颜色减少的高效红外反射器的制作方法

文档序号:26743895发布日期:2021-09-23 01:07阅读:199来源:国知局
颜色减少的高效红外反射器的制作方法
颜色减少的高效红外反射器


背景技术:

1.红外反射器可以是通过将数十至数百的熔融聚合物层共挤出并且随后对所得膜进行取向或拉伸而形成的聚合物多层光学膜。这些微层具有不同的折射率特性和足够的薄度,使得光在相邻微层之间的界面处被反射。红外反射器通常在近红外光谱的一部分上反射,并且可用于太阳热阻隔应用。


技术实现要素:

2.在一个方面,本说明书涉及一种红外反射性膜。具体地,该红外反射性膜包括多层光学芯,该多层光学芯具有多个光学重复单元,该多个光学重复单元包括第一双折射聚合物层和第二聚合物层。该红外反射性膜还包括可见光吸收层(visible absorbing layer),该可见光吸收层与多层光学芯的主表面相邻地设置,该可见光吸收层并非粘合剂层。该多个光学重复单元各自具有光学厚度,并且多个光学重复单元的光学厚度被配置为使得多个光学重复单元表现出具有左谱带边缘和右谱带边缘的反射谱带,该反射谱带的每个谱带边缘被定义为最靠近反射谱带中心的点,在该点处透射率跨越45%。反射谱带随入射角的变化而偏移并且产生最大色移,该最大色移为在忽略亮度的情况下,在0度至85度的入射角范围内以5度增量测量的反射颜色的在l*a*b*颜色空间中的两个点之间的最大距离。在60度入射角下,左谱带边缘处于或低于750nm,并且在具有可见光吸收层并且穿过可见光吸收层的情况下的最大色移与在不具有可见光吸收层的情况下的最大色移相比减小至少25%。
3.在另一方面,本说明书涉及一种红外反射性膜。该红外反射性膜包括:多层光学芯,该多层光学芯具有多个光学重复单元,每个光学重复单元包括第一双折射聚合物层和第二聚合物层;和可见光吸收层,该可见光吸收层与多层光学芯的主表面相邻地设置,该可见光吸收层并非粘合剂层。该多个光学重复单元各自具有光学厚度,多个光学重复单元的光学厚度被配置为使得多个光学重复单元表现出具有左谱带边缘和右谱带边缘的反射谱带,该反射谱带随入射角的变化而偏移,并且其中在60度入射角下,左谱带边缘处于或低于750nm。在50
°
入射角下从400nm至700nm的可见光反射与在8
°
入射角下从400nm至700nm的可见光反射的比为至少150%。
附图说明
4.图1a是层合至玻璃的红外反射器的示意性正视横截面图。
5.图1b是层合至玻璃的红外反射器的示意性正视横截面图,其中一个表面上有水滴。
6.图2是包括红外反射器的常规层合叠堆的示意性正视横截面图。
7.图3是包括具有可见光吸收层的红外反射器的层合叠堆的示意性正视横截面图。
8.图4是包括可见光吸收表层的红外反射器的示意性正视横截面图。
9.图5是具有可见光吸收层(visible light absorbing layer)的红外反射器的示意性正视横截面图。
10.图6是建模的和测量的700nm左谱带边缘红外反射器的反射颜色的比较。
11.图7是示出在标准反射条件下,对于未涂布的建模的850nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
12.图8是示出在标准反射条件下,对于未涂布的建模的800nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
13.图9示出在标准反射条件下,对于未涂布的建模的700nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
14.图10是示出在标准反射条件下,对于具有50%可见光透射率(vlt)吸收层的建模的850nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
15.图11是示出在标准反射条件下,对于具有20%vlt吸收层的建模的850nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
16.图12是示出在标准反射条件下,对于具有5%vlt吸收层的建模的850nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
17.图13是示出在标准反射条件下,对于具有50%vlt吸收层的建模的800nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
18.图14是示出在标准反射条件下,对于具有20%vlt吸收层的建模的800nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
19.图15是示出在标准反射条件下,对于具有5%vlt吸收层的建模的800nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
20.图16是示出在标准反射条件下,对于具有50%vlt吸收层的建模的700nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
21.图17是示出在标准反射条件下,对于具有20%vlt吸收层的建模的700nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
22.图18是示出在标准反射条件下,对于具有5%vlt吸收层的建模的700nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
23.图19是示出在雨滴反射条件下,对于未涂布的建模的850nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
24.图20是示出在雨滴反射条件下,对于未涂布的建模的800nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
25.图21是示出在雨滴反射条件下,对于未涂布的建模的700nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
26.图22是示出在雨滴反射条件下,对于具有50%vlt吸收层的建模的850nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
27.图23是示出在雨滴反射条件下,对于具有20%vlt吸收层的建模的850nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
28.图24是示出在雨滴反射条件下,对于具有5%vlt吸收层的建模的850nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
29.图25是示出在雨滴反射条件下,对于具有50%vlt吸收层的建模的800nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
30.图26是示出在雨滴反射条件下,对于具有20%vlt吸收层的建模的800nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
31.图27是示出在雨滴反射条件下,对于具有5%vlt吸收层的建模的800nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
32.图28是示出在雨滴反射条件下,对于具有50%vlt吸收层的建模的700nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
33.图29是示出在雨滴反射条件下,对于具有20%vlt吸收层的建模的700nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
34.图30是示出在雨滴反射条件下,对于具有5%vlt吸收层的建模的700nm左谱带边缘红外反射器,以5度增量从0度至85度的a*b*反射颜色的曲线图。
具体实施方式
35.多层光学膜,即至少部分地通过具有不同折射率的微层的布置提供期望的透射和/或反射特性的膜是已知的。众所周知,此类多层光学膜通过在真空室中将一系列无机材料以光学薄层(“微层”)的形式沉积于基底上而制成。无机多层光学膜描述在教科书中,例如h.a.macleod,薄膜光学滤波器,第二版,麦克米伦出版公司(1986年)(h.a.macleod,thin

