光纤的涂层去除系统的制作方法

文档序号:2719707阅读:421来源:国知局
光纤的涂层去除系统的制作方法
【专利摘要】公开了光纤的涂层去除系统。还公开了相关的方法以及利用这些方法和涂层去除系统处理的光纤。光纤包括具有被保护涂层包围的包层和纤芯的玻璃纤维,所述保护涂层不对光纤的光学性能作出贡献。通过去除光纤的端部的涂层,该端部可以被精确地定位和固定,以实现可靠的光通信。可以将激光束直接射在保护涂层上,以通过一个或多个烧蚀、熔化、汽化和/或热分解工艺来去除保护涂层。可选地,光纤还可以被切割。用这样的方式,可以有效地去除涂层,同时可保持光纤的至少百分之五十的张力强度。
【专利说明】光纤的涂层去除系统
[0001] 优先权申请
[0002] 本申请要求享有于2013年5月10日提交的、名称为"Apparatus and Method for Laser Coating Stripping and End Cutting of Optical Fiber (用于光纤的激光涂层剥 离和末端切削的装置和方法)"的美国专利申请系列号13/891,691的优先权,该专利申请 文件在此被全部并入以供参考。

【技术领域】
[0003] 本【技术领域】一般来讲涉及光纤,更具体来讲涉及用于在诸如将连接器附装到光纤 的光纤准备期间去除覆盖玻璃光纤的聚合物涂层的系统。

【背景技术】
[0004] 光纤的益处包括极宽的带宽和低噪声工作。如果在两个互连地点之间需要高带 宽,可以使用具有光纤连接器的光缆在这些地点之间传送信息。光纤连接器还可用于在进 行维护和升级的时候,方便地在互连地点连接和断开光缆。
[0005] 每一光纤连接器可以包括具有套管的套管组件。套管具有几个目的。套管包括称 作套管孔的内部通道,通过该套管孔来支撑和保护光纤。套管孔还包括在套管端面上的开 口。该开口是可以将光纤端部的光表面定位为与互补连接器的另一光纤的端部对准的位 置。光纤的端部需要精确对准以建立光连接,从而光纤的光学纤芯可以进行通信。
[0006] 光纤通常包括由保护性聚合物涂层包围的玻璃纤维(例如,包层和纤芯),由于多 种原因,在将玻璃纤维置入套管内之前,要从玻璃纤维上去除聚合物涂层。一个原因是,该 聚合物涂层目前不具有当被附装到套管孔时承受在光纤光连接器的长时间使用期间经历 的环状张力而不发生位移滑动或者破损所需要的坚固机械性能。另一原因是,光纤并不是 以足够精度设于聚合物涂层内的中央,如果不去除该涂层,则无法将玻璃纤维精确地定位 于套管孔内。
[0007] 现有多种方法从光纤的端部去除聚合物涂层:热气剥离,机械剥离,化学剥离和激 光剥离。这些方法都具有缺点。这些方法都具有缺点。热气剥离使用加热的气体射流(例 如氮气或者空气)熔化和去除涂层,但是常常产生相当多的碎屑。热气剥离方法还可能无 法使聚合物涂层彻底汽化,和/或可能对非常接近于纤芯的热敏感材料造成过分加热。
[0008] 光纤的机械剥离包括利用由金属或者聚合物制成的剥离刀刃的半锋利边缘,从玻 璃纤维中物理地去除聚合物涂层材料,这与电线的机械剥离类似。然而,机械剥离存在问 题,因为可能会损坏光纤,并且需要大量的消耗品(例如,剥离刀刃),因而需要耗时的程序 来检查和替换工作环境所需要的消耗品。光纤的化学剥离使用化学品从光纤的玻璃部分溶 解掉聚合物涂层,但是这些化学品需要大量的程序来保护环境,并需要安全措施来保护工 作人员。
[0009] 激光剥离利用一个或多个激光束,通过汽化或者烧蚀工艺从玻璃光纤剥离聚合物 涂层。如图1中所描述的,激光剥离可包括激光束10,用于在激光切割之前,从光纤16的 玻璃部分14烧蚀掉涂层12。激光束10可以直接入射到光纤上,或者可以利用组合式反射 器18聚焦在光纤16上。然而,传统激光剥离技术存在问题,比如削弱光纤,使得光纤难以 承受在与光纤连接器一起使用时经历的张力。此外,传统激光技术还非常慢,需要与激光相 关的光纤进行物理移动。传统激光剥离技术还可能无法从光纤上完全去除涂层,因而,未被 充分剥离的涂层部分会妨碍光纤插入通过光纤连接器的套管。此外,传统激光加工设备占 地面积很大,与激光切割机器相结合的话,将占据大面积的昂贵制造空间。
[0010] 期望的是一种保持光纤的张力强度的涂层去除系统和工艺。该系统和工艺应从光 纤上均匀地去除涂层,同时使损坏光纤的风险最小化。该系统和方法不应该需要大量的消 耗品或者化学品,也不应该具有很大的制造占地面积。


【发明内容】

[0011] 这里公开的实施方式包括用于光纤的涂层去除系统。还公开了相关的方法以及利 用这些方法处理的光纤和涂层去除系统。光纤包括玻璃纤维,其具有包层和纤芯,由对光纤 的光学性能没有贡献的保护性涂层包围。通过去除在光纤一个端部的涂层,该端部可以精 确定位及固定,以实现可靠的光学通信。激光束可以投向保护性涂层,以通过一个或多个烧 蚀、熔化、汽化和/或热分解处理而去除保护性涂层。光纤还可以视情况而被切割。以这种 方式,涂层可以被有效地去除,而同时保持至少百分之五十的光纤张力强度。
[0012] 在一个实施方式中,公开了用于从光纤的玻璃部分去除聚合物涂层的过程。该过 程包括以张力发生器向光纤施加张力。该过程还包括在光纤的目标剥离部将激光束投向光 纤的聚合物涂层。该过程还包括利用激光束去除聚合物涂层,同时张力施加于光纤,以创建 剥离部。以这种方式,光纤的张力强度在涂层被去除时会大部分得到保留。
[0013] 在另一实施方式中,公开了激光准备光纤的端部的方法。该方法包括从激光器发 射激光束。该方法还包括通过利用控制系统重复地将激光束跨越光纤的光轴偏转角度Θ 以形成至少两组激光扫描,而从光纤的一端部去除至少一部分涂层。该方法还包括通过利 用控制系统引导激光束以定位至少两组激光扫描的各扫描为在多个径向位置与光纤的光 轴相交,而去除至少一部分涂层,其中的多个径向位置围绕光纤的周边均匀分布或基本均 匀分布。以这种方式,可以去除涂层而无需复杂的多激光器系统,多激光器系统将具有较大 的封装并因而需要价格昂贵的制造空间。
[0014] 还公开了一种连接化的光纤组件。连接化的光纤组件包括套管。连接化的光纤组 件还包括耦接至套管的光纤。光纤包括由聚合物涂层覆盖的第一纵长部。光纤还包括第二 纵长部,其中在光纤的第二纵长部的至少95%的外表面上不存在聚合物涂层。在第一纵长 部上与第二纵长部相邻近的聚合物涂层的微结构以一角度逐渐变细,从而聚合物涂层的厚 度作为与第二纵长部的距离的函数而朝向第二纵长部减小。第二纵长部的玻璃与第一纵长 部的玻璃的张力强度之比至少为〇. 5。以这种方式,连接化的光纤组件可以在使用中更耐拉 伸循环并因而具有较低的衰减。
[0015] 附加的特征及优点将在下面的详细说明中给出,并且部分对于本领域技术人员来 说可以从说明书中容易地看到或者通过这里描述的实施方式的应用而认识到,实施方式包 括下面的详细说明、权利要求以及附图。
