波长选择开关的方法和装置制造方法

文档序号:2708825阅读:384来源:国知局
波长选择开关的方法和装置制造方法
【专利摘要】本发明提供实现波长选择开关WSS的装置和方法。实施例使用可切换偏振光栅SPG和液晶LC单元的组合以及聚合物偏振光栅PPG和LC单元的组合来实现1×N?WSS系统。实施例光学开关包括液晶单元和与液晶单元相邻的SPG单元。SPG包括两个光配向层之间的液晶材料、覆盖在各光配向层上的电极层、以及覆盖在各电极层上的玻璃基板。实施例方法包括,先将入射光束圆偏振光,然后在偏振光栅处,根据入射光束的圆偏振特性和偏振光栅中形成的全息图方向将入射光以确定的角度衍射,所述角度对应于衍射级。
【专利说明】波长选择开关的方法和装置
【技术领域】
[0001]本发明涉及光学开关,且在特定实施例中,涉及一种用于波长选择开关(WSS,Wavelength Selective Switch)的方法和系统。
【背景技术】
[0002]对于光传输网络设备而言,动态光分插复用(ROADM, Reconfigurable OpticalAdd/Drop Multiplexer)的使用能够灵活地扩大网络容量并减少运营成本。WSS是当前RODAM的一项技术选择。对于IXN WSS而言,I是指公共(COM)端口,N代表的是分支端口。WSS 的运行是,当一组波分复用(WDM, Wavelength Division Multiplexing)信号从 COM 端口进入时,该组WDM信号按照光波长分开,然后根据系统要求,各波长被路由至N个分支端口中的一个分支端口。相反地,光信号能够从N个分支端口中接收以作为输入并且从COM端口发送以作为输出。
[0003]ROADM提供自动化机制以按需要灵活增加容量而无需采取既昂贵又中断服务的“叉式”升级。ROADM网络的好处是其按需要随时随地地增加动态容量的能力,以及底层网络自动对增加流量进行补偿的保证。这样无需手动调整或批发升级。ROADM能够配备带有多个波长信道的多个方向的上/下功能,因此,其适用于实现网络环路之间的多方向互连及建立网状网络。

【发明内容】

[0004]根据一项实施例,光学开关包括液晶单元和与液晶显示单元相邻的可切换偏振光栅(SPG, Switchable Polarization Grating)单元。SPG包括第一玻璃基板、覆盖在第一玻璃基板上的第一电极层、覆盖在第一电极层上的光配向层、覆盖在光配向层上的液晶材料、以及覆盖在液晶材料上的第二光配向层。第一光配向层和第二光配向层由光敏聚合物组成,通过曝光发生了物理上的改变,该曝光使用了两束具有反向圆偏振手性的相干光束。该SPG还包括覆盖在第二光配向层的第二电极层和覆盖在第二电极层的第二玻璃基板。
[0005]根据另一项实施例,光学开关包括液晶单元和与液晶单元相邻的聚合物偏振光栅(PPG, Polymer Polarization Grating)单元。PPG包括玻璃基板、覆盖在玻璃基板上由光敏聚合物组成的光配向层,所述光配向层的光敏聚合物已经物理地通过使用两束具有相反圆偏振手性的相干光束曝光而修改而成,以及覆盖在与所述玻璃基板相反的一侧的所述光配向层上的聚合液晶层,所述聚合液晶层已经物理地通过使用均匀光束照明被改变。
[0006]根据又一实施例,包括偏振光栅的光学开关的操作方法是,将入射光束变为圆偏振光,然后入射到偏振光栅上,并且,在偏振光栅处,根据入射光束的圆偏振方向和光栅内部的全息图方向以及与衍射级对应的次级将光衍射到一个预定角度,所述全息图方向通过两束相干光束曝光形成。
【专利附图】

【附图说明】[0007]为了更完整地理解本发明及其优点,现在参考以下结合附图进行的描述,其中:
[0008]图1a和Ib所示为可切换偏振光栅SPG单元的制造过程。
[0009]图2a和2b所示为具有和不具有施加电压的SPG单元。
[0010]图3a至3c所示为SPG单元的不同操作模式。
[0011]图4a至4d所示为偏振聚合物光栅PPG单元的制造过程。
[0012]图5a和5b所示为PPG单元的不同操作模式。
[0013]图6所不为波长选择开关WSS的实施例光学系统。
