照从右下角(靠近第一螺旋推运器109处)起沿着顺时针方向的顺序依次包括作为吸引极的实例的拾取极S3、层形成极N2、显影极S1、传送极N1和释放极S2。尽管未示出,磁场线从传送极N1延伸至显影极S1和释放极S2并且从层形成极N2延伸至显影极S1和拾取极S3。

在此,以将磁性辊106A在沿着轴向观察时的顶部位置和底部位置分别指定为“12点钟位置”和“6点钟位置”的方式来描述磁极的位置。例如,拾取极S3设置在4点钟位置,以便将显影剂G吸附到显影套筒106B的外表面上。层形成极N2设置在与修整件108的前端相对的7点钟位置,以便在显影套筒106B的外表面上形成磁性载体CA的刷。在本示例性实施例中,拾取极S3的磁力小于通常值(例如,80mT)(设定为比通常值更低的水平)。这减小了显影装置100中显影辊106的驱动扭矩。

显影极S1设置在与感光体62(参见图2)的外表面相对的9点钟位置。传送极N1设置在11点钟位置。在感光体62(参见图2)上的显影完成之后,传送极N1将残留的显影剂G吸附到显影套筒106B的外表面上。释放极S2设置在2点钟位置以便从释放极S2与拾取极S3之间的显影套筒106B上去除显影剂G。

如图4所示,显影套筒106B具有安装在其Z方向上的两端的盖形支撑件137A(位于-Z方向侧)和盖形支撑件137B(位于+Z方向侧)以便封闭显影套筒106B的两端。支撑件137A和137B呈环形并且分别具有固定在其内侧的轴承138A和138B,轴承138A和138B的轴线沿Z方向取向。轴106C插通轴承138A和138B,从而显影套筒106B可以相对于磁性辊106A沿周向旋转。显影套筒106B在其表面上具有微细的凹凸以便将显影剂G承载在其表面上。

支撑壁103F具有固定在其上的轴承142,轴承142的轴线沿Z方向取向。支撑件137B的一部分插入轴承142内。齿轮144可旋转地安装在支撑件137B的+Z方向上的端部,并且齿轮144的轴线沿Z方向取向。随着齿轮144旋转,支撑件137A和137B围绕轴106C旋转,并且相应地,显影套筒106B在磁性辊106A的外侧旋转(例如,以413rpm的转速旋转)。

第一螺旋推运器109设置在第一搅拌腔室123中以便在搅拌显影剂G的同时传送显影剂G。第一螺旋推运器109包括:旋转轴109A,其沿Z方向取向;作为螺旋叶片部分的实例的正向传送叶片109B,其支撑在旋转轴109A的周围;以及反向传送叶片109C。正向传送叶片109B从第二流入口133延伸至第一流入口132以便沿-Z方向传送显影剂G。

反向传送叶片109C设置在显影剂排出口134附近。反向传送叶片109C沿与正向传送叶片109B的传送方向相反的方向传送显影剂G,以使显影剂G从第一搅拌腔室123流入第二搅拌腔室124。旋转轴109A可旋转地由位于突出部分126的-Z方向上的端部的前壁103G以及位于容器主体103的+Z方向上的端部的后壁103H支撑。齿轮145安装在旋转轴109A的+Z方向上的端部。

从而,第一螺旋推运器109沿显影套筒106B的旋转方向设置在修整件108的上游并且设置为与显影套筒106B相对(参见图3A)。第一螺旋推运器109的旋转轴线方向与显影套筒106B的旋转轴线方向(Z方向)平行。随着正向传送叶片109B旋转(例如,以367rpm的转速旋转),显影剂G沿旋转轴线方向进行传送并且被供应至显影套筒106B。

第二螺旋推运器111设置在第二搅拌腔室124中以便在搅拌显影剂G的同时传送显影剂G。第二螺旋推运器111包括:旋转轴111A,其沿Z方向取向;正向传送叶片111B,其支撑在旋转轴111A的周围;以及反向传送叶片111C。正向传送叶片111B从第一流入口132延伸至第二流入口133以便沿+Z方向传送显影剂G。

反向传送叶片111C设置在第二流入口133附近。反向传送叶片111C沿与正向传送叶片111B的传送方向相反的方向传送显影剂G,以使显影剂G从第二搅拌腔室124流入第一搅拌腔室123。旋转轴111A可旋转地由前壁103G和后壁103H支撑。齿轮146安装在旋转轴111A的+Z方向上的端部。

显影辊106的齿轮144与第一螺旋推运器109的齿轮145啮合,中间齿轮147介于齿轮144和齿轮145之间。齿轮145继而与第二螺旋推运器111的齿轮146啮合。齿轮144设置为接收用作驱动源的电动机(未示出)的旋转力。