[0016] 应当理解,前面概要的说明以及下面的详细说明都给出了实施方式并且提供用于 理解公开内容的本性及特性的概览或框架。附图提供进一步的理解并且合并于其中,构成 这个说明书的一部分。附图描述了不同实施方式,并且与说明书一起用于解释所公开的概 念的原理及操作。

【专利附图】

【附图说明】
[0017] 图1是与用于窗口化剥离光纤的外部涂层的示例性装置的光纤相关的轴向视图, 其中将激光束直接入射在光纤的圆周的一部分上,并且在被抛物镜面反射后间接地入射在 该圆周的第二部分上,正如现有技术中所公知的;
[0018] 图2A是示例性光缆的侧视图,该示例性光缆包括利用此处所公开的用于剥离和 切割的激光准备系统,被切割以在光纤的端部形成弹头形状的光纤以及从光纤的端部剥离 的涂层;
[0019] 图2B是示出所述弹头形状的图2A的光纤的端部的特写侧视图;
[0020] 图3A是激光准备系统内的光纤的前轴向视图,示出了当各组激光扫描被偏转跨 越光纤的光轴并被引导到不同的径向位置以去除光纤的涂层时,通过激光束形成的至少两 组激光扫描的通道;
[0021] 图3B-1是图3A的激光准备系统内的光纤的俯视图,示出了当该组激光扫描偏转 跨越光纤的光轴时的激光束轨迹;
[0022] 图3B-2至3B-4是图3A的激光准备系统内的光纤的前轴向视图,示出了具有光斑 尺寸的激光束分别从三个径向位置扫描跨越光纤的光轴;
[0023] 图3C是图3B-1的各组激光扫描中的每一个的激光束的有效焦距的图表;
[0024] 图3D是图3B-1的三组激光扫描的沿着光纤圆周入射的四(4)条路径的激光束的 能量强度图表,示出了每条路径的变化的能量强度,以及每条路径的沿着光纤圆周的均匀 或者基本上均匀的能量强度;
[0025] 图3E是在涂层去除期间以张力强度的百分比的方式,光纤的保持张力强度百分 比对照施加到光纤的张力的图表,示出了在涂层去除期间施加张力倾向于增加所保持的平 均张力强度;
[0026] 图4A是通过将图3A和3B-1的各组激光扫描从径向位置偏转跨越光纤的光轴来 准备光纤端部的激光准备系统的示意图;
[0027] 图4B-4F是图4A的激光准备系统的多功能固定设备的左视图、俯视图、正视图、后 视图和上部透视图;
[0028] 图5是已利用图4A的激光准备系统去除了光纤涂层、同时保持在张力下的光纤的 张力强度的威布尔图,以示出该张力强度优于利用传统的热气和机械剥离工艺去除光纤涂 层后的光纤的张力强度数据;
[0029] 图6是已从光纤的玻璃部分去除大部分涂层后的示例性光纤的侧视图;
[0030] 图7是已使用现有技术中已知的机械剥离工艺从光纤的玻璃部分局部剥离涂层 后的示例性光纤的侧视图;
[0031] 图8是已使用图4A的激光准备系统从端部去除涂层后的示例性光纤的侧视图;
[0032] 图9A是图3A的激光准备系统内的光纤的前轴向视图,示出了将至少两个切割组 的激光切割扫描用于切割光纤;
[0033] 图9B是图9A的系统内的光纤的俯视图,示出了用于切割光纤的激光束的示例性 轨迹;
[0034] 图10A是未被完全切割的光纤的侧视图,示出了其中本来足以在切割期间对处于 张力下的光纤正常切割的能量曝光量可能不足以对未处于张力下的光纤切割的情形;
[0035] 图10B是光纤端部的侧视图,示出了当没有施加张力并且通过仅仅增加路径的数 目,不对称地形成光纤端部的情形;
[0036] 图11A-11E图4B的多功能固定设备的不同实施例的左视图,示出了分别采用马达 和测力计组合、力矩马达、气压汽缸、重力和滑轮系统、以及重力和杠杆臂系统方式的张力 发生器的不同实施例;
[0037] 图12是示例性的光纤连接器子配件("连接器")的透视图;
[0038] 图13是图12的连接器的分解侧视图;
[0039] 图14是形成示例性的连接构成的光缆组件的图2A的光缆以及图12的连接器的 截面侧视图,其中光缆的光纤与连接器的套管耦接。
[0040] 图15是激光准备光纤端部部分的示例性工艺的流程图;
[0041] 图16A是作为图4A的激光准备系统的另一实施例的替代激光准备系统内的光纤 的前轴向视图,示出了具有通过激光束形成的至少两组激光扫描的通道,这些组的激光扫 描被偏转跨过光纤的光轴并被引导到不同的径向位置,以去除光纤的涂层;以及
[0042] 图16B是图16A的激光准备系统内的光纤的俯视图,示出了激光束的示例性轨迹。

【具体实施方式】
[0043] 现在将详细引用实施例,这些实施例的范例在附图中图示,附图中示出了一些、但 不是全部实施例。实际上,这些概念可以以多种不同形式来具体实现,而不应被视为局限于 本文;提供这些实施例只是为了使本公开内容满足所适用的法定要求。只要可能,类似的附 图标记将用于表示相似组件或者部分。
[0044] 本文公开的实施例包括光纤的涂层去除系统。还公开了相关的方法以及利用这些 方法和涂层去除系统处理的光纤。光纤包括具有被保护涂层包围的包层和纤芯的玻璃纤 维,所述保护涂层不对光纤的光学性能作出贡献。通过去除光纤的端部的涂层,该端部可以 被精确地定位和固定,以实现可靠的光通信。可以将激光束引导到保护涂层上,以通过一次 或多次的烧蚀、熔化、汽化和/或热分解工艺来去除保护涂层。可选地,光纤还可以被切割 (cleave)。用这样的方式,可以有效地去除涂层,同时可保持光纤的至少百分之五十的张力 强度。
[0045] 对于聚合物涂层的激光剥离,已经发现传统的激光剥离技术会降低光纤的玻璃部 分的张力强度。例如,在利用以10. 6微米波长工作的连续波或者脉冲激光器去除聚合物涂 层之后,光纤的玻璃部分可损失超过其百分之五十(50)的张力强度。 申请人:认为,在这种 传统激光剥离技术期间由玻璃对激光功率的吸收会损坏、并相应地削弱光纤的玻璃部分。 通过在激光剥离期间对光纤施加张力、并结合从围绕光纤的圆周均匀分布的不同径向方向 跨越光纤的光轴来扫描激光束,已发现在已经去除聚合物涂层之后可以很大程度上保持光 纤的张力强度。此外,已经发现,利用从各个径向位置入射到光纤上的激光扫描照射光纤可 以建立围绕光纤圆周均匀或者基本上均匀的能量强度。这种均匀或者基本上均匀的能量强 度将使原本会由围绕光纤圆周的不均匀热吸收导致的热应力最小化,并且还有助于更好的 保持光纤的张力强度。利用这种方法,用户可以控制激光束的光斑尺寸和激光功率,以获得 使光纤涂层吸收大部分激光能量并由此去除光纤涂层、同时使二氧化硅(玻璃)吸收的激 光能量最小化的能量密度。用这样的方式,可实现激光剥离纤维的高张力强度。此外,已经 发现,通过在涂层去除工艺期间将张力施加到光纤,可以进一步改善光纤的平均张力强度, 同时减少张力强度变化。
[0046] 在对剥离和切割光纤的各种方法进行概述之前,首先讨论通过激光系统剥离和切 割的光纤。然后,在讨论替代实施例之前,将详细讨论实现这些不同方法的激光准备系统。 按照这一方案,图2A和2B是示出包括光纤22的示例性光缆20的侧视图和特写侧视图。根 据一个示例性实施例,光纤22是配置为通过电磁辐射(例如,光)的传输进行高速数据通 信的玻璃光纤。在一些此类实施例中,光纤22是掺锗二氧化硅玻璃纤维,具有包括玻璃纤 芯和玻璃包层的玻璃部分24。光纤22可以是单模或者多模纤维,并且可以是标准纤维或者 弯曲不敏感纤维(例如,可从美国纽约州康宁市的CORNING INCORPORATED公司商业购得的 CLEARCURVE?纤维或者其它光纤)。