[0014]图7a至7h所示为液晶LC单元和SPG单元组合的不同操作模式。
[0015]图8所示为使用LC单元和SPG单元组合的实施例光切换引擎。
[0016]图9所示为使用LC单元和SPG单元组合的另一实施例光切换引擎。
[0017]图10所示为使用LC单元和SPG单元组合的又一实施例光切换引擎。
[0018]图1la至Ild所示为LC单元和PPG单元组合的不同操作模式。
[0019]图12所示为使用LC单元和PPG单元组合的实施例光切换引擎。
[0020]图13所示为使用LC单元和SPG单元运行光切换引擎的实施例方法。
[0021]图14所示为使用LC单元和PPG单元运行光切换引擎的实施例方法。
【具体实施方式】
[0022]下文将详细论述当前优选实施例的制作和使用。然而,应了解,本发明提供可在各种具体文中体现的许多适用的发明性概念。所论述的具体实施例仅仅说明用以实施和使用本发明的具体方式,而不限制本发明的范围。
[0023]目前在WSS产品中使用的技术包括微机电系统(MEMS,Micro Electro MechanicalSystems),娃基液晶(LCOS,Liquid Crystal on Silicon)、液晶(LC,Liquid Crystal)和模形晶体,以及数字微境装置(DMDs,Digital Micromirror Devices)。对于这些技术,光系统可以彼此相似,区别在于光切换引擎。
[0024]在MEMS系统中,波长通过光栅被衍射至不同的信道,然后各波长被入射至相应的MEMS反射镜上。控制各MEMS反射镜的电压能够控制反射镜的旋转角度以控制光束的反射角度。根据网络需求,各波长能够以设定的角度反射。来自多条信道的具有相同角度的反射波长光束在第二次经过光栅后被衍射成一条光束并稱合至输出端口。为了在切换中控制光衰减和实现无干扰功能,各MEMS反射镜具有两个旋转方向,一个是用于端口切换的旋转,另一个是用于光衰减和无干扰控制的旋转。基于MEMS的WSS的优点是光系统简单并且性能良好。然而,它的几个缺点在于,成品率低造成的MEMS芯片制造的成本高、驱动MEMS反射镜的高压要求造成电子器件的成本高、难以获得大量端口、以及难以设计出灵活网格(Flexgrid)功能。
[0025]LCOS是另一种使用在WSS系统中的技术。LCOS由位于玻璃基板和硅背板之间的LC层构成。在基于LCOS的WSS系统中,由光栅分开的各波长光束被入射在LCOS平面上并覆盖M X N个像素。LC相位光栅可以通过控制这些像素上的电压来形成,使得入射光束被衍射至设定的角度。改变LC光栅间距会导致不同的衍射角度。因此,控制对应波长光的LC相位光栅间距能够将光束路由至设定的输出端口。基于LCOS的WSS具有以下优点,例如,简单的光学系统,易于实现高端口数,以及易于实现Flexgrid功能。缺点包括复杂的电子驱动方案、相当复杂的控制软件、难以实现低串扰、以及相对较高的温度敏感性。
[0026]在WSS中使用的另一技术是LC加上晶体光楔。2009年3月3日发表的美国专利号为7499608,名称为“基于液晶和双折射光楔的光学开关的装置和方法(Apparatus AndMethod for Optical Switching with Liquid Crystals And Birefringent Wedges),,的文件中描述了使用晶体和晶体光楔的WSS设计。根据所需输出端口的数量,此种WSS的切换引擎由几级包括LC单元和楔形平板组合而组成。在每级中,LC单元用于切换光偏振,楔形板根据入射光的偏振方向将光向两个方向折射,从而产生I X 2光学开关。因此,N级组合形成1X2N光学开关。使用的LC单元被分割成由所需光信道设定的M像素。控制LC像素上的电压能够将相关波长光路由至设定的输出端口。这种WSS的优点有简单的驱动电路、高抗振性以及高可靠性。缺点包括材料成本高导致高成本、复杂的设备装配过程导致相对低的成品率、以及难以获得大量的端口。
