投射镜头、投射曝光设备和EUV微光刻的投射曝光方法与流程

文档序号:21775899发布日期:2020-08-07 19:37阅读:346来源:国知局
本申请是申请日为2015年9月7日且发明名称为“投射镜头、投射曝光设备和euv微光刻的投射曝光方法”的中国专利申请no.201580049768.0的分案申请。相关申请的交叉引用以下公开内容基于2014年9月15日提交的德国专利申请no.102014218474.6,在此通过引用将其并入本申请。本发明关于一种投射镜头,用于通过具有来自极紫外光范围(euv)的操作波长λ的电磁辐射将设置于投射镜头的物平面中的图案成像至投射镜头的像平面上。再者,本发明关于一种包含这种投射镜头的投射曝光设备和一种可借助于该投射镜头和该投射曝光设备执行的投射曝光方法。
背景技术
::微光刻投射曝光方法现今主要用于生产半导体组件及其他精细结构化组件,例如微光刻用掩模。这些方法涉及使用载有待成像结构的图案的掩模(掩模母版),例如半导体组件的层的线图案。该图案设置于在投射镜头的物平面的区域中,介于照明系统与投射镜头之间的投射曝光设备中,并以该照明系统所提供的照明辐射照明。由该图案所改变的辐射作为投射辐射传递穿过投射镜头,该投射镜头将该图案成像至待曝光并涂布有辐射敏感性层且其表面位于该投射镜头的像平面中的基板上,前述像平面关于该物平面光学共轭。为了能生产较以往更精细的结构,近年来已开发出以适度数值孔径操作且实质上通过来自极紫外范围(euv)的使用电磁辐射的短波长(特别是具有在5nm与30nm之间的范围内的操作波长)得到高分辨率能力的光学系统。在操作波长约13.5nm的euv光刻的情况下,举例来说,给定像侧数值孔径na=0.3,理论上,在数量级约0.15μm的常规焦距深度的情况下,可实现数量级0.03μm的分辨率。由于短波长会被在较长波长为透明的已知光学材料吸收,因此来自极紫外范围的辐射无法借助于折射光学元件聚焦或引导。因此,euv光刻使用反射镜系统。在euv微光刻的领域中,为了能生产较以往更精细的结构,也努力通过开发具有较以往更高像侧数值孔径na的投射系统来进一步提高系统的分辨率能力。对给定成像比例β而言,物侧数值孔径nao因此也增加。对更高孔径euv系统而言,由于窄带掩模(narrowbandmask)的反射能力在辐射的较大入射角处大幅降低,因此造成挑战。因此,对光刻光学系统已提议使用更大缩减而非1∶4(|β|=0.25)的惯用缩减成像比例。举例来说,1∶8(|β|=0.125)而非1∶4(|β|=0.25)的成像比例会将物侧数值孔径nao减半,并因此在掩模处的照明辐射的入射角也减半。然而,此成像比例(对相同掩模尺寸而言)缩小曝光场的大小并因此缩减生产量(throughput)。还已认识到,当物侧数值孔径增加时,物侧主光线角必须增加,这可通过掩模的吸收体结构导致阴影效应,并导致有关层传输的问题。特别是,严重的切趾(apodization)效应可能会由于掩模的涂层而发生(参见例如wo2011/120821a1)。wo2012/034995a2尤其为此原因提议将euv投射镜头设计为变形(anamorphic)投射镜头。变形投射镜头的特征在于在第一方向上的第一成像比例偏离在垂直于该第一方向的第二方向上的第二成像比例。该偏差明显位于可能由制造公差导致的偏差以外。变形投射镜头实现例如在第一方向上具有大物侧数值孔径的像平面的完全照明,待成像掩模母版在前述第一方向上的范围(extent)无需增加,且投射曝光设备的生产量无需缩减。再者,相较于在两个方向上具有均匀成像比例的系统,还可降低照明光的倾斜入射所造成的成像质量损失。如果1∶8成像比例(|β|=0.125)在扫描方向(在该方向,场范围(fieldextent)很小)上设定,而惯用的1∶4成像比例(|β|=0.25)垂直于扫描方向(交叉扫描方向)作用,则如此不会在掩模处引入特别大角度,而是确保相较于在两个方向上具有|β|=0.25的常规非变形投射镜头,场大小仅被减半而非被减四分之一。而且,还是可以选择以较大掩模母版实现全场(fullfield)。投射曝光设备一般包含操纵系统,其具有使得可以控制单元的控制信号为基础以限定方式改变系统的成像特性的大量操纵器(manipulator)。在此种情况下,“操纵器”一词尤其是指设计用于以对应控制信号为基础主动影响单独光学元件或光学元件的组的光机械装置,从而改变在投射射束路径中的前述元件或组的光学效应。通常,操纵器还为了例如位移、倾斜和/或变形掩模和/或基板而提供。一般来说,操纵器设定为使得度量上检测的成像像差可以针对性方式减小。在一些euv系统中,具有垂直于物平面的组件的掩模母版的位移和/或倾斜提供有效操纵的可能性,从而校正成像像差。凭借在反射掩模母版和/或非远心系统中的辐射的倾斜入射,还可通过此种掩模母版位移校正结构的侧向偏移。在此种情况下,主动原则基于以下事实:在非远心照明的情况下,沿着图像的对应z失焦的掩模母版的z失焦(zdefocusing)总是附加地导致图像的侧向偏移。若在物场内的照明的远心度例如二次地变化,则在z偏心的情况下还有侧向图像移位的二次变化,这可用于例如校正存在于掩模母版或基板上的二次畸变曲线(quadraticdistortionprofiles)。de102004014766a1(参见us7,372,539b2)中提及,为了校正在euv投射曝光设备的投射镜头中的变形(anamorphism),将掩模母版绕着垂直于投射镜头的轴且垂直于扫描方向,且均放置穿过在掩模母版或晶片上所产生的光场的中心的轴而倾斜小角度。ep1039510a1提议在光轴的方向上调整及倾斜掩模母版,以校正在成像比例上的像差和所产生图像的位置。技术实现要素:本发明所解决的问题的在于,提出容许得到使用变形投射镜头的优势的措施,同时在相当程度上无需接受特定缺点。为了解决此问题,本发明提供一种包含权利要求1的特征的投射镜头、一种包含权利要求14的特征的投射曝光设备以及一种包含权利要求17或19的特征的投射曝光方法。