导光板及其制作方法、背光模组、显示装置与流程

文档序号:17255426发布日期:2019-03-30 09:19阅读:209来源:国知局
导光板及其制作方法、背光模组、显示装置与流程

本发明涉及显示技术领域,尤其涉及一种导光板及其制作方法、背光模组、显示装置。



背景技术:

显示装置在工作生活中带来便捷的同时,用户的商业机密和/或个人隐私保护的重要性日益提升,屏幕防窥的需求随之增加。

现有的防窥产品例如美国3m公司的防窥膜,贴附后会增加产品厚度,降低屏幕亮度,而且防窥效果一般,成本较高。



技术实现要素:

本发明的实施例提供一种导光板及其制作方法、背光模组、显示装置,无需借助防窥膜也可实现防窥功能。

为达到上述目的,本发明的实施例采用如下技术方案:

一方面,提供一种导光板,包括:导光层,具有光入射面、光出射面、与光出射面相对的底面;所述底面上设置有多个光学网点;光栅层,设置于所述导光层的光出射面一侧;所述光栅层包括多个平行且等间距设置的光栅条;所述多个光学网点用于将从所述光入射面射入的光线,射向所述光栅条;沿所述光栅条排布方向,从所述光栅层出射的光线角度小于从所述导光层出射的光线角度。可选的,所述导光层和所述光栅层通过粘结层粘结;所述粘结层的折射率、所述导光层的折射率以及所述光栅层的折射率满足:n2<n1,n2≤n3;其中,n1为所述导光层的折射率,n2为所述粘结层的折射率,n3为所述光栅层的折射率。

可选的,所述粘结层的折射率n2<1.45。

可选的,所述多个光学网点中每个光学网点均具有第一面、第二面、第三面、第四面和第五面;所述第二面、所述第三面、所述第四面和所述第五面均与所述第一面相交且四条交线分别为所述第一面的四条边;所述第四面和所述第五面相对设置,且分别与所述第二面和所述第三面相交的点为所述第二面和所述第三面相交的线的两端点;所述第二面与所述第一面的夹角α满足:

所述第三面与第一面的夹角β在0.5~10°范围内取值;所述第一面与所述底面接触;相对所述第三面与所述第一面的相交线,所述第二面更靠近所述光入射面。

可选的,所述第四面与所述底面的夹角δ1在50~90°范围内取值;所述第五面与所述底面的夹角δ2在50~90°范围内取值。

可选的,沿与所述光入射面垂直的方向,所述光栅条依次排列;所述光栅条包括相对且平行设置的两个倾斜面以及连接该两个倾斜面的顶面,所述顶面与所述光出射面平行;所述光栅条中远离光入射面一侧的倾斜面与该光栅条的顶面的夹角γ满足:沿垂直所述光出射面的方向,所述光栅条的高度h,满足其中,d2为光栅条的宽度。

可选的,所述光栅层包括基体子层和光栅子层;所述基体子层和所述光栅子层为一体结构,且所述基体子层靠近所述导光层设置;所述基体子层的形状为长方体,所述光栅子层包括所述多个平行且等间距设置的光栅条。

可选的,所述底面为平面,所述多个光学网点设置于所述底面远离所述光出射面的一侧;或者,所述底面为非平面,所述底面具有多个凹槽,所述多个凹槽中的每个凹槽作为一个所述光学网点。

可选的,所述导光层还具有与光入射面相对的第六面;沿所述光入射面与所述底面的相交线到所述第六面与所述底面的相交线的距离方向,所述多个光学网点的密度逐渐增大。

再一方面,提供一种背光模组,包括:背板、设置于所述背板上的上述的导光板、以及设置于所述导光板的光入射面一侧的光源。

另一方面,提供一种显示装置,包括显示面板以及设置于所述显示面板入光侧的如上所述的背光模组。

又一方面,提供一种导光板的制造方法,包括:利用刻刀雕刻或撞针撞击出带有网点结构的导光层模具;利用所述导光层模具注塑成型或压印成型工艺形成导光层;利用刮刀刮削出光栅层模具;利用所述光栅层模具注塑成型或压印成型工艺形成光栅层;利用粘结层将所述光栅层和所述导光层进行贴合,形成导光板。