随着齿轮144通过电动机(未示出)的驱动而旋转,齿轮145沿与齿轮144相同的方向,即沿+R方向(图3A中的顺时针方向)旋转,而齿轮146沿与齿轮144相反的方向,即沿-R方向(图3A中的逆时针方向)旋转。也就是说,第一螺旋推运器109和第二螺旋推运器111沿相反的方向旋转。随着第一螺旋推运器109和第二螺旋推运器111旋转,第一搅拌腔室123中的显影剂G和第二搅拌腔室124中的显影剂G沿着相反的方向传送和循环。由第一螺旋推运器109传送的显影剂G被供应至显影辊106。

如图3A所示,第一搅拌腔室123中的显影剂G在拾取极S3的作用下承载在显影套筒106B上,并且随着显影套筒106B沿+R方向的旋转而进行传送。使承载在显影套筒106B上的显影剂G进入显影套筒106B的外表面与修整件108的前端之间以控制显影剂G层的厚度。然后,显影剂G被传送至与感光体62(参见图2)相对的显影区域。

修整件108是沿Z方向伸长的板状部件。修整件108设置为与显影辊106的外表面相对,修整件108的侧向沿着从Y方向稍微朝X方向倾斜的方向取向,并且修整件108的前端(上端面108A)面向轴106C。也就是说,修整件108沿Y方向设置在显影套筒106B的下方并且设置为隔着显影套筒106B与层形成极N2相对。修整件108控制承载在显影套筒106B的外表面上的显影剂G层的厚度。

下面对旋转部件110进行描述。

如图5所示,显影剂返回腔室125由显影辊106、修整件108、延伸部分103B和第一螺旋推运器109所包围。使显影剂G返回第一螺旋推运器109的旋转部件110设置在显影剂返回腔室125中与显影辊106、修整件108、延伸部分103B和第一螺旋推运器109间隔开的位置。旋转部件110设置为在修整件108与第一螺旋推运器109之间与显影套筒106B相对并且借助将在后文中描述的驱动单元120沿-R方向(图5中的逆时针方向)旋转(例如,以413rpm的转速旋转)。旋转部件110和显影剂返回腔室125形成了将显影剂G供给(返回)至第一螺旋推运器109的返回单元。

如图3B所示,旋转部件110例如是轴线沿Z方向取向的圆筒形或大致圆筒形的铝辊。沿Z方向观察,旋转部件110包括:主体110A,其具有直径D1;以及圆筒形支撑轴110B,其从主体110A的Z方向上的两端沿Z方向向外突出并具有直径D2(D2<D1)。例如,主体110A的外表面(不包括外表面的Z方向上的两端)通过采用规则或不规则的颗粒作为磨粒的喷砂处理而被磨光,从而形成不规则布置的凹凸S。术语“不规则布置”指的是这样的布置:即,在进行目视检测时,在旋转部件110的外表面上难以或无法找到沿周向或沿轴向对准的凹凸。

支撑轴110B可旋转地由直立地设置在容器主体103(参见图3A)的Z方向上的两端的侧壁103E和103F(参见图4)支撑。驱动单元120设置在支撑轴110B的一端。驱动单元120包括电动机和齿轮(未示出)并且驱动单元120使旋转部件110旋转。在图3B中,连接驱动单元120与支撑轴110B的线表示将驱动力(旋转力)从驱动单元120传递至支撑轴110B。

如图5所示,当沿Z方向观察显影装置100时,显影套筒106B的外表面上与修整件108相对的层控制位置被称为点PA,并且点PA处的切线被称为切线L1。旋转部件110的外表面(面向显影套筒106B的一侧)的与切线L1平行的切线被称为切线L2。第一螺旋推运器109的旋转轴109A的外表面(面向显影套筒106B的一侧)的与切线L1平行的切线被称为切线L3。

旋转部件110和第一螺旋推运器109设置成满足A/B≤1/2或者A/B大约为1/2,其中,A是切线L1与切线L2之间的最短距离,而B是切线L1与切线L3之间的最短距离。最短距离A是沿着从切线L1引到旋转部件110的外表面的垂线L4的距离。最短距离B是沿着从切线L1引到第一螺旋推运器109的旋转轴109A的外表面的垂线L5的距离。

<比较例>

下面对不包含旋转部件110的比较例进行描述。

图8A示意性地示出比较例的显影装置200中的修整件108及其周围。除了用矩形块202代替旋转部件110(参见图5)以外,比较例的显影装置200与示例性实施例的显影装置100(参见图5)类似。矩形块202设置为与显影套筒106B的外表面间隔开并且与修整件108的侧表面接触。