film optical filters,2nd ed.,macmillan publishing co.(1986))和a.thelan,光学干涉滤波器的设计,麦格劳希尔公司(1989年)(a.thelan,design of optical interference filters,mcgraw

hill,inc.(1989))。
36.也已通过共挤出交替的聚合物层展示多层光学膜。参见例如美国专利3,610,729(rogers)、4,446,305(rogers等人)、4,540,623(im等人)、5,448,404(schrenk等人)以及5,882,774(jonza等人)。在这些种聚合物多层光学膜中,聚合物材料主要或专门用于各个层的制备中。这些聚合物多层光学膜可以称为热塑性多层光学膜。此类膜适合高产量制造工艺,并且可制成大型片和卷材。
37.多层光学膜包括具有不同折射率特征的各个微层,使得一些光在相邻微层之间的界面处被反射。微层是足够薄的,使得在多个界面处反射的光经受相长干涉或相消干涉作用,以便赋予多层光学膜期望的反射或透射特性。对于被设计成反射紫外光、可见光或近红外波长光的多层光学膜而言,每个微层一般均具有小于约1μm的光学厚度(物理厚度乘以折射率)。一般可以将层布置为最薄至最厚的。在一些实施方案中,交替光学层的布置可根据层计数而基本上线性地变化。这些层分布可以称为线性层分布。也可以包括更厚的层,诸如在多层光学膜的外表面处的表层或者设置在多层光学膜内用以将微层的相干组(本文中称为“分组”)分开的保护边界层(pbl)。在一些情况下,该保护边界层可以是与至少一个多层光学膜的交替层相同的材料。在其他情况下,保护边界层可以是针对其物理或流变特性而选择的不同材料。保护边界层可在光分组的一侧或两侧上。在单分组多层光学膜的情况下,保护边界层可以在多层光学膜的一个或两个外表面上。
38.出于本说明书的目的,分组一般为光学重复单元的单调变化的厚度。例如,分组可单调递增、单调递减、既递增又恒定、或既递减又恒定,但不能既递增又递减。不沿循此图案的一层或若干层应被理解为对于某个光学重复层组作为分组的总体定义或识别是无关紧要的。在一些实施方案中,将分组定义为共同提供感兴趣光谱(例如,可见或近红外光谱)的
某个子范围上的反射的连续非冗余层对的最大离散组可能是有帮助的。
39.在一些情况下,微层具有提供1/4波长叠加的厚度和折射率值,即将微层布置于光学重复单元或单位单元中,每个光学重复单元或单位单元均具有相同光学厚度(f比=50%)的两个邻近微层,此类光学重复单元可通过相长干涉有效地反射光,被反射光的波长λ约是光学重复单元总光学厚度的两倍。其他层布置也是已知的,诸如具有f比不同于50%的双微层光学重复单元的多层光学膜,或光学重复单元包括多于两个微层的膜。可以配置这些光学重复单元设计以减少或增加某些更高阶反射。参见例如美国专利号5,360,659(arends等人)和5,103,337(schrenk等人)。沿膜的厚度轴(例如,z轴)的光学重复单元的厚度梯度可以用于提供加宽的反射谱带,诸如在人的整个可见区域内延伸并进入近红外区的反射谱带,以使当谱带以倾斜入射角转移至较短波长时,微层叠堆继续在整个可见光谱内反射。通过调整厚度梯度来锐化谱带边(即高反射与高透射之间的波长过渡)在美国专利6,157,490(wheatley等人)中有所讨论。
40.多层光学膜以及相关设计和构造的另外细节在美国专利5,882,774(jonza等人)和6,531,230(weber等人)、pct公布wo 95/17303(ouderkirk等人)和wo 99/39224(ouderkirk等人)、以及标题为“多层聚合物反射镜中的巨大双折射光学器件”,科学,第287卷,2000年3月(weber等人)(“giant birefringent optics in multilayer polymer mirrors”,science,vol.287,march 2000(weber et al.))的公布中有所讨论。多层光学膜和相关制品可包括针对其光学特性、机械特性和/或化学特性而选择的附加层和涂层。例如,在膜的入射侧可添加uv吸收层以保护部件免于uv光引起的降解。使用可uv固化的丙烯酸酯粘合剂或其它合适的材料可以将多层光学膜附接到机械增强层。此类增强层可包含诸如pet或聚碳酸酯的聚合物,并且也可包括例如通过使用小珠或棱镜提供诸如光漫射或光准直的光学功能的结构化表面。附加层和涂层也可包括抗乱涂层、抗撕裂层和硬化剂。参见例如美国专利6,368,699(gilbert等人)。用于制备多层光学膜的方法和装置在美国专利6,783,349(neavin等人)中有所讨论。
41.多层光学膜的反射和透射特性是相应微层的折射率以及微层的厚度和厚度分布的函数。每个微层(至少在膜的局部位置处)可以通过面内折射率n
x
、n
y
以及与膜的厚度轴相关联的折射率n
z
来表征。这些折射率分别表示所讨论的材料对于沿相互正交的x轴、y轴和z轴偏振的光的折射率。为便于在本专利申请中说明,除非另外指明,否则假设x轴、y轴和z轴为适用于多层光学膜上任何感兴趣点的局部笛卡尔坐标,其中微层平行于x