[0027]WSS系统中还使用了 DMD技术。在该系统中,各波长光被入射到多个DMD MEMS反射镜上。控制这些反射镜的旋转角度能够将光束引导到设定的角度。由于这些反射镜仅具有两个偏差位置,因此一个基于DMD芯片的WSS只能够实现1X2开关。为了增加WSS的切换端口,需要更多的DMD芯片,这导致了光系统设计的高成本和高难度。
[0028]如上所述,使用现有技术的WSS系统的缺点包括:具有复杂软件的复杂驱动电路、材料成本高、低抗振性、以及难以扩展至大量端口。本发明的实施例提供了实施WSS的系统和方法。不同的实施例使用可切换偏振光栅SPG和LC单元的组合以及偏振聚合物光栅PPG和LC单元的组合来实现I XN WSS系统,从而克服上述系统的至少部分缺点。
[0029]图1a和Ib所示为SPG单元的制造过程100。在传统的LC单元制造中,LC配向层是通过擦刷或曝光两个基板上的两个聚合物层而形成。LC夹于两个聚合物层中间。在形成LC定向层方面,SPG单元的制造过程100与传统的LC单元制造是不同的。在SPG单元制造过程100中的第一步骤(图1a)中,两个光敏聚合物层102分别覆盖在两个玻璃基板106上,然后两个玻璃基板被放在一起,留一道空隙用于LC填充。电极(导体)层104也被添加在每个光敏聚合物层102和各个玻璃基板106之间。下一步(图1b),具有反向圆偏振手性(分别具有右旋和左旋圆偏振)的两束相干紫外线(UV, interference ultra-violet)光束192 (以合适的入射角度)用于曝光(例如,通过玻璃基板106)两个聚合物层102以形成聚合物层102中的全息图。该相干光束曝光可以应用于SPG单元各侧,以使光敏聚合物层102形成配向层。当LC108填充到所述空隙并且夹在两个基板中间时,LC108的分子排列与光敏聚合物层102上形成的全息图一致,光敏聚合物层102现在被用作LC配向层。
[0030]图2a和2b所示为具有和不具有施加电压的SPG单元200。SPG单元200可以通过使用制造过程100制造。当电极层204 (图2a)没有施加电压时,SPG单元200中的LC208形成光栅,促使任一玻璃基板206上的入射光按某方向衍射,该方向由以形成配向层202的两束曝光光束的角度(制造过程100中)确定。当将非零电压施加在电极层204 (图2b)时,LC208的分子和施加电压造成的电场一致,因此LC光栅效应(由定向层202造成)被抵消,从而任一玻璃基板206上的入射光都不再被衍射。取消LC光栅效应可能需要足够高的电压,例如,高于阈值电压(Vth)。
[0031]上述SPG单元具有三个衍射级O和±1,与通常光栅不一样。图3a至3c所示为SPG单元的不同操作模式300。每个操作模式对应于一个衍射级,每个衍射级衍射至不同的角度。当SPG单元上施加足够高的电压时(图3a),无论入射光偏振如何,光都被衍射至O级。当没有施加电压或施加低电压(图3b和3c)时,衍射光方向取决于入射光偏振。右旋圆偏振的入射光束被衍射至+1级(图3a),而左旋圆偏振的入射光束被衍射至-1级(图3c)。被SPG单元衍射后,光的偏振手性被改变(在右旋和左旋圆偏振中切换),如图3b和3c所示。
[0032]图4a至4d所示为PPG单元的制造过程400。PPG单元的制造过程400的第一步骤(图4a)是在玻璃基板406上覆盖光配向层402。第二步骤(图4b)是使用具有相反的圆偏振手性的两束相干UV束492曝光聚合物层402。第三步骤(图4c)是在光配向层402上覆盖可聚合LC层403。第四步骤(图4d)是使用均匀UV光束494照射可聚合LC层403以聚合该层的LC成分(分子)。因此,聚合物光栅在玻璃基板406上形成。
[0033]所得到的PPG单元是一个固定的光栅,因为其衍射特征不能通过施加电压改变(同上述SPG单元的情况一样)。图5a和5b所示为PPG单元的不同操作模式500。各操作模式对应于各衍射级,各衍射级衍射至不同的角度。入射光束被衍射至两个方向中的一个方向。具体来说,右旋圆偏振的入射光束被衍射至+1级(图5a),而左旋圆偏振的入射光束被衍射至-1级(图5b)。衍射后,任一情况下的光束偏振手性被改变或切换到相反的手性。