图8A示出比较例的显影装置200在重复显影之前的初始状态。随着显影套筒106B沿+R方向旋转,显影剂G被传送至修整件108(以箭头QA表示)。然后,使显影剂G进入显影套筒106B与修整件108的前端之间以控制显影剂G层。层控制后的单位体积UN(以矩形框UN表示)中的显影剂G的浓度相对于为在感光体62(参见图2)上进行显影所需传送的显影剂G的量来说是足够高的。

然而,比较例的显影装置200在显影套筒106B与矩形块202之间和修整件108附近几乎没有供显影剂G流入(退入)的空间。另外,存在于修整件108附近的区域中的显影剂G不具有足以克服朝向显影套筒106B与修整件108之间的间隙传送显影剂G的传送力F1而移动的力。结果,显影剂G的积聚(聚集)在修整件108附近的区域中形成了不动层GF1。

图8B示出比较例的显影装置200在重复显影之后的状态。在该状态下,与初始状态相比,形成了更大的(累积)不动层GF2。该不动层GF2沿与传送力F1的方向(以箭头QB表示)相反的方向向朝显影套筒106B与修整件108之间的间隙传送的显影剂G施加反作用力F2。结果,显影剂G的不能克服反作用力F2的部分滞留,并且施加在显影套筒106B与修整件108之间的显影剂G上的压力下降(即,产生压力损失)。这导致与初始状态相比,层控制后的单位体积UN中的显影剂G的密度较小。因此,与初始状态相比,在重复显影(一段时间)之后,层控制后的显影套筒106B上的显影剂G的量(显影剂G的传送量)变小。

<操作>

下面对本示例性实施例的操作进行描述。

如图6所示,随着第一螺旋推运器109(以及第二螺旋推运器111(参见图3A))在显影装置100中旋转,收容在壳体102中的显影剂G在被搅拌的同时被传送。将传送至第一搅拌腔室123的显影剂G供应至显影套筒106B并借助拾取极S3的磁力将显影剂G承载在显影套筒106B的外表面上。修整件108控制显影套筒106B的外表面上的显影剂G层的厚度。

当显影装置100的驱动单元120(参见图3B)开始操作时,旋转部件110在显影剂返回腔室125中旋转。该旋转在显影套筒106B与旋转部件110之间产生了朝向显影套筒106B与修整件108之间的间隙的显影剂G的流动QC和沿着旋转部件110的外表面朝向第一螺旋推运器109的显影剂G的流动QD。

图7示出了显影装置100在重复显影之前的初始状态。随着显影套筒106B沿+R方向旋转,显影剂G被传送至修整件108(以箭头QC表示)。然后,使显影剂G进入显影套筒106B与修整件108的前端之间以控制显影剂G层。层控制后的单位体积UN(以矩形框UN表示)中的显影剂G的浓度相对于为感光体62(参见图2)上的显影所需传送的显影剂G的量来说是足够高的。

显影装置100在显影套筒106B与旋转部件110之间和修整件108附近具有供显影剂G流入(退入)的空间。随着旋转部件110旋转,显影剂G流动至第一螺旋推运器109。这使得在修整件108附近的区域中几乎不会形成显影剂G的积聚(聚集),从而使得几乎不会形成不动层。

由于显影装置100使得随着时间的推移几乎不会形成不动层,因此保持了传送显影剂G通过其中的空间。这保持了被传送至显影套筒106B与修整件108之间的间隙的显影剂G的量。另外,由于显影装置100使得几乎不会形成不动层,因此几乎不存在沿与传送方向相反的方向施加的反作用力。这保持了施加在显影剂G上的压力(即,减小了压力损失)。因此,随着时间的推移,在修整件108控制显影剂G层的厚度之后显影套筒106B上的显影剂G的量得到保持。

由于显影装置100的旋转部件110具有形成在其外表面上的不规则的凹凸,因此与旋转部件没有这样的凹凸的情况相比,旋转部件110具有用于保持显影剂G的更大的表面积。这使得与通常的情况相比,显影套筒106B用更小的吸引极(拾取极)S3(参见图5)的磁力传送更大量的显影剂G。

由于显影装置100的旋转部件110具有轴线沿Z方向取向的圆筒形或大致圆筒形的形状,即,旋转部件110沿着其轴线具有均匀的截面,因此,当旋转部件110旋转时,显影套筒106B与旋转部件110之间的距离(空间)沿轴向几乎不发生变化。这使得显影套筒106B上的显影剂G的量沿轴向几乎不发生变化。另外,由于旋转部件110具有圆筒形或大致圆筒形的形状,即,旋转部件110沿着其轴线具有均匀的表面轮廓,因此,当旋转部件110旋转时,显影套筒106B与旋转部件110之间的距离(空间)沿周向几乎不发生变化。这使得显影套筒106B上的显影剂G的量沿周向几乎不发生变化。