具优势的发展在从属权利要求中明确说明。所有权利要求的措辞均并入说明书的内容中作为参考。发明人认识到,在变形镜头的情况下,会出现在扫描方向上和与其垂直的方向上具有相同成像比例的常规系统中不会出现的至少一个特殊特征。已识别出变形镜头特有的波前像差类型。在根据本案发明的系统的情况下,此类型像差(即此类型系统特有的此像差)由特定适用措施解决,并可至少部分被校正。发明人尤其从该观察继续进行,在一般成像系统中所谓的纵向比例(或深度比例)由成像比例的平方给定。纵向比例指示在图像区域中具有垂直于物平面的方向分量的物体移位的情况下,为了得到聚焦成像必须执行重新聚焦的程度。在变形镜头中,根据定义,成像比例会依取向而变化(在第一方向与第二方向上成像比例之间的偏差)。纵向比例会发生同样情况。结果,然而,在垂直于物平面的物体移位的情况下,具有在扫描方向上的取向的结构的失焦与具有与上述取向垂直的取向的结构不同。这些不同的聚焦位置仅为像散(astigmatism),这可例如由条纹泽尼克no.5(fringezemikeno.5,z5)以最低阶数描述。对非变形镜头而言,应强调此像散贡献完全为零。本发明与非变形镜头相比,尤其使得可能改变或扩展投射镜头的正常实施的校正方案,以将此新出现的像差列入考虑。投射镜头包含波前操纵系统,用于动态地影响从投射镜头的物平面传递至像平面的投射辐射的波前。设置于投射射束路径中的波前操纵系统的组件的效应可根据控制单元的控制信号而变化地设定,由此投射辐射的波前可以针对性方式改变。在一些实施例中,波前操纵系统的光学效应可在扫描操作过程中在相当短的时间尺度上以针对性方式明显改变(即具有高动态)。扫描操作(scanoperation)是特征在于掩模和基板在各自的扫描方向上同步移动的操作,其中掩模在扫描方向上被扫描一次,使得在此扫描操作的开始与结束之间,掩模的整个图案一次转印至基板上。举例来说,若在扫描操作期间,掩模母版或掩模为了例如补偿特定像差而以方向垂直于物平面(在z方向上)的移动分量位移,则在变形投射镜头的情况下,会产生以迄今已知校正可能性无法补偿或仅不充分地补偿的像散(astigmatic)波前像差部分。相比之下,动态波前操纵系统能完全或至少部分地补偿在扫描操作过程中由在z方向上的掩模母版位移所造成的像散波前像差部分。在一些实施例中,此校正在该扫描操作期间(即在用于光刻情况的短时间尺度上)可变化,前述时间尺度对于在目前系统中的扫描操作具有小于一秒钟的数量级。借助于高度动态的波前操纵系统,投射镜头的成像特性可根据可预定的时间曲线在扫描操作过程中改变,以在单一扫描操作的开始与结束之间产生所需像散波前校正。一些实施例包含在扫描操作以外的时间间隔中改变波前操纵系统的光学效应,例如在扫描操作开始前。举例来说,当投射系统最初被调整时,例如在新掩模已安装后,此种改变可是有用的。波前操纵系统在那些情况下无需构建成高度动态的,因为改变可缓慢引起,即在较长时间尺度上。然而,高度动态的波前操纵系统也可用于此目的。根据一个实施例,设置波前操纵系统具有(至少一台)第一操纵器,其具有设置于投射射束路径上的可位移反射镜,以及相对于参考位置可逆地改变反射镜的位置的第一致动装置。如此提供对于波前操纵使用至少一个反射镜的刚体自由度的第一类型操纵器。该反射镜作为整体位移(即改变有关其位置或定位),而结果不会改变该反射镜表面的表面形状。该位移可包含轴向位移(平行于正交地定向至物平面的投射镜头的参考轴的位移)、横向位移(在垂直于该参考轴的横向方向上的位移)或反射镜的倾斜。此外,该位移还可包含反射镜绕着旋转轴的旋转,或仅有旋转。尽管第一类型操纵器的一台单独操纵器可为充足的,但在一些实施例中提供两台或更多台第一操纵器。特别是,作为该第一类型操纵器的操纵器的投射镜头的所有反射镜,可在其刚体自由度方面以受控方式变得可移动。若两台或更多台第一操纵器存在,则可以改进方式通过至少一台其他第一操纵器的合适刚体移动部分或完全地补偿第一操纵器在其刚体移动期间所产生的非所需(寄生)像差,使得作为整体效应,实质上维持所需像散波前校正,而寄生像差的级别与其相比为低。该至少一台第一操纵器可动态地设计,使得反射镜在介于在一个方向上的扫描操作的开始与结束之间的时间间隔中,根据从起始位置经由至少一个中间位置返回起始位置的可控制的移动路线进行位移。这些移动可在很短的时间尺度内执行,例如在十分之一秒或数十分之一秒的范围内。然而,该操纵器无需在扫描操作过程中再次移动返回起始位置。此外,对于两个连续的扫描操作,还可能在相反方向上进行扫描。那么,情况可能是操纵器仅在第二扫描操作(在返回路径上)中再次移动返回起始位置。还可能有操纵器完全不移动返回起始位置的情况。在这些情况下,与光学效应的改变相关的移动也可在很短的时间尺度内执行,例如在十分之一秒或数十分之一秒的范围内。通过一个、多个或所有反射镜的快速刚体移动的波前操纵,根据投射镜头类型,在某些状况下仅能以相对较复杂的方式实行。因此,替代地或附加地提供其他类型的操纵器可能有用。在一些实施例中,波前操纵系统具有(至少一台)第二操纵器,其具有设置于投射射束路径中且具有反射镜表面的可变形反射镜,以及相对于参考表面形状可逆地像散地改变该反射镜表面的表面形状的致动装置。为了此目的,该致动装置可具有例如在直径上相对地设置的致动器对或致动器组,其在反射镜表面的四个象限上作用,并可成对不同地驱动以在表面形状上引起像散改变。适合光刻的成像投射镜头在物平面与像平面之间具有至少一个光瞳面,前述至少一个光瞳面为关于物平面且关于像平面的傅立叶变换(fourier-transformed)面。可变形反射镜应光学地设置为接近光瞳面,以能在现实可得到表面变形的情况下,显露充分强大的像散校正效应。对于量化光学元件或光学表面在射束路径中的位置,例如可使用子孔径比(subapertureratio)sar。根据一个定义,根据sar:=dsa/dca,在投射射束路径中的光学元件的光学表面的子孔径比sar定义为在子孔径直径dsa与光学自由直径dca之间的商。