y平面延伸,并且其中x轴在膜平面内进行取向以最大化δn
x
的量值。因此,δn
y
的量值可等于或小于(但不大于)δn
x
的量值。此外,选择哪个材料层(以开始计算差值δn
x
、δn
y
、δn
z
)由需要δn
x
为非负值来决定。换句话说,形成界面的两层之间的折射率差值为δn
j
=n
1j

n
2j
,其中j=x、y或z,并且其中选择层标号1、2,使得n
1x
3n
2x
,即δn
x
30。
42.在实践中,折射率是通过审慎的材料选择和加工条件来控制的。多层膜通过以下制备:将大量(例如,数十或数百)层的两种交替的聚合物a、聚合物b共挤出,任选地接着将多层挤出物穿过一个或多个倍增装置层,接着经由膜模头进行铸造,并且然后对挤出物进行拉伸或者以其他方式对挤出物进行取向以形成最终的膜。所得膜通常由数百个单独的微层组成,调整微层的厚度和折射率,从而在所期望的光谱区域(如可见光区或近红外光区)中提供一个或更多反射谱带。为了在适当层数下获得高反射率,相邻微层通常表现出对于
沿着x轴偏振的光为至少0.05的折射率差值(δn
x
)。在一些实施方案中,选择材料,使得对于沿着x轴偏振的光的折射率差值在进行取向之后尽可能高。如果期望对两种正交偏振的高反射率(即,以充当反射器),那么也可将相邻微层制成表现出对于沿着y轴偏振的光为至少0.05的折射率差值(δn
y
)。
43.除其他事项之外,以上引用的

