光缆和具有光缆的光缆组件的制作方法

文档序号:14910110发布日期:2018-07-10 23:10阅读:342来源:国知局

根据35U.S.C.§119,本申请基于并要求于2017年1月3日向韩国知识产权局提交的韩国专利申请No.10-2017-0000798的优先权,该申请的公开通过全文引用合并于此。

技术领域

本公开总体上涉及光缆,并且更具体地涉及例如不可见光缆和/或具有该光缆的光缆组件。



背景技术:

最近,在互联网通信市场上,范式从现有的兆级改变到千兆级。为了跟上互联网通信市场的这种变化,在互联网线路上使用光缆代替现有的铜缆。

通常,用于通信的光缆可以具有分为单模和多模的光缆模式。单模是其中存在用于在光缆中引导光的一个光模式并且可以进行长距离传输的模式,并且多模是其中存在用于在光缆中引导光的若干光模式以便于短距离传输的模式。

尽管多模光缆被用于快速传送大量信息,但多模光缆通常具有双层护套结构,其中在外部护套中安装有内部护套,在内部护套中安装有大量光纤。因此,光缆的体积与其中安装的光纤的数量成正比地大幅增加,并且由于光缆具有双层护套结构,所以光缆制造工艺复杂,并且制造成本增加。

此外,在相关技术的光缆中,由于安装在建筑物或办公室中的室内光缆易于肉眼可见,因此其可能与周围环境不匹配或者可能使内部效果劣化。



技术实现要素:

本公开的示例性实施例克服了上述缺点以及上述未提及的其他缺点,并且提供了一种具有简单结构和最小外径且不可见地形成的光缆以及具有该光缆的光缆组件。

根据本公开的一个方面,一种光缆包括:多根光纤,每根光纤包括纤芯、布置在纤芯外部的包层以及布置在包层外部的涂层;基本透明的护套,其中布置有所述多根光纤;以及基本透明的填充物,被构造为填充所述护套和所述多根光纤之间的空间。

根据本公开的该方面的光缆还可以包括插入到所述填充物中的拉力线。

所述拉力线可以形成为被光穿透。

根据本公开的另一方面,一种光缆组件包括:第一光电转换器和第二光电转换器;以及光缆,被构造为将所述第一光电转换器和所述第二光电转换器彼此连接,其中,所述光缆包括:多根光纤,每根光纤包括纤芯、布置在纤芯外部的包层和布置在包层外部的涂层;护套,其中布置有所述多根光纤以被光穿透;以及填充物,被构造为填充所述护套和所述多根光纤之间的空间以被光穿透。

第一光电转换器和第二光电转换器中的每一个可以包括:电路板;屏蔽罩,被构造为包围所述电路板;以及壳体,其中设置有所述屏蔽罩。

所述壳体可以形成为被光穿透。

从所述壳体的一端向外突出的插塞可以形成为从所述屏蔽罩延伸。

可以在所述壳体的另一端上形成喇叭状引导件,所述引导件的宽度朝所述壳体的内部逐渐变窄。

所述喇叭状引导件的内周面可以是曲面。

所述电路板可以安装有:透镜系统,被构造为将所述光缆和所述电路板彼此连接;光学元件系统,被构造为发射和/或吸收光;以及光学驱动IC,被构造为使用光信号进行操作。

所述多根光纤可以从插入到所述第一光电转换器和所述第二光电转换器中的所述光缆的相对端分支。

所述多根光纤可以被固定到所述透镜系统的透镜。

所述透镜系统可以设置在所述光缆和所述光学元件系统之间。

所述第一光电转换器和所述第二光电转换器中的每一个还可以包括:第一支撑件,设置在所述屏蔽罩中以支撑所述电路板;以及第二支撑件,设置在所述屏蔽罩外部以将所述光缆引导到所述屏蔽罩中。