子孔径直径dsa由以从给定场点出射的射束的光线照明的光学元件的部分表面的最大直径给定。光学自由直径dca是围绕光学元件的参考轴的最小圆的直径,其中该圆封围光学元件表面的由来自物场的所有光线照明的区域。在场平面(如物平面或像平面)中,sar=0相应成立。在光瞳面中,sar=1成立。“近场”表面因此具有接近0的子孔径比,而“近光瞳”表面具有接近1的子孔径比。优选地,设置具有像散可变形反射镜表面的反射镜,使得在该反射镜表面,子孔径比sar在0.5至1之间、特别是在0.7至1的范围内。为了在扫描操作过程中实现成像相关改变,第一操纵器和/或第二操纵器优选动态地设计为使得与反射镜的光学效应的改变相关的致动移动可在小于一秒的短时间尺度内产生、特别是在十分之一秒或数(如2或3或4或5或6或7或8或9)十分之一秒的范围内。因此涉及快速操纵器,有必要时,其在扫描操作过程中还以高动态特性使用。在不同的实施例或者可提供第一类型操纵器(在刚体自由度上的移动)和第二类型操纵器(反射镜表面变形)的操纵器。有必要时,在同一投射镜头中不同类型操纵器的组合也是可能的。鉴于在此特殊强调且由于投射镜头的变形设计结果出现的像散波前像差部分依在相互垂直方向上的成像比例的平方之间的差异而定的事实,(就绝对值而论较大)成像比例与(就绝对值而论较小)成像比例之间的尺度比不太大被视为具有优势。该尺度比可为例如在1.1至2.5的范围内、特别是在1.5至2的范围内。结果,待校正的像散波前部分的范围可限制在相对较小数值,使得待校正的该像差保持很小。如果投射镜头具有例如在x方向上的成像比例βx=0.25和在y方向上的成像比例βy=0.125,则如此导致2的尺度比。替代地或额外地,对于在掩模母版的位置处(即在物平面中)产生第二方向(x方向(z2像差))上的图像偏差的二次场曲线,可在第二方向上提供远心度的相对较大变化(远心度变化),以缩小校正所需在z方向上掩模母版的行进。若此行进变小,则由此所造成的非所需像散波前像差部分也可保持很小,且校正对应地更容易。远心度变化是由前焦距限定,且前焦距越小,远心度变化越大。对于无限前焦距,光学系统在输入端为远心并因此无变化。在一些情况下,若在第二方向上的前焦距就绝对值而论小于3m,其中前述前焦距优选为小于2m、特别是小于1m,则被视为具有优势。在第二方向上的前焦距可对应于在第一方向上的前焦距,但这并非为必要。在第二方向上的前焦距因此可偏离在第一方向上的前焦距。投射镜头可设计成将矩形有效物场(矩形场)成像至矩形有效像场中。或者,投射镜头可设计用于成像在扫描方向上弯曲的环场,即弧形有效物场。在此种情况下,若环场的曲率被定尺寸使得在像平面中,介于在扫描方向上在后(lagging)的场边缘处的中间场点与在场边缘的边际处的边际场点之间在扫描方向上所测量到的距离,对应于垂直于扫描方向所测量的场宽度的5%以上、优选为15%以上、特别是25%以上,则被视为具有优势。举例来说,若执行校正方案,其中欲产生在场上的二次z3变化,即在y方向或扫描方向上的图像偏差的二次变化,则此种大幅弯曲的环场可是有用的。此种校正可为可用的,例如在掩模母版加热的事件中用于补偿波前像差。在此种情况下,更大幅弯曲的环场促成校正仅需要掩模母版的小倾斜的事实。结果,对于所选择校正幅度的相关联像散仍维持相对较小,因此波前操纵系统所需校正也可证明为是适当的。能补偿所描述类型的像散波前像差部分的波前操纵系统还可用作用于校正无关于掩模母版位移所造成的像散波前像差部分的校正的x-y像散的快速校正可能性。举例来说,此种像差可由于在偶极照明情况下使用的系统中的加热效应而明确出现。本发明还关于一种包含在此所考虑类型的投射镜头,即包含动态波前操纵系统的投射曝光设备,动态波前操纵系统用于校正在扫描操作前和/或过程中由掩模母版位移造成的像散波前像差部分。在一些实施例中,该投射曝光设备的掩模夹持装置包含z移位装置,用于平行于正交地移动至物平面的z方向的掩模的受控位移。此z移位装置可在各种校正方案的背景下使用,以用平行于z方向的移动分量位移掩模,因此像散波前像差部分由于在相互垂直方向上的不同成像比例而在变形投射镜头中产生。这可以所说明的方式借助于波前操纵系统进行补偿。掩模母版绕着x轴和/或y轴的倾斜同样可为可能且有利的。为了此目的,掩模夹持装置可包含倾斜装置。本发明还关于一种以掩模的图案的至少一个像曝光辐射敏感性基板的投射曝光方法。在此可使用变形投射镜头。在一些实施例中,在扫描操作过程中在扫描方向上移动掩模时,至少在相位上可发生在垂直于物平面的位移方向(z方向)上的掩模的受控位移,例如为了补偿特定像差。借助于通过驱动至少一台操纵器对从物平面传递至像平面的投射辐射的波前的像散影响,可部分或完全地补偿z位移所产生的像散像差,所述操纵器具有设置于投射射束路径中的可操纵反射镜和用于可逆地改变可操纵反射镜的光学效应的致动装置。驱动波前操纵系统的操纵器的致动装置可根据掩模的动态位移和/或倾斜来执行,以在扫描操作过程中实现近瞬时校正效应。该驱动可例如以使用先前计算的灵敏度的前馈模型为基础来执行。还可能以其中储存例如先前为掩模的任何相关位移移动所计算的反射镜的致动装置的对应致动行进的至少一个先前计算的检查表为基础执行该驱动。结果,即使以控制的适当计算能力,仍可实现波前操纵系统对在掩模母版的位置的改变的准瞬时反应。附图说明本发明的进一步优势和方面从权利要求和以下参照附图所说明的本发明的优选示例性实施例的以下描述而显而易见,其中:图1示意性显示穿过euv微光刻的投射曝光设备的剖面图;图2示意性显示来自根据图1的投射曝光设备的局部图,用于根据第一示例性具体实施例阐明在投射镜头中的射束路径;图3显示在与图2垂直的平面中的对应于图2的例示图。图4示意性显示成像系统;以及图5示意性显示在变形成像系统的情况下由轴向物体位移所引致的像平面的位移。具体实施方式图1举例显示根据本发明的一个实施例的euv微光刻投射曝光设备wsc的光学组件。