本发明的实施例提供一种导光板及其制作方法、背光模组、显示装置,通过在导光板的导光层底面设置多个光学网点,调整光路使得光线反射后可以从光出射面射出。同时,通过在导光板的光出射面设置包括多个光栅条的光栅层,可通过对光栅条进行设计,使得沿所述光栅条排布方向,从光栅层出射的光线角度小于从导光层出射的光线角度。,从而当包括该导光板的背光模组应用于显示装置时,可使该显示装置的截止角和半亮度角减小,实现防窥功能。本发明由于仅通过对导光板进行设计,便可使从背光模组发出的光在一个维度上准直出射,从而使显示装置实现防窥功能,因此,相对贴附防窥膜的技术,本发明无需借助防窥膜,从而几乎不会对显示装置的厚度产生影响,而且也不会对显示装置的亮度造成影响。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明实施例提供的一种导光板的结构示意图;

图2为本发明实施例提供的再一种导光板的结构示意图;

图3a为本发明实施例提供的一种导光层的结构示意图;

图3b为本发明实施例提供的再一种导光层的结构示意图;

图4为本发明实施例提供的一种光学网点的排布示意图;

图5为本发明实施例提供的又一种导光板的结构示意图;

图6为本发明实施例提供的又一种导光板的结构示意图;

图7为本发明实施例提供的一种光学网点的结构示意图;

图8为本发明实施例提供的一种光路示意图;

图9a为本发明实施例提供的又一种光路示意图;

图9b为图9a示意的光路的局部示意图;

图10a为本发明实施例提供的光路示意图;

图10b为图10a光路的局部示意图;

图11a为本发明实施例提供的一种光路示意图;

图11b为图11a光路的侧视示意图;

图12为本发明实施例提供的一种光学模组的结构示意图;

图13为本发明实施例提供的一种光学模组的角亮度线图表;

图14为本发明实施例提供的一种光学模组的角亮度光栅图表;

图15为本发明实施例提供的一种制备导光板的流程图;

图16a为本发明实施例提供的一种导光层模具的加工示意图;

图16b为本发明实施例提供的一种导光层的加工示意图;

图17a为本发明实施例提供的一种光栅层模具的加工示意图;

图17b为本发明实施例提供的一种光栅层的加工示意图。

附图标记:

01-导光板;02-背板;03-光源;04-固定胶;05-垫高层;06-遮光胶;10-导光层;11-光学网点;20-粘结层;30-光栅层;31-基体子层;32-光栅子层;40-光栅条;101-光入射面;102-光出射面;103-底面;104-第六面;111-第一面;112-第二面;113-第三面;114-第四面;115-第五面;401-顶面;402-倾斜面。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的实施例提供一种导光板(lightguideplate,lgp),如图1和图2所示,包括:导光层10和光栅层30。光栅层30设置于导光层10的光出射面102一侧,所述光栅层30包括多个平行且等间距设置的光栅条。如图3a、3b和图4所示,导光层10具有光入射面101、光出射面102、与光出射面102相对的底面103,所述底面103上设置有多个光学网点11。

其中,所述多个光学网点11用于将从所述光入射面101射入的光线,射向所述光栅条。光学网点11的作用在于打散从光入射面101入射的光线的光路,使光线从导光层10的光出射面102射出。所述光栅条用于将射向其上的光线在一个维度上转化为准直光线并出射。

在一些实施例中,导光层10与光栅层30独立形成,然后彼此结合。其中,导光层10与光栅层30可直接接触而结合,也可通过例如粘结层20使二者结合。

如图3a所示,导光层10的形状可以为楔形。或者如图3b所示,导光层10的形状为长方体。

本发明实施例提供一种导光板01,通过在导光板01的导光层10底面103设置多个光学网点11,调整光路使得光线反射后可以从光出射面102射出。同时,通过在导光板01的光出射面102设置包括多个光栅条的光栅层30,可通过对光栅条进行设计,使得沿所述光栅条排布方向,从光栅层出射的光线角度小于从导光层出射的光线角度的范围。从而当包括该导光板01的背光模组应用于显示装置时,可使该显示装置的截止角(截止角为角亮度等于中心亮度1%对应的视角)和半亮度角(半亮度角是角亮度等于中心最高亮度50%对应的视角)减小,实现防窥功能。