所述第一支撑件可以包括左支撑件和右支撑件,且在所述屏蔽罩中所述左支撑件和所述右支撑件的表面在沿着所述光缆将被插入到所述透镜系统中的方向移动时逐渐地彼此远离,其中所述表面彼此面对。

所述第二支撑件可以由透明材料形成。

可以在所述壳体上形成通风孔以散发从光学驱动IC产生的热量。

可以在所述壳体的外表面上形成防滑突起。

本公开的附加和/或其他方面和优点将部分地在以下描述中阐述,并且根据描述将部分地变得清楚,或者可以通过本公开的实践来学习。

附图说明

从结合附图的以下详细描述中,本公开的以上和/或其他方面、特征和伴随的优点将更加清楚明白和易于理解,其中,类似的附图标记在若干附图中表示类似的元件,并且其中:

图1是示出了根据本公开实施例的光缆的截面图;

图2是示出了根据本公开实施例的光缆的内部的透视图;

图3是示出了还包括包围包层的透明涂层的光缆的示例的视图;

图4是示意性地示出了根据本公开实施例的光缆组件结构的视图;

图5是示出了图4中示出的第一光电转换器的内部的视图;以及

图6是示出了图5中示出的光缆组件的壳体的透视图。

具体实施方式

下文中,将参照附图更详细地描述根据本公开的示例实施例的光缆和具有该光缆的光缆组件。

下文中描述的实施例是为了帮助理解本公开的示例的目的,并且应当理解,本公开可以包括本公开的实施例的各种修改、等同物和/或替换。在描述本公开时,不详细描述相关的公知功能或组成元件,因为它们可能以不必要的细节模糊本公开的主题。此外,为了帮助理解本公开,可以夸大附图中示出的一些组成元件的尺寸,以便清楚地解释。

在下文中,将描述根据本公开的示例实施例的光缆1,然后将详细描述具有光缆1的光缆组件10。

图1是示出了根据本公开的示例实施例的光缆的截面图,图2是示出了根据本公开的实施例的光缆的内部的透视图。

参考图1至图2,例如,根据本公开的示例实施例的光缆1可以通过透光而不可见地形成,从而基本上是透明的。在这种情况下,光缆1的直径可以被最小化,使得光缆1变得更加不可见。

参考图1和图2,光缆1被构造为包括多根透明光纤10、布置有多根光纤10以被光穿透的护套20以及被构造为填充护套20和多根光纤10之间的空间以被光穿透的透明填充物30。

这里,被光穿透的护套20和填充物30可以被认为是透明的或基本上透明的。透明护套20和透明填充物30可以形成为仅被光的一部分穿透或仅被具有特定波长的光穿透。

光纤10是光信号的传输介质,并且可以包括透明纤芯11和透明包层13。

细长纤芯11将传输光信号。纤芯11位于细长光纤10的中心,并且与包层13和/或填充物30相比具有相对较高的折射率。光信号被全反射,并且在纤芯11内部沿细长光缆1的长度方向行进。

包层13将光信号限制在纤芯11中。包层13设置在纤芯11的外部,并且与纤芯11相比,具有相对较低的折射率(n,在550nm处测定)。例如,如图1至图2中的截面所示,包层13被设置为沿着纤芯11的外周完全包围纤芯11。

每根光纤10的横断面(与长度方向垂直的横截面)的轮廓基本上为圆形(包括椭圆形和凹凸圆形)。例如,如图1和图2所示的截面所示,纤芯11为圆棒的形式,并且包层13为圆管的形式。纤芯11和包层13以互相同心的方式设置。

护套20位于光缆1的最外部分,并且保护设置在护套20中的多根光纤10免受外部环境的影响。例如,护套20可以通过挤压工艺由单一材料整体形成。优选的是护套20具有高拉伸强度和高硬度。

护套20可以是基本透明的或透明的。也就是说,护套20可以形成为使得入射到护套20的光穿过护套20。在这种情况下,设置在护套20内部的多根光纤10和填充物30形成为也被光穿透,因此也对光是透明的或基本透明的。因此,入射到光缆1的光穿过光缆1。