该euv微光刻投射曝光设备用于以反射型掩模m的图案的至少一个像曝光设置于投射镜头o的像平面is的区域中的辐射敏感性基板w,上述图案设置于该投射镜头的物平面os的区域中。掩模m在此还替代地称为为掩模母版m。该基板在该示例的情况下由半导体材料构成的晶片。为有助于理解说明书,指定笛卡尔(cartesian)xyz坐标系统,其揭示在所附图中所示组件的各自位置关系。投射曝光设备wsc为扫描仪类型。x轴在图1中垂直于图的平面延伸进入图中。y轴朝向右侧延伸。z轴向下延伸。物平面os和像平面is平行于x-y平面延伸。在该投射曝光设备的操作过程中,掩模m和基板在y方向(扫描方向)上的扫描操作过程中同步或同时地移动,并由此进行扫描。该设备以主要辐射源rs的辐射操作。照明系统ill用于接收该主要辐射源的辐射,以及塑形定向至该图案上的照明辐射。投射镜头po用于将该图案成像至光敏基板上。主要辐射源rs尤其可为激光等离子体源或气体放电源或基于同步加速器的辐射源。此种辐射源产生在euv范围内、特别是具有在5nm至15nm之间的波长的辐射rad。该照明系统和该投射镜头以反射euv辐射的组件构造,以使其能在此波长范围内操作。从辐射源rs出射的辐射rad通过聚集器col收集,并引导至照明系统ill中。该照明系统包含混合单元mix、望远镜光学单元to和场形成反射镜ffm。该照明系统成形该辐射,并因此照明位于投射镜头po的物平面os中或与其接近的照明场。在此种情况下,该照明场的形状和大小决定在物平面os中有效地使用的物场of的形状和大小。在该设备的操作过程中,反射型掩模母版m设置于物平面os的区域中。混合单元mix实质上由两个分面反射镜fac1、fac2组成。第一分面反射镜fac1设置于该照明系统关于物平面os光学共轭的平面中。因此,第一分面反射镜还称为场分面反射镜。第二分面反射镜fac2设置于该照明系统的关于该投射镜头的光瞳平面光学共轭的光瞳平面中。因此,第二分面反射镜还称为光瞳分面反射镜。借助于光瞳分面反射镜fac2和配置于射束路径下游且包含望远镜光学单元to和以掠入射(grazingincidence)操作的场形成反射镜ffm的成像光学组合件,第一分面反射镜fac1的单独镜像镜面(单独反射镜)成像至物场中。在场分面反射镜fac1处的空间(局部)照明强度分布决定在该物场中的局部照明强度分布。在光瞳分面反射镜fac2处的空间(局部)照明强度分布决定在物场of中的照明角度强度分布。有效物场of在图2和图3的示例性实施例中为矩形场,但在其他变化例中还可为弯曲场(环场rf,细节参见图2)。设置用于夹持及操纵掩模m(掩模母版)的掩模夹持装置rst,使得设置于该掩模上的图案位于投射镜头po的物平面os中,前述物平面在此还称为掩模母版平面。借助于扫描驱动器scm,该掩模在此平面上可移动,用于在垂直于投射镜头的参考轴ax(z方向)的扫描方向(y方向)上的扫描操作。掩模夹持装置rst包含z位移装置,用于平行于z方向(垂直于扫描方向和x方向)的掩模母版的受控位移。再者,掩模夹持装置rst可包含倾斜装置以在有必要时关于平行于x方向行进的倾斜轴和/或关于平行于y方向行进的倾斜轴从平行于物平面的位置倾斜掩模。这些装置在扫描过程中可动态地被使用,尤其使得掩模的位移可在介于在一个方向上进行的扫描操作的开始与结束之间的时间间隔中,根据可预定义移动路线进行。待曝光的基板w由基板夹持装置wst夹持,其包含扫描仪驱动器scw,以使该基板与掩模m垂直于参考轴ax在扫描方向(y方向)上同步移动。依投射镜头po的设计而定,掩模和基板的这些移动可彼此平行或反向平行进行。基板夹持装置wst包含z位移装置,用于基板的平行于z方向(垂直于扫描方向)的受控位移。再者,基板夹持装置可包含倾斜装置,以在有必要时关于平行于x方向行进的倾斜轴和/或关于平行于y方向行进的倾斜轴从平行于像平面的位置倾斜晶片或基板。这些装置在扫描过程中可动态地被使用,尤其使得基板的位移可在介于在一个方向上进行的扫描操作的开始与结束之间的时间间隔中,根据可预定义移动路线进行。还称为“晶片台”的基板夹持装置wst和还称为“掩模母版台”的掩模夹持装置rst为通过扫描控制单元控制的扫描仪装置的一部分,该扫描控制单元在该实施例的情况下集成在投射曝光设备的中央控制单元cu中。照明系统ill具有出射光瞳,其形状适配于投射镜头po的入射光瞳的形状,且特别精确地对应于后者。照明系统ill的出射光瞳以椭圆方式实施。这特别可通过椭圆地实施的光瞳分面反射镜fac2而实现。作为所述的替代例,所述光瞳分面还可设置于光瞳分面反射镜fac2上,使得光瞳分面具有椭圆地实施的外壳(envelope)。椭圆光瞳分面反射镜fac2的半轴可具有两个不同的半轴(semiaxis)长度,其中较大半轴长度例如为第一半轴长度量值的例如至少一倍半、甚至可能至少两倍。照明系统ill的出射光瞳的半轴对应地可同样具有不同的半轴长度,优选为具有与该照明系统的出射光瞳相同的半轴长度比。对于具有非变形成像比例的传统旋转对称系统,照明射束的主光线应在该投射镜头的入射光瞳平面上交会,以确保场恒定(field-constant)最佳照明。对于真空紫外光(vuv)系统(以来自真空紫外光范围的操作波长操作的系统),前述入射光瞳通常在无限远;因此,这些系统为远心,即所述主光线垂直地入射在掩模母版上。在euv系统的情况下,必须倾斜地照明反射型掩模母版,以将照明射束路径与投射射束路径分开。因此,入射光瞳应位于与掩模母版相距有限距离处。在1m至3m的范围内的距离在此被视为具有优势。这导致在掩模母版处的主光线角度的变化,第一近似至对应于在x方向上的线性远心度曲线并因此在该掩模母版的z移位时产生线性z2的线性曲线。投射镜头po用于将设置于该投射镜头的物平面os中的图案的缩小成像至像平面is中,像平面is关于物平面光学共轭,且位置与物平面平行。如此成像通过来自操作波长λ(在该示例的情况下为13.5nm)附近的极紫外范围(euv)的电磁辐射来执行。物场of在此种情况下成像至像场if中。涉及变形投射镜头。该变形投射镜头不再旋转对称,而是设计成自由形式表面设计。