[0047] 根据一个示例性实施例,光纤22包括在玻璃部分24外部的涂层26。在一些实施例 中,涂层26由聚合物制成,比如丙烯(acrylic)、UV固化聚氨脂丙烯酸脂合成物(UV-cured urethane acrylate composite)、双层聚合物涂层、或者其他涂层。涂层26可以被机械稱 接(例如,粘附)至玻璃部分24,由此可与光纤22的包层直接接触。根据一个示例性实施 例,玻璃部分24单独具有大约125微米的直径Di ;在具有该涂层26之后,光纤22具有大约 250微米的直径D2。涂层26可以沿着第一纵长部28设置,并且可以包括或者进一步覆盖 有颜料,该颜料对应于光纤22的颜色代码。光缆20的纤维光纤22可包括第二纵长部30, 其中在玻璃部分24的外表面32的至少百分之九十(90)上不存在涂层26。光纤22的端部 40可包括弹头形状42。弹头形状42可以包括与光轴Ai正交的横截面,围绕光轴&同心或 者基本上同心,并且沿着光轴&逐渐变细到端点43。用这样的方式,第二纵长部30可被实 现为易于插入通过套管36的套管孔34,并且可相对于套管36精确定位以建立光连接,正如 将在本公开内容接近末尾部分相对于图12讨论的那样。应注意的是,弹头形状42可以在 建立光连接之前处理为最终形状,例如平面形状。
[0048] 继续参考图2A和2B并根据一个示例性实施例,光纤22进一步被缓冲材44围绕, 比如缓冲管(例如,聚乙烯(polyethylene),聚氨酯(polyurethane))。光纤22可以被紧 密缓冲,其中将缓冲材44直接附着到光纤22。在其他实施例中,光纤22被松散管式缓冲, 其中一个或多个此类光纤22松散地延伸穿过缓冲材44,并且通过增强构件、阻水油脂、阻 水纱、吸水性粉末和/或其他组件而附着在缓冲材44内。
[0049] 根据一个示例性实施例,光纤22和缓冲材44由光缆20的护套46围绕。护套46 可包括聚合物材料(例如聚乙烯),并可以围绕缓冲材44和光纤22而挤压成形,以提供对 于护套46内部的屏障。在一些实施例中,增强构件嵌入护套46,或者被护套46围绕,以便 为光缆20提供张力强度,和/或为了其他原因,比如为了提供光缆20的优选弯曲方向。护 套46的横截面可以是圆形的、椭圆形的、或其他形状,并且护套46可以包含一个或多个光 纤22和一个或多个缓冲材44,比如每个包含十二根光纤的六缓冲管,其中缓冲管围绕钢丝 或者玻璃强化塑料构成的中心增强构件而拧成股。在其他实施例中,光纤22可以不必由缓 冲材44和/或护套46围绕。
[0050] 为了去除光纤22的端部40处的涂层26,通过以沿着光纤22的圆周均匀或者基本 上均匀的激光能量强度烧蚀、熔化、汽化和/或热分解来去除第二纵长部30内的涂层26,作 为保持光纤22的张力强度的一种方式。图3A和3B-1分别是激光准备系统48内的光纤22 的前轴向视图和俯视图,示出了当将激光扫描54 (1)-58 (q)的三个组52 (1)-52 (3)从多个 径向位置a(l)-a(3)偏转跨越光纤22的直径D2、或者更一般来讲是"宽度"以去除光纤22 的涂层26时,由激光束60形成的激光扫描54 (1) -54 (η)、56 (1) -56 (p)、58 (1) -58 (q)的至 少两组52(1)-52(3)的示例性通道50。径向位置a(l)-a(3)围绕光纤22的圆周均等分布 或者基本上均等分布。正如此处所使用的,基本上均等分布意味着径向位置 a(l)-a(3)中 的每一个都在均等分布的十五(15)度内。应注意的是,两个或更多径向位置都是可以的, 在图3A中描述的实施例中,径向位置a(l)_a(3)可以是三个(3)的量,并且按照一百二十 (120)度而分离开,再加上或者减去十五(15)度,成为围绕光纤22的圆周均等分布或者基 本上均等分布。用这样的方式,可以通过围绕光纤22圆周的组52(1)-52(3)累积实现均匀 或者基本上均匀的累积能量强度,以有效地去除跨越第二纵长部30的涂层26。
[0051] 具体来讲,至少两组52(1)-52(3)中的组52(1)被引导到光纤22的如下位置:组 52(1)在第一径向位置a (1)处与光纤22的光轴Ai交叉。在激光扫描54 (1)-54 (η)的一个 或多个中,将组52(1)偏转跨越光纤22的光轴&,以从光纤22的圆周上去除涂层26的层 的一部分62(1)。
[0052] 此外,至少两组52 (1) -52 (3)中的组52 (2),52 (3)被引导到至少一个反射器 64 (1),64 (2),从而被反射到光纤22的如下位置:组52 (2)、52 (3)分别在相应的剩余径向位 置a (2)、a (3)与光纤22的光轴Ai交叉。在激光扫描56 (1)-56 (p)、58 (1)-58 (q)的一个或 多个中,组52 (2)、52 (3)被偏转跨越光纤22的光轴Ai,以从光纤22的圆周上去除涂层26 的部分62 (2)、62 (3)。用这样的方式,可以围绕光纤22圆周提供均匀或者基本上均匀的累 积能量分布。
[0053] 现有多种方式来优化激光扫描54 (1) -58 (q)的布置。激光扫描54 (1) -58 (q)的角 度可以设置为相对于光轴4的四十五(45)至九十(90)度之间的角度Θ (theta)。角度 Θ (theta)优选的是定向为九十(90)度,以提供第一纵长部28和第二纵长部30(图2A) 之间的更均匀过渡,但是可以使用角度Θ的更小值,以使得每一激光扫描54(l)_58(q)在 光纤22上的停留时间最大化,从而加快涂层去除。可以沿着光轴&,按照间距U来分隔组 52(1)、组52 (2)或者组52 (3)内的相邻激光扫描。用这样的方式,可以沿着光轴Ai的方向, 从光纤22上逐步地去除涂层26,直到第二纵长部30的长度L 2结束为止。间距Q例如可 以在二十五(25)微米和一百五十(150)微米之间,优选为五十(50)微米。然而,间距Q可 以依据激光光斑尺寸D s (图3B-2至3B-4)、功率、功率密度、功率分布、波长及其他因素而变 化。应注意的是,组52(1)-52(3)可按照顺序完成,或者组52(1)-52(3)的部分可以顺序地 完成,从而组52(1)-52(3)在大致相同的时间内完成。此外,长度L 2例如可以是一百二十 (120)毫米。长度L2可以依据对于目的应用的光纤22的要求而设为长于或者短于一百二十 (120)毫米。