本发明由于仅通过对导光板01进行设计,便可使从背光模组发出的光在一个维度上准直出射,从而使显示装置实现防窥功能,因此,相对贴附防窥膜的技术,本发明无需借助防窥膜,从而几乎不会对显示装置的厚度产生影响,而且也不会对显示装置的亮度造成影响。

可选的,如图3a和图3b所示,导光层10还包括与光入射面101相对的第六面104。在此基础上,如图4所示,沿光入射面101与底面103的相交线到第六面104与底面103的相交线的距离方向x,多个光学网点11的密度逐渐增大。

此处,第六面104为非入光面。

由于在背光模组中光源只设置在光入射面101一侧,因而导致距离光入射面101越远亮度越暗,因此,本发明的实施例中,沿光入射面101与底面103的相交线到第六面104与底面103的相交线的距离方向x,通过使光学网点11的密度逐渐增大,可使局部亮度增加,从而起到匀光的作用。

可选的,所有光学网点11的大小及形状均相等。

在此基础上,可选的,光学网点11的边长l1和l2的长度均小于等于100μm。

为了方便加工光学网点11,边长l1和l2的长度可以相等。

需要说明的是,由于光学网点11的尺寸越小,对光线的控制越精细,因此,光学网点11的具体大小可以根据该导光板01所应用的背光模组的具体需求进行调整。

可选的,如图5所示,底面103为平面,多个光学网点11设置于底面103远离光出射面102的一侧。即,光学网点11突出于导光层10的底面103。

可选的,如图6所示,底面103为非平面,底面103具有多个凹槽,多个凹槽中的每个凹槽作为一个光学网点11。其中,可根据所需的光学网点11的个数来设置凹槽的个数。

可选的,如图5-6所示,导光层10和光栅层30通过粘结层20粘结;粘结层20的折射率、导光层10的折射率以及光栅层30的折射率满足:n2<n1,n2≤n3;其中,n1为导光层10的折射率,n2为粘结层20的折射率,n3为光栅层30的折射率。

此处,当n2<n1时,可使从导光层10的光入射面101射入的光线经光学网点11反射后再射出,当n2≤n3时,可避免在粘结层20和光栅层30的界面发生全反射,从而保证光线能从粘结层20射入光栅层30。

需要说明的是,光栅层30和导光层10直接接触时,光栅层30的折射率n3需要小于导光层10的折射率n1,即,n3<n1,以使光线在经过光学网点11前先在导光层10与光栅层30的接触面发生全反射。而当光栅层30和导光层10中间通过粘结层20贴合时,光栅层30和导光层10的材料可以相同,即,n3=n1。

在一些实施例中,n2<1.45。n2的折射率越小,粘结层20与导光层10的折射率差异越大,光线在导光层10与粘结层20界面上的全反射角度就越小。在靠近光源处,可减少不经光学网点11调整直接从导光层10的光出射面102射出光线的量,避免产生亮线,降低光能损耗,亮度更均一。

导光层10的材料可以选用易加工成型的材料。例如,导光层10的材料可以为pmma(polymethylmethacrylate,聚甲基丙烯酸甲酯)、pc(polycarbonate,聚碳酸酯)、pi(polyimide,聚酰亚胺)、pes(polyethersulfoneresin,聚醚砜树脂)以及pet材料中的一种。导光层10可通过压印成型或注塑成型工艺制作。

在一些实施例中,可采用pmma制作导光层10,在此情况下,n1=1.49。

在一些实施例中,导光层10的厚度在0.4mm~1mm范围内取值。示例的,导光层10的厚度为0.4mm,或者,导光层10的厚度为0.7mm,或者,导光层10的厚度为1mm。

光栅层30的材料也可以选用易加工成型的材料。光栅层30的材料可以与导光层10的材料相同,也可以与导光层10的材料不同。光栅层30可通过压印成型或注塑成型工艺制作。