因此,用户可以通过根据用户的视角识别穿透涂层的光而将光缆1识别为设置光缆1的底面或周围环境。因此,光缆1本身难以对肉眼可见。

护套20可以由透光材料形成。具体地,护套20可以例如由聚氯乙烯(PVC)形成。

护套20可以形成为例如环绕地包围多根光纤10和填充物的管状,并且形成特定的保护膜。由于外部护套20在示例实施例中具有圆形结构,因此接收来自外部的压力的区域被最小化和/或减小,并且由于其环绕地包围多根光纤10,所以施加到光纤的外部压力减小。

光缆1形成为使得多根光纤10可以在单个护套20内移动一定程度。在本公开的示例实施例中,由于光缆不包括用于容纳若干光纤10的芯线的单独的管、槽或带,所以多根光纤10不被单独的构件容纳,而是直接容纳在单个外部护套20中。因此,光纤10相对于彼此松散地设置,从而不具有特定的固定方向性。因此,多根光纤10不一定具有如图1所示的恒定阵列,而是可以不规则地设置在护套20中。

具有根据本公开的示例实施例的上述结构的光缆1具有如下优点:与使用松套管的多芯光缆或根据相关技术中的光缆的带状光纤束相比,其能够在相同的外径下增加芯线的数量。此外,根据本公开的示例实施例的光缆1具有如下优点:与相关技术中的构建相同数量的光纤的多芯光缆相比,其外径变小。

因此,由于根据本公开的示例实施例的光缆1被构造为使得多根光纤10能够被设置在一个外部护套20中,所以能够使光缆1的厚度最小化,并且可以减小制造成本。

填充物30用于保护多根光纤10免受外部冲击,并吸收可能渗透到护套20中的水份。此外,填充物30可以是增加光缆1的强度的介质。

填充物30可以设置在护套20中的中空空间中以围绕相应的光纤10。在示例实施例中,可以提供多个填充物30以填充护套20与多根光纤10之间的空间。填充物30可以是诸如芳纶纤维或玻璃纤维的纱线的形式,以具有防水特性。填充物30可以由透光材料形成,并且因此可以是透明的或基本透明的。填充物30和围绕填充物30的护套20因此可以透明地形成。在这种情况下,光缆1本身在可见光谱中变得透明,以降低光缆1的可见度。

填充物30提供拉力以防止/减少护套20被延长。

在示例实施例中,构成光缆1的多根光纤10、护套20和填充物30均可以由透明材料形成。具体而言,构成光纤10的纤芯11和包层13可以由透明或基本透明的材料形成。

多根光纤10、填充物30和护套20可以由透明材料形成,使得设置在光缆1的最外部分的护套20的透光率高于设置在护套20内的多根光纤10和填充物30的透光率。当填充物30和护套20的透光率变高时,光缆1的可见度进一步被降低。

在将由透明或基本透明的材料制成的光缆1安装在室内、建筑物的外壁或通道中的情况下,透明光缆1可以在光缆1的布线位置附近被光透过。因此,光缆1不易被用户眼睛看到,并且室内和室外的内部效果不会降低。

如上所述,根据本公开的示例实施例的光缆1形成为使得多根光纤10被形成为由一个护套20包围,并且护套20被形成为被光穿透。因此,多芯光缆1的外径因具有透明性而被最小化,并且因此可以提供不易被用户眼睛看到的不可见光缆。

另外,根据本公开的实施例的光缆1可以形成为反射外部光,使得用户的肉眼难以确定光缆1。作为具体示例,光缆1可以被构造为包括多根光纤10、布置有多根光纤10以反射外部光的护套20以及填充护套20与多根光纤10之间的空间的填充物30。