774(jonza等人)专利描述了对于沿着z轴偏振的光可如何调整相邻微层之间的折射率差值(δn
z
)以实现对斜入射光的p偏振分量的期望反射率特性。为了保持处于倾斜入射角的p偏振光的高反射率,可将微层之间的z轴折射率失配δn
z
控制成基本上小于平面内折射率差值δn
x
的最大值,使得δn
z
≤0.5*δn
x
,或δn
z
≤0.25*δn
x
。量值为零或几乎为零的z折射率失配产生了微层之间的这样的界面,该界面对p偏振光的反射率是随入射角的常数或几乎为常数。此外,可将z轴折射率失配δn
z
控制成具有相比于面内折射率差值δn
x
相反的极性,即δn
z
<0。此条件会产生其反射率对于p偏振光随入射角增加而增大的界面,对于s偏振光的情况也一样。
44.有时添加表层。这通常在层形成之后但在熔体离开膜模头之前进行。然后,以用于聚酯膜的传统方式将多层熔体通过膜模头浇铸至冷却辊上,在该冷却辊上对其进行淬火。然后,浇铸料片以不同方式拉伸,以获得在光学层中的至少一个中的双折射,从而产生在许多情况下为反射偏振器或镜膜,如已经描述于例如美国专利公布2007/047080a1、美国专利公布2011/0102891a1、以及美国专利7,104,776(merrill等人)中。
45.红外反射器(其可称为太阳或阳光控制膜,或更一般地,窗膜)选择性地反射电磁光谱的近红外部分,同时透射可见波长光谱。这减少了透过此类反射器的太阳辐射,同时仍然看起来大体透明或半透明的。在诸如建筑物或车辆的封闭或半封闭环境中,这可有助于降低将环境保持在期望温度下所需的温度和冷却负载。在一些情况下,可提供可见光吸收剂以便降低可见光透射率,但通常选择此类吸收剂以提供中性颜色变暗。
46.已知的是,典型红外反射器(或事实上,任何依赖于交替微层之间的干涉作用的典型多层光学反射器)的反射谱带随着入射角的增加而向左偏移(偏移至较短波长)。关于多层光学膜的偏移谱带边缘的详细讨论,参见美国专利号6,531,230(weber等人)。为了避免可观察到的离轴反射颜色,红外反射器被设计成具有在最大光入射角下(对应于法向入射下约850nm)不向左偏移到可见范围的左谱带边缘。在入射角小于最大值时,这意味着红外反射器在可见谱带的边缘和反射器的法向入射左谱带边缘之间透射那些波长中的至少一些波长,使得红外反射器在阻隔太阳辐射方面效率降低。
47.在真实世界的条件下,红外反射器层合至玻璃或层合在玻璃之间。玻璃的折射率为在一定入射角以上从空气中进行菲涅耳反射创造界面,并且提供入射光进入红外反射器的折射。因此,进入红外反射器的最大传播角,无论外部入射角(到玻璃上)如何,都仅为约40度。
48.然而,在户外环境中,由于雨水、冷凝或清洁,外部玻璃上可能会形成水滴。这些半球形或半球状液滴提供几何表面,使得所有入射光基本上垂直于该表面,因此折射最少。此外,液滴缩小了空气和玻璃的折射率间的差距,并且有助于将光耦合进和耦合出红外反射器和玻璃。在此类情况下,红外反射器中的最大传播角更高,55度或更大。因此,由于不寻常的传播条件,即使是精心设计的红外反射器在液滴的存在下也可能看起来是高度有色的。
49.将左谱带边缘设计得甚至更向右可有助于减少反射颜色,但在某些应用中是不期
望的,因为存在与更长可见光/近红外波长的透射相对应的效率损失。
50.向红外反射器添加可见光吸收材料可减少水滴条件下的可见反射颜色。令人惊讶的是,这种可见光吸收材料使得反射器的设计甚至更有效;即,允许将左谱带边缘设计得在法向入射和倾斜入射下更靠近可见波长谱带的边缘(或甚至稍微在可见波长谱带的内部)。颜色令人反感的原因通常不是因为颜色的绝对值,而是因为两个不同观察角之间的色移的量值。这些点中的两个点之间的最大距离可被视为最大色移,也是最需要减少的量。以这种方式测量,在法向反射颜色和水滴颜色这两种条件下,在具有可见光吸收层并且穿过可见光吸收层的情况下的颜色减少与在不具有可见光吸收层的情况下的相同红外反射器相比可为25%或甚至50%。
51.图1a是层合至玻璃的红外反射器的示意性正视横截面图。红外反射器30经由第一粘合剂层20和第二粘合剂层22层合在第一玻璃层10和第二玻璃层12之间。图1a示出了进入红外反射器30的传播角有限的一般机制。入射光线40一旦入射在第一玻璃层10上就被折射为折射光线42(当然,由于玻璃层和空气之间的折射率不同,从空气入射在玻璃层上的光的至少一些部分将由于菲涅耳反射而被反射)。折射光线42以最小的折射穿过第一粘合剂层20(因为折射率通常相当接近,因此图1a中未示出折射率)。在经过红外反射器30的微层叠堆的某个点处,折射光线42被反射为反射光线44。反射光线44经过相同的层(第一粘合剂层和第一玻璃层10),并且在其从第一玻璃层10作为出射光线46回到空气时被偏离法向折射。虽然入射光线40以相对极端的角度(即,掠射角)入射在整个光学层合物上,但系统的光学器件将红外反射器上的实际有效入射角限制为更适度的角度。对于观察者而言,反射

折射光线46看起来已经以非常倾斜的角度从图1a的光学叠堆反射出来;然而,由于折射到光学系统中,因此不会表现出以其他方式与此类角度相关联的颜色伪影。
52.图1b是层合至玻璃的红外反射器的示意性正视横截面图,其中一个表面上有水滴。红外反射器30经由第一粘合剂层20和第二粘合剂层22层合在第一玻璃层10和第二玻璃层12之间。在第一玻璃层10的表面上有水滴60。图1b示出了水滴的存在可如何增加红外反射器30上的最大入射角。如前所述,入射光线50(对应于图1a中的入射光线40)入射在光学层合物上。然而,在图1b中,入射光线50首先穿过半球形水滴60并被其折射。水的形状和折射率(在空气和玻璃之间)将入射光线50折射成液滴光线52,然后液滴光线52在进入第一玻璃层10之后进一步折射。液滴的形状和中间折射率也可有助于将更多的光耦合到红外反射器中(而不是在空气

玻璃界面处被反射)。如图1a所示,折射光线54经过第一玻璃层10、第一粘合剂层20,并且在红外反射器30的多层叠堆内的某处被反射。(同样,玻璃、粘合剂层和红外反射器之间的界面产生相对不显著的折射并且在此未示出。)反射光线56穿过第一粘合剂层20和第一玻璃层10返回并在玻璃