粘结层20用于使导光层10和光栅层30粘结。粘结层20的材料可以选用光学胶。示例的,粘结层20的材料为uv光学胶,在此情况下n2为1.35。

在一些实施例中,粘结层20的厚度在10μm~100μm范围内取值。示例的,粘结层20的厚度为10μm,或者,粘结层20的厚度为50μm,或者,粘结层20的厚度为100μm。

本发明的实施例中,通过分别独立制作导光层10和光栅层30,并通过粘结层20将导光层10和光栅层30粘结,从而形成导光板01。这样,容易加工成型,易于量产,成本较低。

在此基础上,可选的,如图7所示,多个光学网点11中每个光学网点11均具有第一面111、第二面112、第三面113、第四面114和第五面115。第二面112、第三面113、第四面114和第五面115均与第一面111相交且四条交线分别为第一面111的四条边。第四面114和第五面115相对设置,且分别与第二面112和第三面113相交的点为第二面112和第三面113相交的线的两端点。

第二面112与第一面111的夹角α满足:

第三面113与第一面111的夹角β在0.5~10°范围内取值。第一面111与底面103接触,相对第三面113与第一面111的相交线,第二面112更靠近光入射面101。

基于此,光学网点11主要通过第三面113对入射光进行折射。当第三面113与第一面111的相交线与光入射面101平行时,第三面113起反射作用的有效面积最大。

其中,如图8所示,假设光在导光层10与粘结层20接触界面处发生全反射的全反射角为θ,

从图8可以看出,当时,入射到光学网点11的光线与光学网点11的第二面112平行,而当时,则可避免射向光学网点11的光线射到光学网点11的第二面112上,从而避免第二面112起到反射作用破坏光路。由此,α需满足

需要说明的是,α角度也可以稍小于在此情况下,射向光学网点11的第二面112的光线很少,所造成的影响不大。

在此基础上,α角度的取值范围可以在15~90°的范围内取值。

对于β的值,示例的,β为0.5°,或者,β为3°,或者,β为5°,或者,β的为10°。

可选的,如图7所示,第四面114与底面103的夹角δ1在50~90°范围内取值。示例的,夹角δ1为50°,或者,夹角δ1为90°,或者,夹角δ1为75°。

第五面115与底面103的夹角δ2在50~90°范围内取值。示例的,夹角δ2为50°,或者,夹角δ2为90°,或者,夹角δ2为75°。

为了方便加工光学网点11,δ1和δ2取值可以相等。

在上述基础上,可选的,如图9a和图10a所示,沿与所述光入射面101垂直的方向,光栅条40依次排列。

光栅条40包括相对且平行设置的两个倾斜面402以及连接该两个倾斜面402的顶面401,所述顶面401与所述光出射面102平行。

所述光栅条40中远离光入射面101一侧的倾斜面402与该光栅条40的顶面401的夹角γ满足:

沿垂直所述光出射面102的方向,所述光栅条40的高度h,满足其中,θ4为光线从粘结层20进入光栅层30发生折射时的出射角,d2为光栅条40的宽度。

要实现光栅条40对光在一个维度上的准直作用,导光板01的光路应为如下的光路。如图9a所示,光线射到导光层10和粘结层20界面时,发生全反射(例如光线1在a点处发生全反射),此时,光线的入射角为θ1,θ1≥θ。之后,光线反射回导光层10中到达导光层10的底面103的光学网点11(例如光线1在a点处发生全反射后射到b点),此时,光线的入射角为θ2。

结合9b可知,在b点处,光线与垂直方向的夹角为θ1,光学网点11的第三面113的法线与导光层10的底面103的法线的夹角角度等于β,可得θ2=θ1-β。当光线以θ3角度入射到导光层10和粘结层20的界面时,可得θ3=θ2-β=θ1-2β。因此,可知经光学网点11的第三面113反射后的光线1与垂直方向的夹角缩小了2β。光学网点11以2β的精度调整反射光与垂直方向的夹角。若θ3<θ,则,如图9a所示,光线从导光层10的光出射面102以θ5射出,并进入到粘结层20。其中,由于θ1≥θ,θ3=θ1-2β≥θ-2β,因此,θ3的取值范围θ>θ3≥θ-2β。