护套20可以是无色的,并且可以由具有特定反射率的材料制成。这里,“无色”可以包括“透明”和“不透明”。护套20可以形成为具有特定反射率,并且反射入射到护套20的光。因此,设置在护套20内的多根光纤10和填充物30从外部不能很好地被肉眼看到。

具体而言,护套20再次反射从布置有光缆1的底面或周围反射的然后入射到护套20的光。由于护套20形成为反射外部光,所以光缆1可变得对用户的眼睛不可见。由于用户根据用户的视角识别从光缆1的护套20反射的光,所以光缆1本身难以对肉眼可见。

在这种情况下,可以透明地或不透明地形成填充物30。此外,填充物30可以形成为具有颜色,并且具体地,可以是白色或基本上白色纱线的形式。如果填充物30由不透明材料制成,则仅护套20可以形成为反射外部光。

由于护套20反射外部光,所以护套20的内部难以从外部被肉眼识别,并且被护套20包围的光缆1本身可能不能被用户的眼睛看到。

在将由反射外部光的材料形成的光缆1安装在室内、建筑物的外壁或通道中的情况下,光缆1可以反射入射到护套20的光。因此,光缆1不易被用户眼睛看到,并且室内和室外的内部效果不会降低。

如上所述,由于根据本公开的示例实施例的光缆1形成为使得多根光纤10被形成为由一个护套20包围,并且护套20被形成为反射外部光,所以多芯光缆1的外径被最小化以反射外部光,并且因此可以提供用户眼睛不容易看到的基本上不可见的光缆。

图3是示出了还包括包围包层的透明涂层的光缆的示例的视图。

参考图3,光缆1b还可以包括包围相应光纤10的涂层15以及插入填充物30中的拉力线40。

在这种情况下,每根光纤10可以由纤芯11、包层13和涂层15组成。纤芯11可以具有第一光折射率,并且包层13可以具有比纤芯11的折射率(n)低的光折射率(n)。涂层15是包围包层13的透明树脂层,并且可以形成为具有与包层13的折射率(n)不同的折射率(n)。本文中的折射率(n)值是在550nm处测量的。具体地,涂层15的光折射率可以低于包层13的折射率。

由于涂层15能够作为刚性体发挥作用,因此可以与填充物30一起提高光缆1的抗拉强度。作为涂层15的材料,可以单独使用或组合使用诸如聚氯乙烯、聚酯弹性体(Hytrel)、聚酯、聚乙烯和尼龙的高分子化合物。

拉力线40可以位于光缆1b的中心以提供拉力/强度。在示例实施例中,拉力线40可以由玻璃纤维增强塑料(FRP)制成,并且可以以与其余构造相同的方式透明地形成。

拉力线40可以提高光缆1b的拉伸力和压缩强度,并且可以帮助外部护套20的剥离(剥落、去除或分离)。也就是说,工人可以通过在部分地剥离光缆1b的外部护套20之后拉动拉力线40而沿光缆1b的长度方向剥离外部护套20。

在根据本公开的示例实施例的光缆1b中,多根光纤10可以松散地设置在外部护套20内,因此在具有相同或更高的强度的情况下光缆1b可以形成为比相关技术中的光缆更细,即使还包含拉力线40或涂层15。

图4是示意性地示出了根据本公开的示例实施例的光缆组件结构的视图,图5是示出了图4所示的第一光电转换器的内部的视图。

根据本公开的示例实施例的光缆组件100包括第一光电转换器110、第二光电转换器150和光缆1(例如,参见图1至图3,示例电缆1)。

光缆1至少将第一光电转换器110和第二光电转换器120彼此连接。为此,第一光电转换器110和第二光电转换器150直接或间接耦合到光缆1的相对端。

光缆可以是如上所述的被光穿透的光缆1或者反射外部光的光缆1,如结合图1至图3中的任一个所描述的。光缆可以是包括被光穿透的护套20的光缆1或包括反射外部光的护套20的光缆1。此外,光缆还可以包括拉力线40,如图3的光缆1b。