[0054] 图3B-2至3B-4是图3A的激光准备系统48内的光纤22的前轴向视图,示出了具 有光斑尺寸仏的激光束60分别从径向位置a(l)-a(3)扫描跨越光纤22的光轴&。每一激 光扫描54 (1) -54 (η),56 (1) 56 (p),58 (1) -58 (q)中的部分2*z可以至少与光纤22的直径D2 一样宽,以便激光束60的中心线Q移动跨越光纤22的直径D2或者宽度。用这样的方式, 激光束60的均匀强度可以从每一径向位置a(l)-a(3)入射到光纤22上。应注意的是,来 自激光束60的入射能量包括由光纤22吸收、反射或者传输通过光纤22的激光能量。
[0055] 图3C是图4B的激光扫描54⑴-58 (q)的至少三个组52⑴-52 (3)的每一个的激 光束60的有效焦距的图表66。有效焦距确定光斑尺寸05,可以为组52(1)-52(3)的每一个 的激光束60来改变该光斑尺寸D s,以改变能量强度,能量强度与入射到光纤22上的激光束 60的光斑尺寸Ds的直径的平方成反比。光斑尺寸D s和激光功率都可以被调节,以提供去除 涂层26、并使玻璃部分24(图2A)所吸收的激光能量最小化的能量强度。在一个范例中,组 52(1)可以使用一百八十(180)毫米的有效焦距,而组52 (2)、52 (3)可以使用两百(200)毫 米的有效焦距。具体来讲,用于组52 (1)的激光束60的有效焦距优选为短于组52 (2) -52 (3) 的有效焦距,以补偿接近激光束60的源的光纤22。由此,可以从组52(1)-52(3)获得从径 向位置a(l)-a(3)入射到光纤22上的相同的有效光斑尺寸D s。由此可以沿着从零(0)到 360度的圆周获得均匀或者基本上均匀的能量强度分布67(1),如图3D的图表68所示,其 中如在这里所讨论的,在光纤22的圆周上的能量分布可以与最大能量强度相比变化小于 百分之二十(20)。
[0056] 激光扫描54 (1) -58 (q)的组52 (1) -52 (3)可以仅仅在激光束60的单个"路径"中 形成一次,或者当激光束60可以使激光扫描54 (1)-58 (q)在光纤22上重新行进时可以在 一个或多个"后续路径"中再次形成激光扫描54 (1) -58 (q)的组52 (1) -52 (3)。在一个实施 例中,圆周上的平均入射能量强度在第一路径期间开始于能量强度分布67(1)的每平方厘 米5. 5千瓦,在第二路径期间降低为能量强度分布67 (2)的每平方厘米3. 9千瓦,在第三路 径期间降低为能量强度分布67(3)的每平方厘米2. 2千瓦,而在第四路径期间降低为能量 强度分布67(4)的每平方厘米0.6千瓦。用这样的方式,可以通过避免形成涂层26的残余 部分而更有效地去除涂层26,所述的涂层26的残余部分可能需要将光纤22暴露于更多的 能量以彻底去除涂层26。
[0057] 应注意的是,在图3D中所示的实施例中,路径67(1)-67(3)的后续路径 67(2)-67(4)分别具有较低的能量强度。在其他实施例中,可以利用一个或多个路径 67 (1)-67 (4),或者可以利用多于四个(4)路径67 (1)-67 (z),来去除涂层26。此外,任何后 续的路径可以将与先前路径相比更高、更低或相似等级的入射能量强度传送到光纤22。
[0058] 入射到光纤22上的激光束60的光斑尺寸Ds的调节是确保围绕光纤22圆周的均 匀或者基本上均匀的能量强度的一个因素。在一个实施例中,激光束60具有高斯型的强度 分布,并且以恒定速度扫描跨越光纤22。在该实施例中,由于激光束60以光纤22为中心, 因此入射到光纤22上的能量将是最大的。入射到光纤22上的能量随着激光束60的位置 逐渐远离光纤22的中心而降低,并由此发生变化。与光纤22的直径相关的光斑尺寸D s确 定沿着光纤22的圆周入射的能量降低百分比。例如,对于小于光纤22直径的两倍的光斑 尺寸D s的值,入射能量降低到大约百分之五十(50)。而对于至少为光纤22直径D2的两倍 的光斑尺寸D s的值,则入射能量可以类似地降低小于百分之四十(40)。当光斑尺寸^至 少为光纤22的直径的2. 7倍时,则能量强度分布在光纤22的圆周上可以变化小于百分之 二十(20)。因此,对于直径为两百五十(250)微米的光纤22,则至少为六百七十五(675)微 米的光斑尺寸仏可以提供在光纤22的圆周上变化小于百分之二十(20)的能量强度分布。 只要满足涂层去除和保持的张力强度要求,可以使用比光纤22直径的2. 7倍小的光斑尺寸 Ds,来去除涂层26。
[0059] 应注意的是,此处所使用的入射到光纤22上的激光束60的"光斑尺寸Ds"取决 于激光束60是否具有高斯型的强度分布。对于具有非高斯型的强度分布的激光束60,光 斑尺寸仏是基于半峰全宽(FWHM)测量技术的,在这种测量技术中,根据当强度是最大强度 的百分之五十(50)时的激光束60的周长(或者圆周长)来计算激光束60的宽度(或者 直径)。对于具有高斯型的强度分布的激光束60,光斑尺寸D s是基于Ι/e2测量技术的,在 这种测量技术中,当能量强度是激光束60的最大强度的百分之13. 5 (根据Ι/e2,其中e = 2. 7183)时,测量激光束60的圆周长。
[0060] 在完成组52 (1)-52 (3)之后可能没有从光纤22的第二纵长部30上完全地去除涂 层26的情形中,可以在后续的"路径"中将组52(1)-52(3)重新偏转到光纤22上。可以增 加激光束60的光斑尺寸D s,以降低入射到光纤22上的能量强度,从而减少在第二纵长部30 中剩余的涂层26的量,同时减少可能损坏光纤22并由此降低张力强度的能量。
[0061] 改善第二纵长部30处的光纤22的张力强度的一种额外的方式是,在去除涂层26 的同时,将张力F T(图3B-1)施加到光纤22。图3E是在去除涂层26期间光纤22所保持的 张力强度百分比对照施加到光纤22的张力强度百分比的图表70。图3E中的数据是相对 于多个光纤22提供的,所述多个光纤22具有八百四十一(841)kpsi的中值张力强度和两 百五十(250)微米的直径,包括62. 5微米厚度的涂层26。图3E的图表70包括被水平线交 叉的框体。每个框体限定了张力强度的四分位差(interquartile range),该四分位差是 统计学分散度的度量手段。在每一框体的上方,发生了观察到的各个最强张力强度测量结 果,该测量结果是统计学分散度的最高四分位数(百分之25)的一部分。在每一框体的下 方,发生了观察到的各个最弱张力强度测量结果,该测量结果是统计学分散度的最低四分 位数(百分之25)的一部分。框体包括张力强度测量结果的"中间百分之五十",而水平线 限定了观察到的平均张力强度测量结果。例如,当在去除涂层26期间没有将张力F T施加 到光纤22时,保持了它们的平均至少百分之五十五(55)的张力强度。当施加百分之6. 25 的张力强度作为张力FT时,在这种其他张力条件下测试的光纤保持了它们的平均至少百分 之六十八¢8)的张力强度,这表明与无张力情况相比得到了改善。