因此,不再绝对必要存在单个入射光瞳位置,而是x和y方向可彼此分离(decoupled)并位于不同平面上。那么,这称为像散入射光瞳。因此,照明系统同样可配备像散,即适用于该投射镜头的像散入射光瞳的非同轴成像(non-homocentricimaging)。图2和图3以不同的视图显示变形投射镜头po的第一实施例的光学设计。所述例示图显示从中心物场点和从分别定义物场of的两个相对边缘的两个物场点出发的辐射的单独光线的射束路径。根据图2和图3的投射镜头po具有总共六个反射镜,其在从物场of出发的射束路径的方向上由m1(第一反射镜)至m6(第六反射镜)连续地编号。图2和图3例示如在投射镜头po的设计过程中所计算的反射镜m1至m6的反射面。如从所附图显而易见,在某种程度上仅所例示的表面的片段实际上用于反射辐射。反射镜m1至m6的实际实施例因此可小于附图所例示、特别是可包含附图所例示的计算的反射面的仅一部分。可为平面或弯曲的第一光瞳面pf1位于第二反射镜m2与第三反射镜m3之间。而且,中间像面imf位于第四反射镜m4与第五反射镜m5之间。中间像面imf可为平面的或弯曲的。反射镜m1至m4因此形成第一(成像)部分镜头obj1。反射镜m5和m6形成第二成像部分镜头obj2。投射镜头不具有所有反射镜共用的“传统”光轴。参考轴ax(参见图1)垂直于物平面延伸且像平面与后者平行。光学系统具有关于图3(参见图3)所例示y-z平面的镜像对称性。第一部分镜头obj1为变形镜头,即其变形地成像。第二部分镜头obj2同样为变形镜头,即其变形地成像。然而,第二部分镜头obj2同样可实施为非变形的。涉及具有自由形式表面的变形系统。在具有自由形式表面的反射镜的情况下,该反射镜表面在x和y方向上具有不同的曲率半径,即为像散的。在此,整体效应为使得系统或子系统变形地成像。投射镜头po可包含多个像散成像的反射镜,例如二、三、四、五、或六个。投射镜头po因此具有在第一方向上的第一成像比例β1和在第二方向上与其不同的第二成像比例β2。该第二成像比例例如可为该第一成像比例量值的至少一倍半、特别是其量值的至少两倍。投射镜头po实施为使得在扫描方向(y方向)上的成像比例的绝对值小于与其垂直的成像比例的绝对值。因此,该系统在扫描方向上比在交叉扫描方向上具有更大幅缩小效应。在该扫描方向上的成像比例的绝对值可为与其垂直的成像比例的绝对值的大小的例如至多四分之三、特别是至多三分之二、特别是至多一半。投射镜头po具有方向相关的物侧数值孔径(nao),即入射光瞳偏离圆形形状。在此种情况下,在特定方向上、即在大成像比例的方向上的物侧数值孔径(nao)为在与其垂直的方向上的量值的例如至少一倍半。第六反射镜m6具有用于辐射的通道的通孔op。另一光瞳面pf2位于反射镜m5与m6之间。光瞳面pf2可为平面的或弯曲的。反射镜m1至m6实施为反射euv辐射。它们尤其带有用于优化其对入射的euv照明光的反射的多反射层(多层反射镜)。单独光线在反射镜表面上的入射角度越接近正入射,该反射反而可优化得更好。反射镜m1至m5具有以封闭方式实施的反射面,即无通孔。反射镜m1、m4和m6具有凹面反射面。反射镜m2、m3和m5具有凸面反射面。投射镜头po的反射镜m1至m6或其反射面实施为无法由旋转对称函数描绘的自由形式表面。此种自由形式表面可从旋转对称参考表面产生。用于微光刻的投射曝光设备的投射镜头的反射镜的反射面的自由形式表面可例如从美国专利us2007-0058269a1已知。自由形式表面可由下列方程式在数学上描绘:其中以下成立:z为在点x、y处的自由形式表面的弧矢(sagittal)高度,其中x2+y2=r2。参数c为对应于对应非球面的顶点曲率的常数。k对应于对应非球面的二次常数(conicconstant)。cj为单项式xm、yn的系数。c、k、和cj值通常基于在投射镜头po内的反射镜的所需光学性质来确定。nm+nradiurs为用于系数cj的归一化因子。单项式的阶数m+n可任意地变化。更高阶数单项式可导致投射镜头的设计具有更佳图像像差校正,但计算更复杂。可假设m+n具有介于3至多于20之间的数值。在说明书结尾处所指示的表格以表格形式总结出投射镜头po的光学设计数据,这些数据借助于光学设计程序code取得。关于光学组件的光学表面并关于孔径光阑,表1明确说明在每种情况下顶点曲率的倒数(半径),以及对应于在从像平面is出发(即与该光方向相反)的射束路径中介于相邻元件之间的z距离的距离值(厚度)。表2明确说明用于反射镜m1至m6的上文所指定自由形式表面方程式中的单项式xmn的系数cj。表3以nm为单位明确说明绝对值,顺着其从反射镜参考设计出发使各反射镜偏心(y偏心)及旋转(x旋转)。这在自由形式表面设计方法的情况下对应于平行移位和倾斜。在此种情况下,移位在y方向上进行,而倾斜绕着x轴进行。在此种情况下,旋转的角度以度数明确说明。第二反射镜m2在x方向和y方向上弯曲至不同程度。这从在表1中的二次系数x2和y2具有明显不同数量级(相差约20倍)的事实即可知。这也促成第一部分镜头obj1(还有整个投射镜头)变形地成像的事实。投射镜头的此种基本设计对应于在wo2012/034995a2中图2和图3中的投射镜头。在前述申请中所说明的其他投射镜头同样可在本发明的背景下使用。前述文件wo2012/034995a2的公开内容全部并入本说明书的内容中。在该示例性实施例中的投射曝光设备包含操纵系统,其具有众多操纵器,这使得可能改变投射镜头的成像特性,且若适当则以控制单元cu的控制信号为基础以限定方式改变其他组件的成像影响特性。在此种情况下,术语“操纵器”是指设计用于以控制器的对应控制信号为基础,以针对性方式改变其光学效应的装置。一般来说,设定操纵器使得可以针对性方式减小在度量上所检测的成像像差。在投射曝光设备的操作过程中,例如掩模母版台和基板台必须以彼此高度准确地同步的方式移动。为了此目的,有精确移动能力和动态控制能力,这使得掩模母版台和基板台成为极佳的操纵器。像差可以从精确同步的分布偏离的目标偏差被校正。