在下文中,将在光缆组件100设置有被光穿透的光缆1的假设下进行描述,但是不限于此。光缆组件100可以设置有反射光的光缆1。

根据本公开的示例实施例的光缆组件100对应于双向光收发器。为了便于解释,假设第一光电转换器110连接到外部设备的发送器(未示出),并且第二光电转换器150连接到另一外部设备的接收器(未示出)。

参考图4和图5,第一光电转换器110可以设置有电路板120、光学元件单元125和光学驱动集成电路(IC)123,其中电路板120安装有将光缆1和电路板120彼此连接的透镜单元126,光学元件单元125被配置为发射或吸收光,且光学驱动IC 123被配置为使用光信号进行操作。

透镜单元126可以由多个跳线127和多个透镜128构成。多个跳线127分别连接到多根光纤10,以将光纤10(直接或间接)连接到电路板120。多个透镜128被布置为与多个跳线127相对应,以将光信号从电路板120传送到光缆1。

光学元件单元125可以包括被配置为接收电信号并生成激光的多个竖直腔表面发射激光器(VCSEL)芯片125a和被配置为接收从VCSEL芯片125a生成的光信号并输出电信号的多个光电二极管(PD)芯片125b。

按照与第一光电转换器110相同的方式,第二光电转换器150可以设置有电路板160、光学元件单元165和光学驱动集成电路(IC)163,其中电路板160安装有将光缆1和电路板120彼此连接的透镜单元166,光学元件单元125被配置为发射或吸收光,且光学驱动IC 123被配置为使用光信号进行操作。

透镜单元166可以由多个跳线167和多个透镜168构成。多个跳线167分别连接到多根光纤10,以将光纤10连接到电路板160。多个透镜168可以被布置为与多个跳线167相对应,以将光信号从光缆1传送到电路板160。

光学元件单元165可以包括被配置为接收电信号并生成激光的多个竖直腔表面发射激光器(VCSEL)芯片165a和被配置为接收从VCSEL芯片165a生成的光信号并输出电信号的多个光电二极管(PD)芯片165b。

参考图4,将如下描述光缆组件100的示例操作。

连接到第一光电转换器110的发送器的电信号(即,视频数据)在设置在第一光电转换器110的电路板120上的光学驱动IC 123的控制下由光学元件单元125的VCSEL芯片125a转换为光信号,并且转换后的光信号被透镜单元126的透镜128反射,并从VCSEL芯片125a竖直地向上发射,以通过跳线127发送到多根光纤10。

从第一光电转换器110发送的光信号通过光缆1被发送到第二光电转换器150。将第一光电转换器110和第二光电转换器150彼此连接的光缆1包括多根光纤10。具体而言,多根光纤10可以是八根光纤。其中,四根光纤10a用于传送视频信号。用于传送视频信号的光纤10a可以传送视频和音频信号,并且一根光纤10a可以传送对应于12.5G的量的信息。在示例实施例中,在其余四根光纤10b和10c中,其中两根10b发送数据信号,其余两根10c发送信号检测器的信号。

第二光电转换器150接收从光缆1发送的光信号,并且发送的光信号通过跳线167传送到相应的透镜168。光信号通过透镜168竖直地向下反射,以入射到电路板160的PD芯片165b。

在电路板上的跨导放大器(TIA)(未示出)的控制下,通过放大PD芯片165b的输出电流而将入射的光信号转换为电信号。转换的电信号被输入到与第二光电转换器150相连的接收器(即,显示器)。

将沿信号传送方向来描述第一光电转换器110和第二光电转换器150的内部构造的部署。

在第一光电转换器110中,按照从用于接收从发送器传送的电信号的插塞121指向用于传送光信号的光缆1的方向相继设置光学驱动IC 123、光学元件单元125和透镜单元126。