水滴界面处折射。反射液滴光线57经过水滴60的剩余部分,并且在水滴与空气之间的界面处作为出射光线58再次折射。需注意,图1b中的垂直比例被极大地夸大,并且实际上,光从它进入的相同水滴(或者最多是相邻水滴)中出射。然而,水滴机制在红外反射器上提供较浅的入射角,并且因此可能引入在典型条件(即,图1a的配置)中不可见的颜色伪影。
53.图2是包括红外反射器的常规层合叠堆的示意性正视横截面图。红外反射器230经由第一着色粘合剂层220和第二着色粘合剂层222层合在第一玻璃层210和第二玻璃层212之间。红外反射器可为具有反射谱带的任何合适的红外反射器,该反射谱带的谱带边缘随
入射角而偏移。在许多实施方案中,这些是如上所述的双折射干涉反射器。在此,可假定红外反射器230是具有850nm或850nm以上的左谱带边缘的常规多层光学膜红外反射器。常规地,通过在第一着色粘合剂层220、第二着色粘合剂层222或两者中使用光吸收染料或颜料来控制可见光吸收,并且通过高角度颜色伪影的扩展来控制可见光吸收。对于颜色伪影,可见光吸收剂(例如,着色粘合剂层)通常设置在观察者和反射器之间。
54.常规方法具有若干挑战。首先,在叠堆完全层合在一起之前,无法实际评估颜色和总可见光透射率。并且,由于着色层的可见光吸收取决于该层的厚度和粘合剂中颜料/染料的密度两者,因此正确厚度的粘合剂的施加和着色粘合剂层的后续处理可能是具有挑战性的(并且是混乱的)。此外,由于染料/颜料通过着色粘合剂层存在,因此着色粘合剂层中存在的紫外线吸收剂可能不能有效地保护染料/颜料免于透过第一玻璃层的紫外线暴露和降解。
55.图3是包括红外反射器的层合叠堆的示意性正视横截面图。红外反射器330(其包括可见光吸收层370)经由第一光学透明的粘合剂层320和第二光学透明的粘合剂层322层合在第一玻璃层310和第二玻璃层312之间。
56.第一玻璃层310可为或可包括通过任何合适的方法形成的任何合适类型的玻璃。例如,第一玻璃层310可包括熔融石英玻璃、硼硅酸盐玻璃、钠钙玻璃或任何其他类型的玻璃。第一玻璃层310可被制成平板玻璃、浮法玻璃或甚至吹制玻璃。第一玻璃层310可为钢化玻璃或化学增强玻璃。第一玻璃层310还可具有任何合适的形状和厚度。在某些实施方案中,第一玻璃层310可为几毫米厚,最多至几厘米厚。第一玻璃层310可为基本上平面的或平坦的,或者其可具有平缓的曲线或轮廓。其他三维形状也是可能的,包括具有较小曲率半径或甚至复杂曲率的曲线。第一玻璃层310可被纹理化或蚀刻。第一玻璃层310可为基本上透明的或中性颜色的,或者第一玻璃层310可为有色玻璃。第二玻璃层312可与第一玻璃层310相同,或者可为不同的类型、形状、颜色或厚度。