[0062] 在保持的张力强度中的这种改善的原因是复杂的。入射到光纤22上的激光辐射 将快速的加热和冷却循环引入到光纤22中,由于这种快速的加热和冷却循环而导致的光 纤22的大量瞬变温度变化产生了应力波,而这种应力波通过光纤22传播。通过在去除涂 层26期间使光纤22经受张力F T,可认为更加有效地减轻了由大量的瞬变温度变化所引起 的热应力,由此避免了对于光纤22的张力强度的至少一些损害。图3E中的图表70描述了 将张力匕的值增加到张力强度的百分之二十五(25)能够使平均的保持张力强度成为至少 百分之七十八(78)。可以认为,在涂层去除期间施加到光纤22的张力F T的最优值可以依 据所要剥离的光纤22的类型而变化,但是可以小于张力强度的百分之五十(50)以避免损 坏。按照这一上限,在涂层26去除期间施加到光纤22的张力F T的范围可以在光纤22的 张力强度的百分之一(1)和百分之五十(50)之间。用这样的方式,可以在去除涂层26之 后保持光纤22的张力强度的至少百分之五十(50),这可以通过根据图3E中所示出的在涂 层去除期间施加张力FT的光纤22的至少百分之七十五(75)得出的张力强度数据来佐证。 [0063] 已经引入了对于从光纤上剥离涂层的不同方法的概述。现在,在讨论替代实施例 之前,将详细讨论实现这些不同方法的激光准备系统48的具体细节。就这一点而言,图4A 是用于准备光纤22的端部40的示例性激光准备系统48的示意图。激光准备系统48可以 去除涂层26和切割光纤22,同时保持光纤22的张力强度。激光准备系统48包括激光器 74、控制系统76和多功能固定设备78。随后将讨论每一组件的细节。
[0064] 激光器74以波长λ发出激光束60,以便去除涂层26,并且还可以用于切割光 纤22。波长λ的范围可以在一百五十七(157)纳米至10. 6微米之间,优选为9. 3微米的 波长λ。激光器74例如可以是二氧化碳激光器74ζ,其发出具有9. 3微米的波长λ的激 光束60。在一个实施例中,激光器74可以是由美国加利福尼亚州圣克拉拉市的Coherent Incorporated公司制造的Diamond?C-20A激光器。在优选实施例中,激光器例如可以是 以至少四十(40)微秒的脉冲宽度,利用至少十(10)瓦特发射激光功率的二氧化碳激光器 74z。
[0065] 控制系统76将激光束60直接引导到光纤22,或者在被至少一个反射器64(1)、 64(2)反射之后间接引导到光纤22。控制系统76还利用激光扫描54⑴_58(q)的组 52 (1)-52 (3)(图3B-1),将激光束60偏转跨越光纤22的光轴&。控制系统76可以沿X、Y 和Ζ方向引导和偏转激光束60,以便精确控制激光束60的布置和光斑尺寸Ds。
[0066] 与激光器74结合在一起的控制系统76可以包括集成的激光器和扫描头80。在一 个实施例中,扫描头80可以包括由美国新泽西州Elmwood Park市的Keyence America公 司制造的ML-Z9500系列激光刺点仪。
[0067] 扫描头80可以包括用于在保持激光器74相对于光纤22静止的同时移动激光束 60的多个特征。扫描头80可以包括ζ扫描仪82, ζ扫描仪82具有与光学平移设备相结合 的一个或多个光学透镜,以改变有效焦距并由此改变光纤22上的激光束60的光斑尺寸Ds。 扫描头80还可以包括振镜扫描仪81,包括用于引导和偏转激光束60的X扫描仪84和y扫 描仪86。X扫描仪84和y扫描仪86例如可以包括以相当大的最高速度扫描激光束60的 至少一个镜子,所述最高速度在一个实施例中可以是十二(12)米/秒。用这样的方式,可 以在X、Y和Z方向上同时控制激光束60。替代地,物理地移动激光器74和/或光纤22以 获得激光束60以相同速度跨越光纤22的等效相对扫描运动也是可行的,但是效率低而且 不实用。
[0068] 此外,控制系统76也可以包括扫描透镜88,扫描透镜88提供光纤22处的平面像 场,从而激光束60的有效焦距可以在第二纵长部30的长度L 2之上保持恒定。在一个实施 例中,扫描透镜88可以包括F-theta透镜89 ;然而,替代地,扫描透镜88例如也可以包括 平场透镜或者远心的f-theta透镜。用这样的方式,激光器74和光纤22可以在控制系统 76引导和偏转激光束60以从光纤22去除涂层26和/或切割光纤22的时候保持静止。
[0069] 继续参考图4A并再次参考图3A和3B-1,激光准备系统48的多功能固定设备78 包括至少一个反射器64 (1),64 (2),以反射激光束60的激光扫描56 (1) -58 (q)的组52 (2), 52(3)。组52 (2),52 (3)在对应的径向位置a(2)、a(3)处与光纤22的光轴Ai交叉。用这 样的方式,可以跨越光纤22获得均匀或者基本上均匀的能量强度,以便均匀地并有效地去 除涂层26,由此最小化损坏光纤22的可能。
[0070] 多功能固定设备78还包括张力发生器90,用于在去除涂层26期间将张力FT施加 至光纤22,并且还可以在利用激光束60进行可选的切割期间施加张力F T。图4B-4F是图 示出张力发生器90的激光准备系统48的多功能固定设备78的左视图、俯视图、正视图、后 视图和上部透视图。多功能固定设备78包括在反射器64(1)、64(2)的一侧保持光纤22的 静止光纤保持器92A,和在反射器64(1)、64 (2)的相对侧的可移动光纤保持器92B。分别通 过紧固装置94A、94B,将光纤22可拆卸地固定至静止光纤保持器92A和可移动光纤保持器 92B,所述紧固装置94A、94B例如是将夹持力FC(1)、FC(2)应用至光纤22的夹具。所述至 少一个可移动光纤保持器92B可以沿着一个机械构件,例如沿着至少一个导杆98A、98B,在 光纤22的光轴&的方向上平移。因此,当张力发生器90例如包括至少一个弹簧96A、96B 时,调节所述至少一个弹簧96A、96B以将力FT施加到可移动光纤保持器92B,然后通过可移 动光纤保持器92B将张力F T施加到光纤22。应注意的是,所述至少一个弹簧96A、96B可以 被设置在可移动的光纤保持器92B和反射器64 (1)、64 (2)之间。
[0071] 图5是光纤22的张力强度数据100的威布尔累积分布图99,所述光纤22已利用 激光准备系统48使用图3A描述的激光准备系统48的激光扫描54 (1) -58 (q)的激光扫描 组52 (1) -52 (3)以及利用张力发生器90施加的0· 5磅的张力FT (张力强度的3. 1 % )去除 了涂层26。威布尔累积分布函数图99还显示了尚未去除涂层的原始光纤的张力强度数据 102,以及使用传统方法去除了涂层26的光纤的张力强度数据。特别地,威布尔累积分布函 数图99提供了传统机械剥离的光纤的张力强度数据104以及传统热气剥离的光纤的张力 强度数据106。威布尔累积分布函数图99中的数据显示,这里公开的过程产生了由张力强 度数据100显示的平均张力强度高于700kpsi的光纤,这高于分别由张力强度数据106、104 代表的使用热气和机械剥离处理得到的光纤的平均张力强度。