在第二光电转换器150中,按照从光缆1指向接收器的方向相继设置透镜单元166、光学元件单元165和光学驱动IC 163。

第一光电转换器110可以设置有连接到发送器的插塞121,并且第二光电转换器150可以设置有连接到接收器的插塞161。在根据本公开的示例实施例的光缆组件100中,第一光电转换器110和第二光电转换器150可以设置有用于通过最终输出电信号来传送电信号的插塞121和161。可以通过插塞121和161将从光缆1的光信号转换而来的电信号传送到发送器和接收器。此外,通过插塞121和161输入的外部电力可以被提供给光学驱动IC 123和163。

第一光电转换器110和第二光电转换器150的构造和结构可以是相同的。为了便于解释,现在将仅针对第一光电转换器110进行说明。

参考图5,第一光电转换器110和第二光电转换器150中的每一个可以包括电路板120或160、被构造为围绕电路板的屏蔽罩130以及其中设置了屏蔽罩的壳体140。

在电路板120上,安装了构造为将光缆1和电路板120彼此连接的透镜单元126、构造为发射或吸收光的光学元件单元125以及构造为使用光信号进行操作的光学驱动IC 123。在该示例情况下,按照从光缆1连接到插塞121的方向依次设置透镜单元126、光学元件单元125和光学驱动IC 123。

多根光纤10可以从插入到第一光电转换器110和第二光电转换器150中的光缆1的相对端分支。在分支光缆1中,在示例实施例中,在第一光电转换器110和第二光电转换器150中仅设置光纤10而没有护套20。

由护套20包围的光纤10可以从光缆1分支出来,然后在它们彼此间隔开预定距离的状态下与透镜单元126耦合,以防止或减少多根光纤10之间的相互干扰。

多根光纤10分别连接到透镜单元126的各个透镜128。具体地,多根光纤10可以通过相应跳线127分别连接到设置在电路板120上的多个透镜128。多个透镜128可以设置在与多根光纤10分别耦合到多个跳线127的部分相对的部分上。

光学元件单元125可以设置在与多根光纤10耦合到透镜单元126的部分相对的部分上。也就是说,光学元件单元125可以基于光缆1设置在透镜单元126的后端。

在光学元件单元125中,发光的VCSEL芯片125a可以设置在连接到发送器的第一光电转换器110上,并且接收从VCSEL芯片125a发送的光的PD芯片165b可以设置在连接到接收器的第二光电转换器150上。在这种情况下,第一光电转换器110的光学元件单元125的一部分可以包括用于接收从接收器传送的数据信号和信号检测器的信号的PD芯片125b。以相同的方式,第二光电转换器150的光学元件单元125的一部分可以包括用于接收从发送器传送的数据信号和信号检测器的信号的VCSEL芯片125a。

由于根据本公开的示例实施例的光缆组件是双向光收发器,所以第一光电转换器110和第二光电转换器150的光学元件单元125可以包括相同数量的VCSEL芯片125a和PD芯片125b。

光学驱动IC 123可以基于光缆1设置在光学元件单元125的后端。在第一光电转换器110中,光学驱动IC 123可以将电信号转换为光信号输出所需的电流,并且在第二光电转换器150中,光学驱动IC123可以将作为光信号输出的电流转换为电信号。

在屏蔽罩130中形成可以设置电路板120和/或分支的多根光纤10的空间。屏蔽罩130可以防止或减少由电路板120或安装在电路板120上的各种元件产生的电磁干扰(EMI)。

从屏蔽罩130的一端130a,可以形成直接连接到发送器或接收器的插塞121以进行延伸。插塞121可以发送或接收电信号。

屏蔽罩130的另一端130b可以连接到光缆1。在屏蔽罩130中,可以基于连接到光缆1的屏蔽罩130的所述另一端130b设置用于支撑电路板120的第一支撑件131,并且在屏蔽罩130的外侧上可以设置用于将光缆1引导到屏蔽罩130中的第二支撑件133。