57.第一光学透明的粘合剂层320和第二光学透明的粘合剂层322可为任何合适的光学透明的粘合剂并且可具有任何合适的厚度。在一些实施方案中,第一光学透明的粘合剂层和第二光学透明的粘合剂层可具有相同的厚度或它们可具有不同的厚度。在一些实施方案中,光学透明的粘合剂层可包含聚乙烯醇缩丁醛。在一些实施方案中,光学透明的粘合剂层可包含紫外线吸收剂。在一些实施方案中,光学透明的粘合剂层可包含受阻胺光稳定剂。可施加光学透明的粘合剂并且随后通过施加热、光或其他辐射来固化。在一些实施方案中,可使用高压釜经由光学透明的粘合剂将玻璃层合至红外反射器。光学透明的粘合剂层可具有高可见光透射率;例如,光学透明的粘合剂层中的每个粘合剂层可透射超过80%、85%、90%或甚至95%的400nm至700nm的光。光学透明的粘合剂层还可具有低雾度和高清晰度。在一些实施方案中,光学透明的粘合剂层可具有小于20%、小于15%、小于10%或小于5%的雾度和/或大于80%、大于85%、大于90%或大于95%的光学清晰度。
58.红外反射器330具有反射谱带,该反射谱带具有左谱带边缘和右谱带边缘。出于本说明书的目的,反射谱带的每个谱带边缘被定义为最靠近反射谱带中心的点,在该点处透射率跨越45%。左谱带边缘为具有较短(较蓝)波长的谱带边缘,并且右谱带边缘为具有较长(较红)波长的谱带边缘。红外反射器330对于法向入射角下的可见波长是基本上透明的;然而,在60度入射下,红外反射器具有处于或低于750nm的左谱带边缘。对于典型红外反射
器,这对应于处于或低于850nm的法向(0度)入射下的左谱带边缘。在一些实施方案中,法向入射下的左谱带边缘可处于或低于800nm。在一些实施方案中,法向入射下的左谱带边缘可处于或低于750nm。在一些实施方案中,法向入射下的左谱带边缘可处于或低于700nm。
59.可见光吸收层370与红外反射器330相邻;具体地,与红外反射器330的多层光学芯的主表面相邻。出于图3的目的,可见光吸收层370和红外反射器330之间的附接方法或关系是通用的;然而,这些配置(包括层合、共挤出和可见光吸收表层)将结合图4和图5更详细地探究。可见光吸收层370可包含任何合适的光吸收剂,包含宽带光吸收剂诸如炭黑。在一些实施方案中,可见光吸收层370可包含波长特定的染料或颜料。在一些实施方案中,这些可包含金属氧化物,诸如锰氧化铁或另一种透明的金属氧化物。为了获得最大效率,可见光吸收剂应仅吸收可见范围的波长;即,应依赖红外反射器来反射入射的红外太阳辐射,而不使其被可见光吸收层吸收(并且随后被转变成热);然而,在实施过程中,宽带吸收剂可适用于许多应用。这些颜料可与聚合物树脂共挤出,聚合物树脂包括任何合适的聚合物,诸如聚碳酸酯、聚酯(包括聚对苯二甲酸乙二醇酯)、聚(甲基丙烯酸甲酯)、它们的共混物或共聚物。在一些实施方案中,可见光吸收层可为浸染的聚合物树脂。在一些实施方案中,聚合物树脂可与由至少两个透明封装层包围的耐热染料,诸如以美国专利号9,630,384(haak等人)中所述的工艺共挤出,该专利据此全文以引用方式并入。
60.由于红外反射器的反射谱带随入射角的变化而偏移,因此红外反射器负责产生最大色移,该最大色移为在0度至85度范围内以5度增量测量的两个色点之间的a*b*空间中的最大距离(忽略l*)。亮度被忽略,因为在高角度下,离开空气