[0034]图6所不实施例为WSS的光系统600。WSS光系统600包括光纤阵列601、微透镜阵列602、光束偏移器阵列603、半波片阵列604、柱透镜605、柱面反射镜606、光栅607和光切换引擎608。WSS光系统600的部件可排列成如图6所不,或以其它合适的能实现相同或类似功能的方式排列。在其它实施例中,还可以使用与上述部件类似或不同的附加部件。上述的一些部件还可以被相同的或能实现相同功能的其它部件的组合替代。
[0035]光纤阵列601用于作为输入端口和输出端口。当来自光纤阵列601的输入或入射光束经过微透镜阵列602、光束偏移器阵列6033和半波片阵列604时,光束被分成两束具有完全相同线偏振态的平行光束。在经过柱透镜605和柱面反射镜606以后,所述两束光成为准直光束。然后由光栅607衍射这些光束,最终形成分离的波长。各波长都被聚焦在光切换引擎608上。光切换引擎608将各波长路由至设定的端口。相应的光束再次经过光系统600 (沿相反的部件顺序)并耦合至设定的输出光纤。
[0036]WSS光系统600的光切换引擎608能够通过合适的WSS系统实施。如下所述,合适的WSS系统包括SPG和LC单元或PPG和LC单元的组合。与其它已使用的WSS技术(例如,MEMS, LCOS, LC和楔形平板、以及DMD)相比,使用SPG或PPG的WSS系统的优点有:简单光系统、简单电子驱动电路、闻可罪性、闻性能、易于实现闻端口量、以及低广品成本。
[0037]图7a至7h所示为LC单元和SPG单元的组合的不同操作模式700。LC单元710位于SPG单元720之前(相对于入射光)。LC单元710用于控制或切换光偏振,SPG单元720用于将光束衍射至设定的角度。
[0038]如图7a、7c、7e和7h所示,当对LC单元710施加相对高的电压(例如,高于阈值)时,通过LC单元后,入射光束的偏振方向无改变。如图7b、7d、7f和7g所示,当LC单元710没有施加电压或施加相对低的电压(例如,低于阈值)时,入射光束偏振在右旋和左旋偏振之间切换。如图7a、7b、7e和7f所示,当对SPG单元720施加相对高的电压(例如,高于阈值)时,无论入射光的偏振如何,光束都被衍射至O级。如图7c、7d、7g和h所示,当对SPG单元720上没有施加电压或具有相对低的电压(例如,低于阈值)时,光束被衍射至+1级还是-1级取决于LC单元710控制的入射光的偏振方向。不管输入光是右旋还是左旋圆偏振,LC单元710和SPG单元720的组合都能将光束路由至三个方向,最终产生I X 3光学开关。N组LC和SPG单元组合能够实现I X 3N光学开关。
[0039]图8所示为使用LC单元和SPG单元组合的光切换引擎800的实施例的横截面。光切换引擎800能够用作WSS光系统600中的光切换引擎608。光切换引擎800包括可调光衰减器(VOA, Variable Optical Attenuator) 805、四分之一波片(QWP, Quarter WavePlate) 840、I X9光学开关830、以及棱镜或反射镜890。V0A805包括LC单元810和偏振片815,I X9光学开关830包括连续两对LC810和SPG820单元。这些组件可以如图8所示排列或以其它合适的顺序排列。LC单元810和SPG单元820在N=9的光束的垂直方向上具有M像素(垂直于图8的表面)。在图8中,N是指对应于端口的光束数量,M是指对应于波长信道的像素数量。光引擎800中的LC单元中使用的LC单元可以是电控双折射(ECB,Electrically Controlled Birefringence)、扭曲向列(TN, Twisted Nematic)、以及垂直对齐(VA, Vertically Aligned)单兀。
[0040]简而言之,这里用单波长来描述切换引擎的工作原理,如图8中引擎800的横切面所示。然而,相同的工作原理应用于所有M像素。