进入到粘结层20的光线在粘结层20与光栅层30的界面发生折射,并以θ4的角度射入光栅层30(例如经b点反射的光线1从粘结层c点进入d点射出),且从粘结层20射入光栅层30的光线为近平行光线,这些光线的角度差最大为θ4max-θ4min。在此基础上,当能保证进入光栅层30的光线射在光栅条40的倾斜面402时(例如从d点进入光栅层30的光线射入e点),经过倾斜面402的反射可使光线在一个维度上准直出射。

基于此,在光线以θ4的角度入射到光栅层30的情况下,为保证光线能射向光栅条40的倾斜面402,从而在倾斜面402发生全反射后从光栅条40的顶面401在一个维度上准直出射,需保证光栅条40的高度h以及夹角γ满足一定的条件。

首先,为了使光线在光栅条40中远离光入射面101一侧的倾斜面402上满足全反射,γ需要满足全反射条件,即,

其次,参考图10a和图10b,当射向光栅条40的倾斜面402上的光线发生全反射时,

其中,如图9a所示,当光线从导光层10射入粘结层20,并从粘结层20射入光栅层30后,基于折射原理,有如下关系式:

n1×sinθ3=n2×sinθ5------公式二;

n2×sinθ5=n3×sinθ4------公式三。

其中,根据公式二和公式三,可得:n1×sinθ3=n3×sinθ4,从而可计算得到

在此基础上,θ>θ3≥θ-2β,θ3取中间值,即,θ3=θ-β,将其带入公式四,可得θ4的中间值θ4med,即:

将公式五带入公式一,可得到:

由公式五可知θ4的取值取决于导光层10和粘结层20材料的折射率大小,以及光线网点11中第三面113与第一面111的夹角β。基于此,通过调节n1、n2和β的值,则可使光线入射到光栅条40的倾斜面402上。

需要说明的是,通过使θ3取中间值而计算得到γ后,经光栅条40的倾斜面402全反射后,出射的光线在90°±x范围内变化,从而使得出射光相对90°的偏差较小。

此外,基于上述可知,当θ3取最大值,即,θ3=θ,将其带入公式四,可得θ4的最大值θ4max,当θ3取最小值,即,θ3=θ-2β,将其带入公式四,可得θ4的最小值θ4min,

参考图10a和图10b,为保证射向光栅条40的光线能射到光栅条40的倾斜面402上,光栅条40应具有最低高度h′。

由于因此,

基于此,

其中,d2为光栅条40的宽度,此处的宽度是指沿导光板01的光入射面101到其相对的第六面104的距离方向的宽度。

由此可知,在实际制作时,光栅条40的实际高度h应大于等于h′,即

当θ4为常数时,h′=f(d2)是增函数,即,d2越大,h′越大,相应的h越大。当d2为常数时,h′=f(θ4)是减函数,即,θ4越大,h′越小,相应的h越小。

当θ4为最小值θ4min时,h′为最大值h′max,当h大于等于h′max,即,则可保证射向光栅条40的光线能射到光栅条40的倾斜面402上。

其中,由公式d1为光栅层30中光栅条40的有效出光区域的宽度(此处的宽度是指沿导光板01的光入射面101到其相对的第六面104的距离方向的宽度),可知,d1<d2。

在此基础上,相邻光栅条40之间的间距d3越小越好,间距d3可根据加工工艺设定。

基于上述的描述,本发明实施例中,通过光学网点11的第三面113与第一面111的夹角β,调整反射光与垂直方向的夹角,打散光路使得光线从光出射面102射出。

同时,光栅条40的参数设置,使得光线发生全反射后在一个维度上准直射出导光板01,减小截止角和半亮度角。以光栅条40沿水平方向排布为例,结合图11a和11b所示,沿光栅条40排布方向,从光栅层30出射的光线角度小于从导光层10出射的光线角度。

可选的,如图2、图5-图6以及图9a和图10a所示,光栅层30包括基体子层31和光栅子层32;基体子层31和光栅子层32为一体结构,且基体子层31靠近导光层10设置;基体子层31的形状为长方体,光栅子层32包括多个平行且等间距设置的光栅条40。