举例而言,若掩模母版和基板的移动速度比偏离设计比例,则举例来说,在掩模生产过程中可能已发生或由于元件加热而出现的比例误差可被补偿。此种校正在扫描程序期间可能变化,即在数十分之一秒的微光刻情况的很短的时间尺度上。尤其结合环场和为了解离照明和投射镜头的目的而在euv掩模母版上光的倾斜入射,掩模母版台和/或基板台的倾斜可设定z2、z3和z4的二次场曲线。缩写z2、z3等在此一般代表说明与成像相关的具体像差的zernike系数。在此种情况下,z2代表在x方向(垂直于该扫描方向)上的像偏差,z3代表在y方向(扫描方向)上的像偏差,而z4表示失焦。如所提及,掩模夹持装置rst还包含z位移装置,用于掩模母版或掩模的平行于z方向(垂直于扫描方向和x方向)的受控位移。该位移在扫描操作过程中是可能高度动态的(例如在十分之一秒至数十分之一秒的时间尺度中),例如为了对于某些像差设定场曲线。此种场曲线通常可校正在系统中用其他方式难以处理的掩模母版加热效应或基板不平整,例如若缺乏仅能由其补偿带可接受副作用在场中直接造成的此种图像像差曲线的近场元件。在扫描过程中,该掩模母版加热效应或晶片不平整可变化,因此应动态地执行重新调整。在基板夹持装置wst处在像侧上提供对应的z位移装置。以下参照图4和图5解说变形成像系统特有的问题。在此方面,图4显示特征在于其主平面h-h′的成像系统的示意绘图具有物侧焦距f和像侧焦距f′,并将具有物体高度y的物体成像至具有像高度-y′的图像中。在此种情况下,物体位于物平面os上,而图像在关于物平面光学共轭的像平面is上出现。物侧和像侧距离是沿着平行于示意性所显示的系统的光轴行进的z方向所测量的。成像系统的成像比例β根据β=y′/y对应于像高度y′的绝对值与物体高度y的绝对值的比。由于涉及缩小成像,因此|β|<0成立。此成像比例存在于示意性显示的系统的y-z平面上,前述平面与该图的平面重合。若物体随后平行于z方向移位,则出现问题关于像平面在z方向上移位到什么程度、或在图像区域中到什么程度有必要有效重新聚焦,以在物体在z方向上移位的情况下再次得到聚焦成像。若δz指示平行于z方向的物体移位的程度,则根据下式条件在图像区域中出现像平面的所需位移δz′:δz′=β2δz商δz′/δz在此指定为长度比例(或深度比例)。在传统成像光学系统中的纵向比例因此由β2给定,即该成像比例的平方。应用于设置于投射镜头的物平面中的图案至该投射镜头的像平面中的成像,这意味着在z方向上带有图案的掩模母版的位移(位置改变)导致平行于z方向的像平面的位移,其中该位移的程度依成像比例而定。那么,变形成像系统特征在于具有取向相关的成像比例。在x方向上的成像比例在此应由βx给定,而在与其垂直的y方向上的成像比例应由βy给定。在此方面,图5在左侧部分中以实线示意性显示掩模母版或图案在物平面os中的原始位置,而以虚线显示在掩模母版在z方向上位移绝对值δz后产生的新位置。在右侧部分示图中,在该位移前的像平面is的原始位置以实线识别出。虚线isy显示对于y方向的像平面的新位置。后者已相对于原始位置移位绝对值δz1。另一虚线isx显示在x方向上的新像平面的位置,其在与像平面的原始位置距离δz2处。显而易见的是,在x方向上的新像平面和在y方向上的新像平面在掩模母版移位时不再重合,而是在z方向上彼此有距离。再者,显而易见的是,在x方向上的纵向比例不同于在y方向上的纵向比例,其中以下成立:δz1=βy2*δzaz2=βx2*δz这是像散成像像差ast的特征,根据:ast=δz2-δz1=(βx2-βy2)*δz由此看来,对于成像系统的给定像侧数值孔径na,表示像散的zemike系数z5可根据下式推导出:在x和y方向上具有相同成像比例的常规成像系统中,由于掩模母版在z方向上的移位而出现的成像像差可根据纵向比例由待曝光的基板平行于z方向的对应位移完全地校正。然而,此种校正在变形成像系统的情况下是不可能的,因为在相互垂直平面或方向上的成像比例不同。在根据本发明的投射镜头的示例性实施例中,尽管是变形成像,但仍提出具体装置以能够至少部分地校正由掩模母版的z位移所产生的像散像差部分。为了此目的,投射镜头po配备用于在扫描操作过程中校正由掩模母版位移所造成的像散波前像差部分的动态波前操纵系统。由本发明人所进行的研究已显示,可通过在投射镜头的反射镜的刚体自由度以受控方式快速地(例如在十分之一秒的时间尺度上)移动投射镜头的反射镜,来补偿接着引起的像散像差的所说明的一般非所需且因此有害的效应。为了此目的,在各反射镜m1至m6处均提供分配的致动装置dr1至dr6(由双头箭头标示)。各致动装置为了驱动目的均连接至投射曝光设备的中央控制单元cu。各致动装置均可相对于由基本设计(如表1和表2)所预定的其参考位置移动分配的反射镜,而各反射镜表面在该过程中均不会变形。位移可包含例如平行于参考轴(垂直于物平面和像平面的轴)的移位、垂直于参考轴的移位和/或倾斜(倾斜移动)。所有反射镜均具有非旋转对称的反射型自由形式表面。在此种形式的情况下,若适当则绕着旋转轴的受控旋转也可用于在波前中产生像散改变(参见wo2012041459a1)。该位移因此还可包含在扫描过程中反射镜中至少一个绕着旋转轴的旋转,或仅由此种旋转所产生。在其刚体自由度上致动可移动的反射镜由此变成第一类型操纵器的操纵器组件,这容许部分或完全补偿可由于掩模母版垂直于物平面的位移导致出现的像散波前像差部分。再者,该第一类型操纵器对于投射镜头的x-y像散提供快速校正可能性。若偶极照明用于例如成像密集线,则此种像散像差可例如由于在投射镜头中的加热效应而出现。一些反射镜(一个或多个)可以位于接近光瞳面,使得其认为此非旋转对称的光分布如同入射辐射能量的空间分布,并在照明区域中比在未照明区域中局部地加热至更大程度且对应地变形。如此可精确地改变光学路程长度,使得在x-y取向上的像散出现。此效应可由第一类型操纵器的操纵器部分或完全地补偿。快速刚体操纵器的效应可以定量示例为基础加以解说。