[0072] 由于已经提供了张力强度数据,利用激光准备系统48剥离的光纤22的实际图像 形式的物理数据显示涂层26被部分去除。现在参考图6至8,光纤22包括由聚合物涂层 26 (图8)覆盖的涂覆部分以及玻璃部分24 (图6和8),在玻璃部分基本不存在聚合物涂层 26 (例如,被去除、完全去除,基本由玻璃构成)。例如,光纤的玻璃部分24的至少95 %的外 表面没有被聚合物涂层覆盖(例如,至少99 %、至少99. 9 %的玻璃部分24没有被聚合物涂 层26覆盖)。
[0073] 最接近玻璃部分24的聚合物涂层26的微结构可以包括处理光纤22的涂层去除 技术的指示物。在一些实施方式中,最接近玻璃部分24的聚合物涂层26具有以角度a (例 如,恒定角度、渐增角度、渐减角度、平均角度;例如参见图8)的锥形108,从而聚合物涂层 的厚度随着接近光纤22的玻璃部分24而朝向玻璃部分24减小。聚合物涂层26具有从光 纤22的完全被聚合物涂层26覆盖的部分到锥形108的圆形过渡109。而且,在一些实施方 式中,可以靠近玻璃部分24设置聚合物涂层26的球状部分111。球状部分111的直径DB 可以大于与聚合物涂层26已经被去除的玻璃部分24距离更远的聚合物涂层26的直径D2。
[0074] 图8的锥形108和过渡与图7中显示的现有技术中光纤22z在聚合物涂层26z和 玻璃部分24z之间的过渡形成对比,现有技术中对应于由机械剥离得到的微结构。进一步, 正如图8所示,光纤22的玻璃部分24的微结构不包括在机械剥离期间可能由锐边引起的 表面擦痕23,并且最接近玻璃部分24的聚合物涂层26的微结构包括禁锢气泡110 (例如, 在锥形108内,在二十倍放大下可见)相对于更加远离玻璃部分24的聚合物涂层26的增 大的体积。
[0075] 现在已经讨论了利用激光准备系统48从光纤22去除涂层26并将其与替代的剥 离方法进行了比较,下面提供可选地利用激光准备系统48切割光纤22的细节。图9A和9B 分别是在激光准备系统48内的光纤的轴向投影图和顶视图。激光切割扫描114(1)-114(3) 中的至少三个激光切割组112(1)-112(3)的轨迹与激光扫描54 (1)-58 (q)的三个激光扫描 组52(1)-52(3)类似,因而为了清楚与简明,仅讨论不同之处。激光切割组112(1)-112(3) 使用激光束60作为组52 (1)-52 (3)。不同是,间隔距离U可以为零(0),并且因而激光扫描 54 (1)-54 (η)被结合在激光切割组114(1)中;激光扫描56 (1)-56 (p)已经结合在激光切割 扫描114(2)中;并且激光扫描56(l)-56(p)已经结合在激光切割扫描114(3)中。激光切 割组112(1)-112(3)烧蚀、熔化、汽化和/或热分解光纤22而非涂层26,并因而切割光纤 22〇
[0076] 还注意到在实践中,激光束60的光斑尺寸Ds比去除涂层26时使用的光斑尺寸减 小,以提供更高的强度来将切割时间最小化。例如,切割期间的光斑尺寸Ds可以为100微 米至500微米,优选为140微米。激光74的功率可以在结合较小光斑尺寸Ds切割的同时 增大,以提供更高的激光束60强度来将切割时间最小化。以这种方式,激光准备系统48可 用于利用与从光纤22去除涂层26时所用的相同的多功能固定设备78来切割光纤22。 [0077] 在切割时施加张力FT是重要的,以形成弹头形状42 (图2B),其使得光纤22较为 容易插入套管36(图12)并因而可以建立光学连接。当在特定阈值之下施加张力FT时,例 如,低于光纤22的张力强度的9. 3%,易于形成弹头形状42。
[0078] 在切割处理期间施加张力还减少了切割光纤22所需的激光能量。图10A是没有 完全切割而是形成了颈部116的光纤22的侧视图。图10A描绘了一种情况,其中,在0. 5 磅张力FT(张力强度的3. 1% )下通常足以切割光纤22的能量在不施加张力FT时不足以 切割光纤22。如果以切割扫描114(1)-114(3)的附加路径的形式的附加激光能量入射到图 10A的光纤22上,那么通过颈部116断开而完成切割,但是端部40很可能形成不标准的端 部118 (图10B),其难以插入光纤连接器的套管。总之,施加张力FT会减少切割光纤22所 需的激光能量,并且有利于在光纤22的端部40形成弹头形状42 (图2B)。
[0079] 已经讨论了激光准备系统48去除涂层26以及切割光纤22的细节。现在相对于 图11A-11E的多功能固定设备78A-78E讨论多功能固定设备78的张力发生器90。这里,多 功能固定设备78A-78E类似于多功能固定设备78,简明起见仅详细讨论不同之处。
[0080] 图11A描绘了包括张力发生器90A的多功能固定设备78A,其包括与测力计122相 结合的马达120。在一个实施方式中,马达120可以是电动机,其将力&施加至可移动光纤 保持器92B。可移动光纤保持器92B可移动地安装至光纤22,因而力F T成为在去除涂层26 以及切割光纤22期间施加至光纤22的张力FT。正如上面讨论以及在图3E中描绘的,在利 用激光准备系统48去除涂层26期间,当张力F T施加于光纤22时,光纤22的张力强度增 力口。以这种方式,光纤22的张力强度通过使用多功能固定设备78A而提高。
[0081] 图11B描绘了包括张力发生器90B的多功能固定设备78B,其包括将力FT施加至 可移动光纤保持器92B的力矩马达124。可移动光纤保持器92B可移动地安装至光纤22, 因而力F T成为在去除涂层26以及切割光纤22期间施加至光纤22的张力FT。正如上面讨 论以及在图3E中描绘的,在利用激光准备系统48去除涂层26期间,当张力F T施加于光纤 22时,光纤22的平均张力强度增加。以这种方式,光纤22的张力强度通过使用多功能固定 设备78B而提
[0082] 图11C描绘了包括张力发生器90C的多功能固定设备78C,其包括由空气气缸129 内的进气压力128提供动力的活塞126。进气压力128通过活塞126向可移动光纤保持器 92B施加力F T。可移动光纤保持器92B可移动地安装至光纤22,因而力FT成为在去除涂层 26以及切割光纤22期间施加至光纤22的张力F T。正如上面讨论以及在图3E中描绘的, 在利用激光准备系统48去除涂层26期间,当张力FT施加于光纤22时,光纤22的平均张 力强度增加。以这种方式,光纤22的张力强度通过使用多功能固定设备78C而提高。
[0083] 图11D描绘了包括张力发生器90D的多功能固定设备78D,其包括具有重量FT的 质量块130,该质量块利用缚于可移动光纤保持器92B的线134从滑轮132悬挂。可移动光 纤保持器92B可移动地安装至光纤22,因而力F T成为在去除涂层26以及切割光纤22期间 施加至光纤22的张力FT。正如上面讨论以及在图3E中描绘的,在利用激光准备系统48去 除涂层26期间,当张力F T施加于光纤22时,光纤22的平均张力强度增加。以这种方式, 光纤22的张力强度通过使用多功能固定设备78D而提高。