[0041]输入光首先经过用于控制光功率衰减的V0A805。控制LC单元810的电压能够控制V0A805的输出光功率。QWP840用于将光的线性偏振改变为圆偏振。所述光束然后经过两组LC810和SPG820单元(1X9光学开关830)。因此,所述输出光束可能与光轴形成9种角度。光束然后由棱镜或反射镜890反射,并且在经过开关830之后与光轴平行。能够合适地设计光切换引擎800使两束相邻光束路径(9种可能的切换角度)之间具有相同的距离。同样,标准光纤阵列可以用作光输出端口(例如,具有9个输出端口)。
[0042]图9所示的另一实施例为使用LC单元和SPG单元组合的光切换引擎900的横截面。光切换引擎900能够用作WSS光系统600中的光切换引擎608。光切换引擎900包括V0A905、I X 7光学开关930、以及棱镜或反射镜890。V0A905包括耦合至偏光镜915的LC单元910、I X 7光学开关包括一对跟随在第二 SPG单元920之后的LC910和SPG920单元。这些组件可以如图9所示排列或以其它合适的顺序排列。LC单元910和SPG单元920在N=7的光束的垂直方向上具有M像素(垂直于图9的表面)。光切换引擎900和光切换引擎800的区别之一是,光切换引擎900使用一个LC单元910和两个SPG单元920来实现I X 7光学开关。在1X7光学开关中,LC910单元用于控制光偏振,并且两个SPG920单元用于将光束衍射至设定角度。此外,光切换引擎900不包括QWP。相反,V0A905中的LC910单元被设计为可切换四分之一波片(在λ /4和3 λ /4之间切换)以将入射光的线性偏振改变为圆偏振。为了增加光学输出端口,可以将更多的SPG920单元添加到光切换引擎900中,如,在反射镜或棱镜990的前面。例如,使用N个SPG920单元,可以实施一个I X (2Ν+1_1)光切换引擎。
[0043]图10所示另一实施例为使用LC单元和SPG单元组合的光交换引擎1000的的横截面。光交换引擎1000能够用作WSS光系统600中的光交换引擎608。光交换引擎1000包括V0A1005、QWP1040、1X8光学开关1030、以及棱镜或反射镜1090。V0A1005包括LC单元1010和偏振片1015,1X8光学开关1030包括三个SPG单元1020。这些组件可以如图10所示排列或以其它合适的顺序排列。SPG单元1020还可以在N=S的光束的垂直方向上具有M像素(垂直于图10的表面)。不同于上述的光切换引擎800和900,光切换引擎1000仅使用SPG单元1020 (没有使用LC单元)来控制光衍射角度。当光束经过V0A1005和QWP1040之后,输入光束的线性偏振被改为圆偏振。各SPG单元1020能够将光束衍射至两个可能的角度。因此,N个SPG单元能够形成一个I X 2N光切换引擎。
[0044]图1la至Ild所示为LC单元和PPG单元的组合的不同操作模式1100。LC单元1110位于SPG单元1150之前(相对于入射光)。LC单元1110用于控制或切换光偏振,PPG单兀1150用于根据入射光束的偏振,将光束衍射至两个可能方向中一个方向。因此,N组LC和PPG单元能够组成一个I X 2N光学开关。
[0045]如图1la和Ild所示,当在LC单元1110上施加高电压(例如,高于阈值)时,入射光束偏振通过LC单元无改变。如图1 Ib和I Ic所示,当对LC单元1110没有施加电压或施加低电压(例如,低于阈值)时,入射光束的偏振在右旋和左旋偏振之间切换。如图1la和Ilc所示,当PPG单元1150上的入射光具有右旋圆偏振时,光束被衍射至+1级。如图1lb和Ild所示,当PPG单元1150上的入射光具有左旋圆偏振时,光束被衍射至-1级。
[0046]图12所示实施例为使用LC单元和PPG单元组合的光交换引擎1200的的横截面。光交换引擎1200能够用作WSS光系统600中的光交换引擎608。光交换引擎1200包括V0A1205、1X4光学开关1230、以及棱镜或反射镜1290。V0A1205包括LC单元1210和偏振片1215,1父4光学开关1230包括连续两对^:1210和??61250单元。这些组件可以如图12所示排列或以其它合适的顺序排列。LC单元1210和PPG单元1250在N=4的光束的垂直方向上具有M像素(垂直于图12的表面)。类似的光学开关,可设计为通过堆积所需数量的LC和PPG对,而具有 任意数量的输出端口。