膜界面的菲涅耳反射支配反射的颜色并且混淆颜色测量。出于本说明书的目的,最大色移应在具有可见光吸收层并且穿过可见光吸收层的情况下进行测量,并与相同构造进行比较,不具有可见光吸收层的情况除外。在一些实施方案中,并且如实施例中进一步所示,具有50%可见光透射率(vlt)的可见光吸收层可使最大色移减少超过25%,并且甚至超过50%或60%。在一些实施方案中,具有20%vlt和5%vlt的可见光吸收层可使最大色移减少超过90%或甚至99%。
61.图3中所述的红外反射器,与可见光吸收层结合,具有优于常规着色粘合剂层的优点,因为其可更一致地制备和施加。在某些情况下,可执行在线检查,以验证可见光透射率和色移是否在适当的规格内。另外,可使用光学透明的粘合剂(未着色),其提供相对厚度不变的可见光透射率。并且,可在粘合剂层中提供紫外线吸收剂以保护可见光吸收层中的所有可见光吸收剂。
62.图4是包括可见光吸收表层的红外反射器的示意性正视横截面图。红外反射器410具有表层412,该表层包含可见光吸收剂。图4示出了将可见光吸收层与红外反射器结合的第一方式。如上所述,表层通常与多层光学膜的光学活性芯一起共挤出,这在一些实施方案中有助于保护光学活性芯免受挤出、取向和其他制造工艺期间经历的剪切力的影响。可见光吸收染料可被挤出在表层内。在一些实施方案中,这些表层可为多层表层诸如聚酯,表层包括围绕透明封装层的热稳定染料(参见例如美国专利9,630,384(haak等人))。在一些实施方案中,仅单侧表层包含可见光吸收剂。在一些实施方案中,双侧表层包含可见光吸收剂。
63.图5是具有可见光吸收层的红外反射器的示意性正视横截面图。可见光吸收层520经由粘合剂530层合至红外反射器510。图5示出了配置红外反射器和可见光吸收层的替代
方式。可见光吸收层520可经由任何合适的工艺,包括本文所述的任何工艺(例如,浸染、用热稳定染料和透明封装层挤出等)单独地制备,并且随后经由粘合剂层合至红外反射器的主表面。粘合剂530可为任何合适的粘合剂,包括光学透明的粘合剂或甚至着色粘合剂。粘合剂530可通过添加辐射、热或任何其他机制来固化。在一些实施方案中,可见光吸收层520可利用热和/或压力或其他适当条件层合至红外反射器510,使得不需要粘合剂。在一些实施方案中,可组合图4和图5的方法,使得存在可见光吸收表层和单独的可见光吸收层。
64.类似于本文所述的那些构造的构造可用于汽车玻璃应用中,诸如用于天窗(sunroof)/观景天窗(moonroof)、挡风玻璃和侧窗。在一些实施方案中,本文所述的构造可用于商业和住宅建筑物中的建筑窗(例如,采光窗(skylight))和外部窗。类似于本文所述的那些构造的构造可用于可能期望太阳热阻隔以及至少部分可见光透明度的任何应用中。
65.高度有色的红外反射性膜
66.在一些实施方案中,可能期望的是提供具有刻意高度彩色外观的红外反射性膜。对于本文所述的其他红外反射性膜,红外反射性膜包括:多层光学芯,该多层光学芯具有多个光学重复单元,每个光学重复单元包括第一双折射聚合物层和第二聚合物层;和可见光吸收层,该可见光吸收层与多层光学芯的主表面相邻地设置,该可见光吸收层并非粘合剂层。该多个光学重复单元各自具有光学厚度,多个光学重复单元的光学厚度被配置为使得多个光学重复单元表现出具有左谱带边缘和右谱带边缘的反射谱带,该反射谱带随入射角的变化而偏移,并且其中在60度入射角下,左谱带边缘处于或低于750nm。
67.在一些实施方案中,可能期望的是离轴反射和轴上反射之间具有大的比。以这种方式,当在轴上观察时,此类构造可具有不显眼的外观,但当以一定角度观察时具有引人注目的美观性。在一些实施方案中,在50
°
入射角下从400nm至700nm的可见光反射与在8
°
入射角下从400nm至700nm的可见光反射的比为至少100%。在一些实施方案中,在50
°
入射角下从400nm至700nm的可见光反射与在8
°
入射角下从400nm至700nm的可见光反射的比为至少150%。在一些实施方案中,在50
°
入射角下从400nm至700nm的可见光反射与在8
°
入射角下从400nm至700nm的可见光反射的比为至少200%。在一些实施方案中,在50
°
入射角下从400nm至700nm的可见光反射与在8
°
入射角下从400nm至700nm的可见光反射的比为至少300%。需注意,该反射比包括基于空气与多层膜的塑料最外层之间的折射率差的表面(菲涅耳)反射。在计算中包括表面反射归一化为观察者在典型环境中会看到的轴上反射。
68.此类红外反射性膜可在膜的一侧上包括可见光吸收层。可见光吸收层(其可包含颜料诸如炭黑)可被配置为使得在应用中,其位于窗的面向内部的一侧。对于车内或建筑物内的观察者而言,这可能会减弱或消除色移的量值,同时仍为外部观察者保持独特的审美效果。在一些实施方案中,在红外反射性膜的外表面或暴露表面上设置保护性硬质涂膜。
69.除非另外指明,否则针对附图中元件的描述应被理解为同样应用于其他附图中的对应的元件。本发明不应被视为限于上述具体实施例和实施方案,因为详细描述此类实施方案是为了便于说明本发明的各个方面。相反,本发明应被理解为涵盖本发明的所有方面,包括落在由所附权利要求书及其等同物所限定的本发明的范围内的各种修改、等同工艺和替代装置。
70.实施例
71.制备如us 6,797,396的实施例5中所述的红外反射器。将膜反射的左谱带边缘调
整至850至700纳米,其中反射的右谱带边缘为大约1160纳米。对膜进行制备、建模和/或测试,并且测试方法和建模描述如下。目标建模着色层基于用锰铁氧体黑尖晶石的商业分散体制成的层,锰铁氧体黑尖晶石可从住友金属矿业公司(日本东京)(sumitomo metal mining company(tokyo,japan))以wrf