在一个示例中,euv投射镜头(在此未更详细例示)以相对较大幅弯曲的环场rf操作,其在像平面中可具有例如在平行于x方向的宽度26mm,以及垂直于x方向(即在扫描方向上)的高度1.2mm。该环场可大幅弯曲,使得在像平面中介于在扫描方向上在后(lagging)的(凹面弯曲的)场边缘处的中间场点fp1与在场边缘的边际处的边际场点之间在扫描方向(y方向)上所测量的距离对应于垂直于该扫描方向所测量的场宽度的25%以上。投射镜头应具有在x方向上的成像比例βx=0.25(第二成像比例)和在y方向上的成像比例βy=0.125(第一成像比例)。对于三个像差z2、z3、z4,在每种情况下均通过模拟针对不同的校正方案确定在x方向上对于不同场曲线的校正潜力。在此种情况下,缩写“z2_0”代表恒定部分,z2_1代表线性部分,而z2_2代表在该扫描方向上所平均的z2像差的曲线的二次部分(在x方向上的畸变)。在第一校正方案中,掩模母版的z移位仅通过晶片的优化的z移位和绕着x和y轴的倾斜来补偿。表4显示对应的剩余像差级。显而易见的是,z2_1和z2_2无法仅通过掩模母版和晶片的移动而充分校正。这实质上源自模拟所基于的投射镜头的变形设计。在另外的等同边界条件的情况下,在第二校正方案中,除掩模母版和晶片的z位移外,还容许所有反射镜的快速协调刚体移动。表5显示对应的剩余像差级。可见临界曲线z2_1和z2_2和z3_2可良好加以校正。表4_0_1_2z20.0%77.6%82.2%z30.0%4.4%43.8%z42.4%2.5%13.7%表5作为垂直于物平面的掩模母版位移的结果,对于缩小或补偿像散波前像差部分的进一步校正可能性在于使用在光学上定位充分地接近光瞳面的一个或多个反射镜作为操纵器,以及像散地变形其反射镜表面。可由此提供第二类型操纵器。参照图3所显示的波前操纵系统的变化例,使用设置相对接近光瞳面(第二光瞳面pf2)作为第二类型操纵器的对应操纵器的第六反射镜m6。该反射镜具有设置于投射射束路径中可逆地可变形反射镜表面ms6。在反射镜表面ms6处的子孔径比sar满足条件sar>0.9,结果很明确该反射镜表面在光学上位于靠近最接近的光瞳面。分配给该反射镜的致动装置dr6′设计成相对于参考表面形状产生该反射镜表面的表面形状的可逆像散改变。该参考表面形状是由该投射镜头的光学基本设计所导致的表面形状(例如参见表1和表2)。图3中详细的例示图显示具有用于像散地变形的反射镜表面的致动器(如压电致动器)act的第六反射镜m6的后侧,前述致动器划分成四个象限。第一类型操纵器(在刚体自由度上移动)和第二类型操纵器(反射镜表面变形)的操纵器可在不同实施例中选择性地提供。在同一投射镜头中不同类型操纵器的组合在有必要时也是可能的。对于驱动第一和/或第二类型操纵器的操纵器有各种可能性。致动装置的驱动可以前馈(feedforward)模型为基础执行。在驱动的本变化例中,在扫描操作过程中掩模母版的动态位移/倾斜在前述扫描操作前已知。通过先前计算且制表显示的灵敏度,由掩模母版移动所造成并将在扫描操作过程中发生的非所需像散像差也是已知的。在此种情况下,术语“灵敏度(sensitivity)”说明在操纵器处限定的急剧数值改变与在成像质量上或在微光刻像差上所产生效应之间的关系。集成至控制单元cu中的优化算法随后可以预期的像散像差为基础计算对应的“动态校正配方(recipe)”(即针对各操纵器的最佳行进或致动距离或最佳轨迹),从而动态地校正像散像差。以本校正配方为基础,反射镜的致动装置在扫描操作过程中被动态地驱动,使得像散像差由此被校正。作为通过集成的优化算法计算操纵器的最佳轨迹的替代例,对于掩模母版的任何可能的移动,操纵器的相关联最佳行进还可事先计算出,并在控制单元的内存中以表格形式(查表(look-uptable))存在。在此种情况下,还可能的是,操纵器的行进在各扫描操作前均未定义,而是控制单元借助于存在的表格以掩模母版的瞬时位置为基础在扫描操作过程中驱动操纵器的致动装置。在此种情况下,因此,掩模母版的移动导致与其联接的操纵器的准瞬时移动(quasi-instantaneousmovement)。在以上实施例中,波前操纵系统的光学效应在扫描操作过程中在相对较短时间尺度上动态改变。然而,这不是波前的操纵可能有用的唯一情况。举例来说,在一些实施例中,波前操纵系统的光学效应在扫描操作以外的时间间隔期间改变。具体而言,位移掩模及校正像散波前像差部分的步骤可在进行新的一组扫描操作前在构建阶段中进行。以下将会说明示例性方案。在第一方案中,考虑投射物镜的初始调整。在初始调整过程中,投射物镜可能呈现出放大率误差,其通过垂直于物平面(即在z方向上)位移掩模可能至少部分地进行校正。如以上所解说,剩余像散像差可能会在使用变形投射物镜时产生。在该第一方案中,波前操纵系统的可变形反射镜将会用于产生至少部分地补偿由掩模位移所产生像散像差的对应像散像差。为了实现该校正效应,可产生虚拟操纵器,该操纵器可被视为基本上无像散并包括可变形反射镜和可位移掩模的虚拟操纵器。一个步骤包括将掩模和可变形反射镜的灵敏度加载进评估单元。在本申请中,术语“灵敏度”说明在操纵器的设定点的限定改变和与该设定点的改变相关联的成像质量上产生的效应之间的关系。例如,设定点的改变可包括致动器的位置改变(即行进)。在下一步骤中,计算用于致动移动的路线,这将会有效补偿由掩模位移所产生的像散。利用这些预备计算以提供包括可变形反射镜和可位移掩模的虚拟操纵器。在准备新的一组曝光时,新掩模可装载入投射曝光设备的掩模夹持装置。然后,将会通过适当装置进行像差测量,例如波前测量系统。然后,一台或多台操纵器将会装载包括用于包括可位移掩模和该可变形反射镜的虚拟操纵器的对应灵敏度和致动器移动(或行进)的组合。然后,在下列程序中启用描述包括操纵器的投射物镜的整体行为的模型。该模型可通过修改致动器的行进及考虑对应剩余像差来优化。在后续像差测量显示以上像差值或特定临界值的情况下,将会启动具有已变更参数的新优化程序。当像差测量显示在说明书范围内通过修改操纵器和/或像差级均无法得到明显改进时,结束初始调整。