由于通过驱动单元120(参见图3B)使显影装置100的旋转部件110强制旋转,因此,与旋转部件随着另一个部件的旋转而旋转的情况相比,可以更加可靠地将旋转部件110调节至所需的转速。这增强了由旋转部件110引起的显影剂的流动(压力),从而提高了流动(返回)至第一螺旋推运器109的显影剂G的量。

在显影装置100中,显影套筒106B的外表面的切线L1与旋转部件110之间的距离短于显影套筒106B的外表面的切线L1与第一螺旋推运器109之间的距离。也就是说,显影套筒106B与旋转部件110之间的空间窄于显影套筒106B与第一轮螺旋推运器109之间的空间。结果,压力在显影剂G进入显影套筒106B与修整件108之间以前施加到显影剂G上。这使得:即便由于吸引极S3(参见图5)的磁力小于通常值,第一螺旋推运器109的螺旋形向前传送叶片109B导致由显影套筒106B传送的显影剂G的量沿轴向产生变化(压力变化),也可以在进入显影套筒106B与旋转部件110之间的显影剂G上施加沿轴向均匀的压力。从而,由显影套筒106B所传送的显影剂G的量沿轴向几乎不发生变化。

图9示出由显影套筒106B所传送的显影剂G的量沿轴向(Z方向)的变化,以及由显影套筒106B所传送的显影剂G的量随着时间的推移(例如,在显影已重复了相当于在2000页记录纸张P上的图像形成的次数之后)的改变。参数为A/B,其中A是图5所示的显影装置100的切线L1与L2之间的最短距离,而B是切线L1与L3之间的最短距离。通过改变最短距离A而不改变最短距离B使A/B在0.25至0.80的范围内变化。

通过对定影在记录纸张P上的色调剂图像进行目测检查将由显影套筒106B所传送的显影剂G的量沿轴向的变化评价为“A”、“B”或“C”。“A”表示几乎没有变化。“B”表示存在轻微的局部变化,但是从整体上该局部变化可以忽略。“C”表示存在显著的变化。

通过在初始状态下以及在重复显影之后形成图像并且对定影在记录纸张P上的色调剂图像进行目测检查将由显影套筒106B所传送的显影剂G的量随着时间的推移的变化评价为“A”、“B”或“C”。“A”表示在初始状态下的浓度与重复显影之后的浓度之间几乎没有差别。“B”表示在初始状态下的浓度与重复显影之后的浓度之间存在轻微的局部差别,但是从整体上该局部差别可以忽略。“C”表示在初始状态下的浓度与重复显影之后的浓度之间存在显著的差别。

图9所示的结果表明:当A/B在0.20至0.80的范围内改变时,显影剂G的量几乎不随时间的推移而发生变化。该结果还表明,如果A/B为0.25(即,1/4)至0.5(即,1/2)或者为大约0.25(即,大约1/4)至大约0.5(即,大约1/2),则由显影套筒106B所传送的显影剂G的量沿轴向几乎不发生变化。该结果还表明,如果A/B为0.2或更小,则所传送的显影剂G的量不足。

借助旋转部件110,图像形成设备10随着时间的推移保持传送至感光体62(感光体62K、62Y、62M和62C)的显影剂G的量。在大量显影之后,由于显影剂G的量保持为与初始状态下显影剂G的量相当,因此图像浓度得以保持。

本发明不限于上述示例性实施例。

旋转部件110可以具有满足下述条件的其他任何形状:该形状使由显影套筒106B所传送的显影剂G的量沿轴向几乎不发生变化并且使所传送的显影剂G的量随着时间的推移几乎不发生变化。例如,旋转部件110的与轴向相交的截面可以呈多边形或椭圆形。作为选择,旋转部件110可以呈板状。

旋转部件110可以具有沿周向或轴向(纵向)延伸的槽(例如,具有U形或V形截面的槽),使得由显影套筒106B所传送的显影剂G的量沿轴向几乎不发生变化并且使所传送的显影剂G的量随着时间的推移几乎不发生变化。

旋转部件110可以由多个具有比旋转部件110的直径小的直径的旋转部件代替。

延伸部分103B的顶面M可以弯曲为使显影剂G能容易地流动至第一螺旋推运器109。

在显影剂G储存在显影套筒106B上方的示例性实施例中,修整件108和旋转部件110可以设置在显影套筒106B的旋转中心的上方。

为了解释和说明起见,已经提供了对于本发明的示例性实施例的前述说明。其意图不在于穷举或将本发明限制为所公开的确切形式。显然,对于本技术领域的技术人员来说可以进行多种修改和变型。选择和说明这些实施例是为了更好地解释本发明的原理及其实际应用,因此使得本技术领域的其他技术人员能够理解本发明所适用的各种实施例并预见到适合于特定应用的各种修改。其目的在于用所附权利要求书及其等同内容来限定本发明的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1