[0084] 图11E描绘了包括张力发生器90E的多功能固定设备78E,其包括具有重量FT的 质量块130,该质量块利用第一线138从杠杆臂136悬挂。第二线140与第一线138相对地 连接至杠杆臂136。第二线140缚于可移动光纤保持器92B。质量块130经由第一线138 将力F T施加至杠杆臂136,再由第二线140转移至可移动光纤保持器92B。可移动光纤保 持器92B可移动地安装至光纤22,因而力F T成为在去除涂层26以及切割光纤22期间施加 至光纤22的张力FT。正如上面讨论以及在图3E中描绘的,在利用激光准备系统48去除涂 层26期间,当张力F T施加于光纤22时,光纤22的平均张力强度增加。以这种方式,光纤 22的张力强度通过使用多功能固定设备78E而提高。
[0085] 上面已经连同具有被剥离和切割的端部40的光纤22 -起讨论了激光准备系统 48。现在可准备好光纤22以安装到套管36中,以便精确定位光纤22,从而建立光纤连接。 图12和13中显示了一个包括套管36的示例性光纤连接器子组件144(下面称为"连接器 144),图14中显示了包括光纤22和连接器144的示例性连接化光纤组件142。尽管连接器 144显示为SC型连接器的形式,本公开还可以应用于不同连接器设计的过程及连接化光纤 组件。例如包括ST、LC、FC、MU、MT和MTP型连接器。
[0086] 如图12和13所示,连接器144包括具有匹配端146和插入端148的套管36、具有 相对的第一和第二端部152、154的套管支架150、以及外壳156。套管36的插入端148容 纳在套管支架150的第一端部152中,而匹配端146保持在套管支架150之外。套管支架 150的第二端部154容纳在外壳156中。弹簧158可以围绕第二端部154放置并且与外壳 156的壁相互作用,以偏压套管支架150 (和套管36)。另外,引入管160从外壳156的后端 162延伸至套管支架150的第二端部154之内,以帮助引导光纤22插入套管孔34。外护罩 164放置于组装的套管36、套管支架150、和外壳156之上,整体构造使得套管36的匹配端 146呈现端面166,该端面接触匹配部件(例如,另一光纤连接器;未显示)。
[0087] 图14描绘了光纤22,其插入套管36的套管孔34,以形成连接化的光缆组件142。 可以通过光纤22端部40处的弹头形状42而使得易于插入,该弹头形状精确地引导光纤22 穿过连接器144的内表面。在这个实施方式中,光纤22的第一纵长部28没有被剥离并且 涂层26保护光纤22直至套管孔34但是没有进入套管孔34。应当注意,第二纵长部30已 经被剥离涂层26并且插入套管孔34。以这种方式,涂层26的机械特性不影响套管36和第 二纵长部30的玻璃部分24之间的界面。另外,玻璃部分24可以容易地相对于套管36就 位,从而一旦例如利用机械磨削将端部40处的弹头形状42处理为最终光学形状,就更加容 易地建立光学连接。
[0088] 上面已经介绍了激光准备系统48和连接化的光缆组件142,下面讨论准备光纤22 端部40的示例性激光过程170,其中激光扫描被安置为在多个径向位置a(1)-a(η)与光纤 22的光轴&相交,以有效去除涂层26同时保持光纤22的张力强度。
[0089] 这里,图15提供了描绘用于激光准备光纤22端部40的示例性过程170的流程图。 该流程图包括描述示例性过程170的方框172A-172F。为方便参考,可选的过程以虚线绘 出。为了连续性及简明,上面介绍的术语和附图标记用于下面的相关讨论中。
[0090] 参考图4A,张力发生器90将光纤22张力强度的1 %至50%的张力FT施加于光纤 22 (图15的方框172A)。图4A还描绘了激光器74可以保持相对于光纤22静止(图15的 方框172B)。在去除涂层26的至少部分27期间,激光器74保持静止。以这种方式,光纤 22准备好去除涂层26的所述部分27。
[0091] 图4A还描绘了从激光器74发射激光束60 (图15的方框172C)。图4A还描绘了 利用控制系统76在X、Y、Z方向同时控制激光束60 (图15的方框172D)。控制系统76可 以包括振镜扫描器81。以这种方式,激光束60准备好去除部分27涂层26。
[0092] 图3A至3B-4描绘了从光纤22的端部40去除涂层26的至少一部分27 (图15的 方框172E)。利用控制系统76将激光束60偏转以角度Θ重复跨越光纤22的光轴Ai,以 形成激光扫描54 (1)-58 (q)的至少两个组52 (1)-52 (3)。激光束60可以以不同的有效焦 距(图3C)或者相关光斑尺寸Ds偏转,同时形成激光扫描54 (1)-58 (q)的组52 (1)-52 (3) 中的至少一组。进一步,控制系统76可以通过沿光纤22的光轴&的间隔距离U来分离激 光扫描54 (1) -58 (q)的至少两个组52 (1) -52 (3)的每一组中的激光扫描54 (1) -58 (q)(图 3B-1)。间隔距离Q可以是25微米至150微米。角度Θ可以在相对于光纤22的光轴A05 度到90度的范围。
[0093] 关于去除至少部分27涂层26,继续参考图3A至3B-4,激光束60被控制系统76引 导,以将激光扫描54 (1)-58 (q)的组52 (1)-52 (3)中的各扫描定位为在径向位置(1)-a (3) 与光纤22的光轴Ai相交。径向位置a(l)-a(3)围绕光纤22的圆周均匀分布或基本均匀 分布。激光束60可以被引导到至少一个反射器64(1)、64(2),以偏转激光束60,来将激光 扫描54 (1)-58 (q)的组52 (1)-52 (3)中的至少一组的各扫描定位为在一个或多个径向位置 (l)_a(3)处与光纤22的光轴A!相交。有不同的激光束Θ0路径7θ(1)_7θ(ζ),以形成激光 扫描54 (1) -58 (q)的组52 (1) -52 (3),并且激光束60的光斑尺寸Ds可以改变以形成用于激 光束60的下一路径的激光扫描54 (1)-58 (q)的组52(1)-52(3),作为一种改变入射到光纤 22的能量强度的途径。以这种方式,激光扫描54(l)_58(q)的组52(1)-52(3)可以提供围 绕光纤22的圆周入射的均匀或基本均匀的累计能量强度,同时有效去除涂层26。
[0094] 图9A-9B描绘了过程170可以可选地进一步包括切割光纤22的端部40 (图15的 方框172F)。通过利用控制系统76偏转激光束60以角度Θ重复跨越光纤22的光轴Ai以 形成激光切割扫描114(1)-114(3)的激光切割组112(1)-112(3)而去除光纤22的至少一 部分29圆周,从而实现切割。切割还包括利用控制系统76引导激光束60,以将激光切割扫 描114(1)-114(3)的至少两个激光切割组112(1)-112(3)中的各个激光切割扫描定位为在 径向位置a (1)-a (3)与光纤22的光轴Ai相交。在切割光纤22的端部40期间,激光器74 相对于光纤22保持静态。以这种方式,激光准备系统48的复杂度降低。