在另一方案中,图案的不同层应在多个曝光流程中叠置地印制(曝光)。为了此目的使用两种不同的掩模类型a和b,其中各掩模的图案可具有不同的放大率误差。放大率误差可事先通过例如外部测量而确定。在投射物镜在物侧为非远心的情况下,在z方向上掩模的位移可用作放大率操纵器(以补偿放大率误差)。为了避免在变形投射镜头中的寄生像散像差,应进行操纵器(例如可变形反射镜)的对应致动。在该过程中,掩模a可首先被使用,然后从掩模夹持装置卸除。在下一步骤中,掩模b可装载入掩模夹持装置,且对应掩模数据加载入控制单元。在适当时刻,操纵器被装载入评估单元,其包括用于包括可位移掩模和可变形反射镜的虚拟操纵器的各灵敏度和设定点变更的组合。然后,在下列程序中启用描述包括操纵器的投射物镜的整体行为的模型。该模型可通过修改致动器的行进及考虑对应剩余像差而优化。一旦掩模b定位在所需位置上,且可变形反射镜具有所需变形状态,则可开始进行新曝光。施加于掩模的位置和可变形反射镜(和可能其他操纵器)的变形状态的调整无需与在扫描操作过程中的操纵器情况一样快速。然而,高度动态波前操纵系统可用于在进行扫描操作的时间间隔以外进行的操纵。表1表面半径距离值操作模式像平面无限大352.884m6-889.919-802.884reflm5-219.7611800.787reflm4-999.946-434.619reflm3-1033.356483.832reflm22464.083-947.116reflm11323.6881047.116refl物平面无限大0.000表2系数m6m5m4k3.303831e-032.041437e-02-1.056546e-01y0.000000e+000.000000e+000.000000e+00x21.106645e+004.620513e+001.065419e+00y21.316656e+004.632819e+002.089523e+00x2y-6.987016e-026.244905e-022.322141e-01y3-1.544816e-01-2.303227e-01-2.158981e-01x43.297744e-029.371547e-027.579352e-02x2y26.476911e-021.671737e-018.744751e-02y45.431530e-027.743085e-022.360575e-01x4y-7.040479e-044.607809e-033.61681e-03x2y3-6.159827e-03-1.034287e-029.782459e-03y5-4.061987e-03-3.840440e-03-1.297054e-01x61.398226e-033.085471e-036.847894e-03x4y22.977799e-038.906352e-036.372742e-03x2y44.433992e-038.678073e-03-2.569810e-02y61.255594e-031.683572e-039.106731e-02x6y2.969767e-041.881484e-041.342374e-03x4y3-2.320109e-04-1.123168e-03-5.896992e-03x2y5-3.654895e-c4-5.949903e-041.660704e-03y78.966891e-05-3.952323e-04-3.764049e-02n半径2.899772e+026.300046e+02.064580e+02系数m3m2m1k5.744686e-01-3.325393e+02-1.583030e-02y0.000000e+000.000000e+000.000000e+00x23.551408e-013.277030e-01-2.811984e-02y22.123536e+001.609563e+00-4.135335e-01x2y2.013521e-01-6.948142e-01-3.866470e-02y3-1.210907e-023.694447e-01-1.853273e-02x46.478320e-021.369729e-011.349339e-03x2y27.482002e-021.984843e-013.032808e-03y48.327949e-02-1.227576e-01-2.824781e-03x4y-2.048831e-03-4.568931e-02-4.300195e-04x2y3-4.029059e-03-1.713508e-02-6.501345e-04y5-1.415756e-026.1b5385e-033.144628e-03x61.998416e-04-1.834856e-026.906841e-05x4y2-1.979383e-03-3.309794e-025.274081e-05x2y4-5.943296e-03-5.169942e-02-1.330272e-03y61.246118e-03-1.603819e-01-1.363317e-02x6y1.584327e-047.876367e-03-2.377257e-05x4y3-3.187207e-04-1.244804e-02-2.251271e-04x2y5-5.566691e-04-5.746055e-02-9.906573e-04y7-1.399787e-03-3.870909e-024.001012e-03n半径8.132829e+017.472082e+011.311311e+02表3系数m6m5m4m3m2m1像平面y-偏心-51.252-99.408123.654215.631528.818512.8550.000x-旋转0.3237.067-2.44410.48310.9403.4880.000当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1