可选的,基体子层31的厚度可根据材料强度及工艺设定。例如,光栅层30的材料可以为pet(polyethyleneterephthalate,聚对苯二甲酸乙二酯)或uv胶,且光栅层30采用转印工艺时,基体子层31厚度大于等于0.05mm。光栅层30为其他材料例如pc或pmma时,且光栅层30采用注塑成型或压印工艺时,基体子层31的厚度大于等于0.25mm。

通过使光栅层30包括基体子层31和光栅子层32,容易通过相关工艺做出该光栅层30,而且方便该光栅层30通过粘结层20与导光层10粘结。

本发明实施例还提供一种背光模组,如图12所示,包括背板02、设置于背板02上的上述的导光板01、以及设置于导光板01的光入射面101一侧的光源03。

可选的,该背光模组不包括反射片或反射镀层,导光板01与背板02直接接触。基于此,背光模组高度集成、结构简单且成本低。

可选的,导光板01与背板02之间设置有保护膜,示例的,保护膜的材料可以为pet。

背光模组可以为led(lightemittingdiode,电致发光二极管)正组式背光(用作平板电脑等大尺寸背光)或者cob(chiponboard,高功率集成线光源)正组背光模组。

如图12示意一种cob正组背光模组。cob正组背光模组包括背板02,与背板02直接接触的导光板01,在导光板01的光入射面101一侧设置有cob光源03,使用cob固定胶04固定cob光源03。沿导光板01的垂直方向,cob光源03上方设置有垫高层(spacertape)05,垫高层05上方和靠近垫高层05的部分导光板01出光侧上方设置有遮光胶06。

背板02材料可以为不锈钢。

结合图13和14可知,在光学系统建模软件中搭建光学模型,可测得该cob背光模组的半亮度角<±10°,截止角<±20°。相对于现有产品中半亮度角<±40°,截止角<±80°,本发明的背光模组显著的减小了半亮度角和截止角,实现良好的防窥效果。

本发明实施例提供一种背光模组,由于不设置反射片或反射镀层,可降低背光模组的厚度。

本发明的实施例还提供一种导光板的制备方法,如图15所示,包括:

s10、参考图16a所示,利用刻刀雕刻或撞针撞击出带有网点结构的导光层模具。

其中,雕刻加工的网点结构相对于撞击加工的网点结构,精度高,但是效率低,成本高。网点结构排布根据导光层10的光效要求进行布点,保证背光模组亮度均一性。

s20、参考图16b所示,利用导光层模具通过注塑成型或压印成型工艺形成导光层10。

s40、参考图17a所示,利用刮刀刮削出光栅层模具。

s40、参考图17b所示,利用光栅层模具通过注塑成型或压印成型工艺形成光栅层30。

利用注塑成型工艺形成光栅层30的情况下,注塑脱模方向可平行于光栅条40的倾斜面402,以避免破坏光栅条40的斜角,从而使制作出的光栅层30精度更高。同理,利用压印成型工艺形成光栅层30的情况下,压印方向可平行于光栅条40的倾斜面402,以避免破坏光栅条40的斜角,从而使制作出的光栅层30精度更高。

s50、利用粘结层20将光栅层30和导光层10进行贴合,形成导光板01。

进行贴合时,可先将粘结层20与导光层10设置有网点的相对侧贴合,再将粘结层20远离导光层10的一侧与光栅层30贴合;或者,将粘结层20与光栅层30贴合,再将粘结层20远离光栅层30的一侧与导光层10贴合。

其中,在作业时光栅层30和导光层10需要真空贴合,不能含有气泡。

粘结层20需保证其平坦度,避免不平造成光路改变,影响光线进入光栅层30,进而影响整个导光板01的防窥效果和亮度。

本发明提供一种导光板的制备方法,通过刻刀雕刻或撞针撞击出带有网点结构的导光层模具,再利用导光层模具通过注塑成型或者压印成型工艺形成导光层10。利用刮刀刮削出光栅层模具,再利用光栅层模具通过注塑成型或者压印成型工艺形成及光栅层30。利用粘结层20将光栅层30和导光层10进行贴合,从而形成带有光学网点11和光栅层30的导光板01,整体高度集成,结构简单,易加工,成本低,易量产。此外,相对于现有技术中导光板使用反射片或反射镀层,对光线进行反射,本发明通过极简的结构实现良好的防窥效果。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1