[0047]图13所示实施例为使用LC单元和SPG单元的光切换引擎的运行方法1300。例如,方法1300通过任意光切换引擎800、900和1000实施。在步骤1310中,入射光束被起振为左旋或右旋圆偏振。例如,使用QWP840或1040或者电可切换(通过施加电压)LC将线性偏振入射光束转换为圆偏振光。在步骤1320中,使用至少一个SPG单元衍射圆偏振光束。衍射光束的偏振手性也被切换。例如,通过使用在1X9光学开关830中的第一电可切换LC810 (或1X7光学开关930中的LC910)将圆偏振光在左旋和右旋方向之间切换,并且随后通过下一个电可切换SPG820 (或920)将光束以相应的角度衍射。在另一示例中,1X8光学开关1030中的第一电可切换SPG1020将圆偏振光束之间以相应的角度衍射。
[0048]图14所示实施例为使用LC单元和PPG单元的光切换引擎的运行方法1400。例如,方法1400是使用光切换引擎1200实现的。在步骤1410中,入射光束被起振为左旋或右旋圆偏振。例如,使用电可切换LC将线性偏振入射光束转换为圆偏振光。在步骤1420中,使用至少一对LC单元和PPG单元衍射圆偏振光束。衍射光束的偏振手性也被切换。例如,通过使用在1X4光学开关1230中的第一电可切换LC1210将圆偏振光在左旋和右旋方向之间切换,并且随后通过下一个电可切换SPG1250将光束以相应的角度衍射。
[0049]虽然已参考说明性实施例描述了本发明,但此描述并不意图限制本发明。所属领域的一般技术人员在参考该描述后,会显而易见地认识到说明性实施例的各种修改和组合,以及本发明的其他实施例。因此,希望所附权利要求书涵盖任何此类修改或实施例。
【权利要求】
1.一种光学开关,其特征在于,包括: 液晶单元;以及 与所述液晶单元相邻的可切换偏振光栅SPG单元,所述SPG包括: 第一玻璃基板; 覆盖在所述第一玻璃基板上的第一电极层; 覆盖在所述第一电极层上的光配向层; 覆盖在所述光配向层上的液晶材料; 覆盖在所述液晶材料上的第二光配向层,所述第一光配向层和所述第二光配向层的光敏聚合物已经物理地使用两束具有反向圆偏振手性的相干光束曝光而修改; 覆盖在所述第二光配向层上的第二电极层; 覆盖在所述第二电极层上的第二玻璃基板。
2.根据权利要求1所述的光学开关,其特征在于,进一步包括: 可调光衰减器VOA,包括第二液晶单元和偏振片; 位于所述VOA和所述液晶单元之间的四分之一波片;与所述液晶单元相反侧的所述SPG单元相邻的棱镜或反射镜; 一对或多对附加液晶单元 和附加的相应的SPG单元,所述附加的相应的SPG单元位于所述SPG单元和所述棱镜或反射镜之间, 其中所述光学开关是IX 3N光学开关,用于光学连接一个普通端口与3N个独立端口,其中N是指所述光学开关中液晶单元和相应SPG单元的对数。
3.根据权利要求1所述的光学开关,其特征在于,进一步包括: 可调光衰减器V0A,包括第二液晶单元和偏振片; 与所述液晶单元相反侧的所述SPG单元相邻的棱镜或反射镜; 一个或多个位于所述SPG单元和所述棱镜或反射镜之间的附加SPG单元, 其中所述光学开关是IX (2N+1_1)光学开关,其用于光学连接一个普通端口与2N+1-1各独立端口,其中N是指所述光学开关中SPG单元的数量。
4.根据权利要求3所述的光学开关,其特征在于,所述液晶单元被配置为可切换四分之一波片,以将入射光偏振从线性偏振切换为右旋或左旋圆偏振。
5.根据权利要求1所述的光学开关,其特征在于,进一步包括: 可调光衰减器V0A,包括所述液晶单元和偏振片; 位于所述VOA和所述SPG单元之间的四分之一波片; 与所述VOA相反侧的所述SPG单元相邻的棱镜或反射镜, 一个或多个位于所述SPG单元和所述棱镜或反射镜之间的附加SPG单元, 其中所述光学开关是I X 2N光学开关,其用于光学连接一个普通端口与2N个独立端口,其中N是指所述光学开关中SPG单元的数量。