[0095] 另外,激光束60可以被引导至至少一个反射器64 (1)、64 (2),以偏转激光束60,来 将激光切割扫描114 (1)-114 (3)的至少两个激光切割组112 (1)-112 (3)中的至少一个激光 切割组的各个激光切割扫描定位为在一个或多个径向位置a(1)-a(3)与光纤22的光轴Ai 相交。在切割期间,张力&可以施加于光纤22。切割期间施加的张力FT可以为光纤22的 张力强度的1 %至50%。以这种方式,可以在光纤22的端部40切割激光束60,并且在端部 40形成弹头形状42,以允许光纤22更容易插入套管36。
[0096] 现在已经介绍了可以用于激光准备光纤22端部40的示例性过程170,下面描述激 光准备系统48的另一实施方式。图16A是作为图4A的激光准备系统48的另一实施方式 的替代性激光准备系统48 (2)内的光纤22的前轴向投影图,用于描绘包括由激光束60形 成的激光扫描54 (1)-54 (η)、56'(1)-56 '(p)的两个组52(1)、52'(2)的示例性通路50'。 图16B是图16A的激光准备系统48 (2)内的光纤22的俯视图,描绘了激光束60的示例性 轨迹。激光准备系统48(2)与激光准备系统48类似,简明起见仅讨论不同之处。
[0097] 激光准备系统48 (2)被构造为偏转激光束60以角度Θ重复跨越光纤22的光轴 Aj,以形成激光扫描54(1)-54(η)、56'⑴-56'(p)的组52⑴、52'(2)。激光束60被引导, 以将激光扫描54 (1)-54 (η)、56'(1)-56'(ρ)的组52(1)、52'(2)的各个扫描定位为在径 向位置a(l)、a'(2)与光纤22的光轴&相交。径向位置a(l)、a'(2)围绕光纤22的圆周 180度均匀分布或基本均匀分布。以这种方式,涂层26从光纤22去除和/或切割。
[0098] 注意到包含激光扫描56'(1)_56'(ρ)的组52'(2)被引导到至少一个反射器 64'(1)、64'(2),以偏转激光束60,来将激光扫描56'(1)-56'(ρ)定位为在径向位置a'(2) 与光纤22的光轴&相交。以这种方式,径向位置a(l)、a'(2)可以围绕光纤22的圆周分 布。
[0099] 正如这里使用的,术语"光缆"和/或"光纤"包括所有类型的单模和多模光波导, 包括一种或多种未加涂层的、涂层的、上色的、缓冲的、带状化的和/或在缆线中具有其他 组织或保护结构(诸如一个或多个管、强度元件、护套等等)的光纤。这里公开的光纤可 以是单模或多模光纤。同样,其他合适的光纤类型包括弯曲不敏感的光纤,或者任何其他 传输光信号的介质的方案。弯曲不敏感或者耐弯曲的光纤的非限制性例子是可以从康宁 公司购得的ClearCurve?多模或单模光纤。这些类型的合适的光纤例如在美国专利文献 No. 2008/0166094和2009/0169163中公开,这些公开整体合并于此,作为参考。
[0100] 本领域技术人员应当能够想到这里给出的实施方式的许多改动及其他变型,它们 具有前面的说明及相关附图中所给出的教导的优点。例如,可以利用激光准备系统48从光 纤22的中点部分,而不是光纤22的端部40,去除涂层26
[0101] 于是,应当理解,说明书和权利要求书不限于所公开的特定实施方式,改动和其他 实施方式也应包括在所附权利要求的范围内。实施方式涵盖落在所附权利要求及其等同物 范围之内的实施方式的改动及变型。尽管这里使用了特定的术语,它们仅仅是一般性及描 述性的使用,而非用于进行限制。
【权利要求】
1. 一种连接化的光缆组件,其特征是所述连接化的光缆组件包括: 套管;和 光纤,所述光纤耦接至所述套管,并且包括: 由聚合物涂层覆盖的第一纵长部,和 第二纵长部,其中,在所述光纤的所述第二纵长部的外表面的至少百分之九十五上不 存在所述聚合物涂层; 其中,在所述第一纵长部上与所述第二纵长部相邻近的聚合物涂层的微结构以一角度 逐渐变细,从而所述聚合物涂层的厚度随着接近所述第二纵长部而朝向所述第二纵长部减 小;以及 其中,所述第二纵长部的玻璃与所述第一纵长部的玻璃的张力强度之比至少为0. 5。
2. 如权利要求1所述的连接化的光缆组件,其中,所述光纤的所述第二纵长部位于所 述套管的套管孔内,并且所述光纤的所述第一纵长部不进入所述套管孔。.
3. 如权利要求1所述的连接化的光缆组件,其特征是所述连接化的光缆组件进一步包 括: 套管支架,具有第一端部和第二端部,所述套管容纳在所述套管支架的所述第一端部 中; 弹簧,围绕所述套管支架的所述第二端部放置;和 外壳,其中容纳所述套管支架,所述弹簧被配置为与所述外壳的壁相互作用以加偏压 于所述套管支架。
4. 如权利要求3所述的连接化的光缆组件,其特征是所述连接化的光缆组件进一步包 括: 引入管,从所述外壳的后端延伸至所述套管支架的所述第二端部内。
5. 如权利要求1所述的连接化的光缆组件,其中,邻近所述第二纵长部设置所述聚合 物涂层的球状部分。
6. 如权利要求1-5之一所述的连接化的光缆组件,其中,所述第二纵长部的微结构不 包括表面擦痕。
7. 如权利要求1-5之一所述的连接化的光缆组件,其中,最接近所述第二纵长部的所 述聚合物涂层的微结构包括与更加远离所述第二纵长部的所述聚合物涂层相比禁锢气泡 的增大的体积。
8. 如权利要求1-5之一所述的连接化的光缆组件,其中,所述第二纵长部的玻璃与所 述第一纵长部的玻璃的张力强度之比至少为0. 7。
9. 如权利要求1所述的连接化的光缆组件,其中,所述聚合物涂层的球状部分邻近所 述第二纵长部放置,并且其中,最接近所述第二纵长部的所述聚合物涂层的微结构包括与 更加远离所述第二纵长部的所述聚合物涂层相比禁锢气泡的增大的体积。
10. 如权利要求1所述的连接化的光缆组件,其中, 所述光纤的所述第二纵长部位于所述套管的套管孔内; 所述光纤的所述第一纵长部不进入所述套管孔; 所述聚合物涂层的球状部分邻近所述光纤的所述第二纵长部放置;以及 最接近所述光纤的所述第二纵长部的所述聚合物涂层的微结构包括与更加远离所述 第二纵长部的所述聚合物涂层相比禁锢气泡的增大的体积。
【文档编号】G02B6/245GK204116658SQ201420228716
【公开日】2015年1月21日 申请日期:2014年5月6日 优先权日:2013年5月10日
【发明者】迪安丹利·杰弗里, 布鲁斯·罗伯特·埃尔金斯·二世, 马克斯·米勒·达林, 田兆旭, 斯蒂芬·T·特珀, 戴维·耶克尔·基普 申请人:康宁光电通信有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1