第一支撑件131可以固定地支撑电路板120。第一支撑件131的一端与电路板120接触,并且第一支撑件131的另一端与屏蔽罩130的所述另一端130b接触。

第一支撑件131可以包括左支撑件131a和右支撑件131b。当第一支撑件沿着光缆1插入到透镜单元126的方向行进时,在屏蔽罩130中左支撑件131a和右支撑件131b的相对表面可以形成为逐渐地彼此远离。具体地,第一支撑件131的左支撑件131a的相对表面可以形成为在屏蔽罩130的侧表面方向上从屏蔽罩130的所述另一端130b向下倾斜到电路板120。以相同的方式,右支撑件131b可以形成为在屏蔽罩130的侧表面方向上从屏蔽罩130的所述另一端130b向下倾斜到电路板120。

可以在第一支撑件131与分支的光纤10间隔开的状态下沿着光纤10分支的方向形成第一支撑件131。因此,即使在不干扰分支的光纤10的情况下,第一支撑件131也可以支撑电路板120。

第二支撑件133可以支撑插入到屏蔽罩130中的光缆1。第二支撑件133的一端可以形成为与屏蔽罩130接触,并且其另一端可以形成为与壳体140的内表面接触。在第二支撑件133上,可以形成第二插入孔132,光缆1通过该第二插入孔132插入到屏蔽罩130中。

虽然第一支撑件131和第二支撑件133被描述为分开形成,但是它们不限于此,而是可以一体地形成。此外,第一支撑件131和第二支撑件133可以由透明材料形成。在这种情况下,壳体140也可以由透明材料形成,以提供对用户肉眼不可见的光缆组件100。

可以在壳体140内部形成空间以容纳屏蔽罩130。壳体140的一端可以连接到发送器或接收器,并且壳体的另一端可以连接到光缆1。壳体140可以由透明或不透明材料形成。

在连接的壳体140的一端,可以形成插塞141,使得可以形成为从屏蔽罩130延伸的插塞141突出到壳体140的外部。如果插塞121连接到发送器,则它从发送器接收电信号,而如果插塞121连接到接收器,则它将电信号发送到接收器。

在壳体140的另一端,可以形成用于将光缆1引导到壳体140中的引导件143,并且在引导件143上可以形成第一插入孔142。光缆1可以通过第一插入孔142插入到第一光电转换器110中。

引导件143可以形成为喇叭形,其宽度朝着壳体的内部逐渐变窄。引导件143的内周面143a可以形成为曲面。由于引导件143的内周面143a可以形成为曲面,所以可以减少在光缆1移动期间由于光缆1和引导件143之间的摩擦而产生的损坏和磨损。

图6是示出了图5所示的光缆组件的示例壳体的透视图。

参考图6,示例壳体140包括用于容纳屏蔽罩130的空间。在壳体140的一端,可以形成塞孔141,使得插塞121向外突出,并且在壳体140的另一端,可以形成光缆1。

通风孔145可以形成在壳体140的外表面上以散发从光学驱动IC产生的热量。图6示出了通风孔145可以形成在壳体140的侧表面上,但是不限于此。通风孔145可以形成在壳体140的前表面或后表面上。此外,通气孔145不仅可以形成在壳体140上,而且可以形成在屏蔽罩130上。

此外,防滑突起147a可以形成在壳体140的外表面上。除了形成在壳体140的外表面上的防滑突起147a之外,还可以在壳体的前表面或后表面上形成从外表面突出的防滑突起147b。因此,用户可以将第一光电转换器110或第二光电转换器150连接到发送器或接收器而不会手滑。

前述示例性实施例和优点仅是示例性的,而不应解释为限制本公开。本教导能够容易地应用于其他类型的装置。此外,本公开的示例性实施例的描述意在说明性的而不是限制权利要求的范围,并且多种备选方案、修改和变型对于本领域技术人员将是显然的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1