6.根据权利要求1所述的光学开关,其特征在于,所述液晶单元和所述SPG单元包括多个像素,所述多个像素对应于波长信道并且通过对应于光学开关端口的所述光学开关对齐垂直于多个平行光束路径的方向,其中所述光学开关被设计用于使来自所述光学开关的平行输出光束之间具有相同的距离。
7.根据权利要求1所述的光学开关,其特征在于,还包括:光纤阵列,用于向或从所述液晶单元和所述SPG单元发送和接收一个或多个入射光束。 微透镜阵列,位于与所述光纤阵列相邻的光路径上; 光移位器,位于与所述微透镜阵列相邻的光路径上; 半波片阵列,位于与所述光移位器相邻的光路径上; 柱透镜,位于所述半波片阵列和带有所述SPG单元的所述液晶单元的光路径上;柱面反射镜,面对光学路径上的位于所述柱透镜之后的所述液晶单元和所述SPG单元,用于将经过所述柱透镜的光反射回所述柱透镜;以及 光栅,面对光路径上的位于所述柱透镜之后的所述柱面反射镜,用于将经过所述柱透镜入射的光衍射回所述柱透镜。
8.根据权利要求1所述的光学开关,其特征在于,所述SPG单元用于,当没有施加电压或对第一电极层和第二电极层之间施加第一电压时,对具有确定方向的圆偏振入射光束进行衍射并且将所述衍射后的入射光束的圆偏振手性进行翻转。
9.根据权利要求8的光学开关,其特征在于,所述SPG单元用于,当第一电极层和第二电极层之间施加第二电压时,经过所述SPG单元的入射光不进行衍射并且偏振无改变。
10.根据权利要求1的关开关,其特征在于,所述液晶单元用于,当没有施加电压或施加第一电压时,翻转圆偏振手性之后将入射光束传递至所述SPG单元,或者,当对所述液晶单元施加第二电压时,在不改变圆偏振手性时传递所述入射光束。
11.一种光学开关,其`特征在于,包括: 液晶单元;以及 与所述液晶单元相邻的聚合物偏振光栅PPG单元,所述PPG包括: 玻璃基板; 覆盖在所述玻璃基板上的光配向层,所述光配向层的光敏聚合物已经物理地通过使用两束具有反向圆偏振手性的相干光束曝光修改而成; 聚合液晶层,覆盖在与所述玻璃基板相反的一侧的所述光配向层上,所述聚合液晶层已经物理地通过使用均匀光束照明被改变。
12.根据权利要求11所述的光学开关,进一步包括: 可调光衰减器VOA,包括第二液晶单元和偏振片; 与所述液晶单元相反侧的所述PPG单元相邻的棱镜或反射镜。 一对或多对附加液晶单元和附加的相应的PPG单元,所述附加的相应的PPG单元位于所述PPG单元和所述棱镜或反射镜之间, 其中所述光学开关是IX 2N光学开关,用于光学连接一个普通端口与2N个独立端口,其中N是指所述光学开关中液晶单元和相应PPG单元的对数。
13.根据权利要求11所述的光学开关,其中所述液晶单元和所述PPG单元都包括多个像素,所述多个像素对应于波长信道并且通过对应于光切换端口的所述光学开关对齐垂直于多个平行光束路径的方向,其中所述光学开关被设计用于使来自所述光学开关的平行输出光束之间具有相同的距离。
14.根据权利要求11所述的光学开关,进一步包括: 光纤阵列,用于向或从所述液晶单元和所述PPG单元发送和接收一个或多个入射光束; 微透镜阵列,位于与所述光纤阵列相邻的光路径上; 光移位器,位于与所述微透镜阵列相邻的光路径上; 半波片阵列,位于与所述光移位器相邻的光路径上; 柱透镜,位于所述半波片阵列和带有所述PPG单元的所述液晶单元的光路径上; 柱面反射镜,面对光路径上的位于所述柱透镜之后的所述液晶单元和所述PPG单元,用于将光束反射回所述柱透镜;以及 光栅,面对光路径上位于所述柱透镜之后的所述柱面反射镜,用于将经过所述柱透镜入射的光衍射回所述柱透镜。
15.根据权利要求11的关开关,其特征在于,所述液晶单元用于,当没有施加电压或施加第一电压时,翻转圆偏振手性之后将入射光束传递至所述PPG单元,或者,当对所述液晶单元施加第二电压时,在不 改变圆偏振手性时传递所述入射光束。
【文档编号】G02F1/13GK103703405SQ201380002381
【公开日】2014年4月2日 申请日期:2013年1月30日 优先权日:2012年1月30日
【发明者】毛崇昌, 李岷淳, 陈波, 方洋 申请人:华为技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1