30x1获得。将该分散体混合到由pvb树脂(mowitol b20h,可从日本东京的可乐丽公司(kuraray company,tokyo,japan)获得)组成的溶剂基涂层中。涂层溶液由8重量%至30重量%的wrf

30x1、5重量%至12重量%的mowitol b20h以及甲基乙基酮、甲苯、庚烷和甲基异丁基酮的溶剂共混物的剩余部分组成。将涂层干燥以获得涂布到上文提及的红外反射器上的pvb树脂中的目标分散体。调整涂层溶液中的wef

30x1的百分比以获得如实施例中所述的可见光透射率。
72.测试方法
73.使用总绝对测量系统(tams)附件模块(型号l6310240)在perkinelmer lambda 1050光谱仪(马萨诸塞州沃瑟姆(watham,mass.)中测量膜的反射光谱,该模块允许自动旋转和测量样品以用于测量离角反射率。然后计算每个测得的离角光谱的色值,并记录如下。所有色值均使用d65光源来测量。
74.建模
75.从反射颜色的光学模型获得反射光谱/色值。在数学上描述了由聚合物多层构造组成的光学膜叠堆,其中材料a(pet)的每个1

d层与材料b(copmma)的交替1

d层交叉。第一a/b层对的相厚度规定为1/2λ0(波长),其中λ0一般接近850nm。相邻a/b层对的物理厚度被调整为具有1/2λ
i
的相厚度,其中λ
i
递增地大于λ。进一步邻接的a/b层对的相厚度被调整为1/2λ
1+1
,依此类推,穿过整个光学膜叠堆,直到到达最后一个a/b层对,其中相厚度为1/2λ
n
,其中λ
n
为大约1160nm。对于所有计算示例,膜叠堆由112个a/b层对组成,呈单调的线性a/b层对厚度分布。此外,在每个a/b层对内,a层和b层两者均具有1/4λ
i
的单独相厚度,从而形成所谓的四分之一波长配置。如上所述的干涉结构的此类配置仅在奇数阶谐波处形成谐振反射谱带。适用于双轴拉伸pet(a)和无定形copmma(b)的折射率值示于下表1中。用于通过计算形成光学膜叠堆的折射率值及其相关联相厚度为在表1的633nm波长列下的那些。其他示例可具有膜叠堆结构,其中λ0大约等于800nm,或大约等于700nm。在具有112个a/b层对的光学膜叠堆的顶部,在面向入射光的方向上,可通过计算来放置吸收层(其在可见波长内被吸收)。该吸收层的折射率的实部和虚部也在表1中示出。
76.77.表1:用于建模的折射率值。
78.采用用于1

d双轴材料膜叠堆的4
×
4转移矩阵求解器来求解膜叠堆结构在具有和不具有面向入射光的吸收层的情况下的反射系数和透射系数。这些反射系数和透射系数是针对任意一组任意的光入射角θ和方位角在任意波长λ范围内确定的。然后可将反射系数和透射系数归一化为入射光的强度光谱。对于这些实施例,入射光强度光谱被视为d65强度光谱。然后可计算反射颜色和透射颜色色度坐标,以提供对反射光和透射光的感知颜色。
79.反射光谱/色值也从膜的表面处具有半球状耦合(雨滴效应)的反射颜色的光学模型获得。对于规则反射颜色,使用相同的模型对表面处的半球状耦合进行建模,不同的是在这种情况下,入射光通过液态水滴进入表面。此液态水滴所用的折射率为1.34。因此,规则反射颜色与半球状耦合情况之间的净区别在于:在规则反射颜色中,进入膜或涂布膜的光来自折射率为1.0的空气,而不是来自折射率为1.34的水。当入射光进入膜时,水的较高折射率导致较少的折射,因此与无半球状耦合的情况相比,它能够以更高的角度进入。一般参见图1b和随附说明。
80.使用具有700nm左谱带边缘的膜来测试建模的有效性,因为它产生能够被测量的任何平膜示例中的最大离角反射颜色(由于装备的限制,其上具有雨滴的膜不能被可靠地测量)。来自未涂布的700lbe膜的测量的和建模的反射颜色在图6所示的与10度至60度相隔10度的点处的反射颜色显示出良好的定性和定量一致性。数据中的偏移很容易通过以下事实来解释:由于真实世界的制造误差,真实膜的特性与预期的建模的膜不完全匹配。然而,两者均显示出颜色随角度变化的类似斜率,并且在高角度时,b*的增加和随后a*的减少是相同的。因此,这些模型对于作为入射角的函数的色移的量值和方向都具有指导意义,即使不是精确的色值也是如此。
81.出于这些实施例的目的,最大色移被计算为从0度至最高85度的建模反射颜色获得的颜色图上的任两个a*b*点之间的最大跨度或线性距离。l*被忽略,因为在高角度下在该数据中存在大量统计噪声。该距离计算为a*和b*平方差之和的平方根。
[0082][0083]
其中a1、b1和a2、b2为任何建模的颜色对。
[0084]
颜色减少%计算为未涂布膜的最大色移,涂布膜的最大色移除以未涂布膜的最大色移。其中,在每种情况下,未涂布膜具有与涂布膜相同的对应lbe。这些计算是针对具有和不具有半球状耦合(雨滴)的反射进行的。
[0085][0086]
表2.比较例的建模的光谱和实施例的减小的最大色移。
[0087]
高度有色的红外反射器
[0088]
制备多层膜,并将保护性涂层和粘合剂施加到膜的相对侧。对所得膜进行了轴上和离轴性能测试。
[0089]
材料
[0090][0091][0092]
测试方法
[0093]
轴上和离轴光学测量
[0094]
通过将样品的被粘合剂涂布的侧施加到3mm的透明钠钙浮法玻璃来生成光学数据。然后使用perkin elmer lambda 950uv/vis光谱仪测量这些层合物的透射和反射光谱。为了以各种角度获取反射光谱,安装了通用反射附件(ura)模块。然后用得自劳伦斯伯克利国家实验室(lawrence berkeley national labs)的optics 5和windows 5软件包来分析光谱数据。
[0095]
可见光透射率(vlt)指示透过其观察时膜的暗度。可见光反射率(vlr),其指示观
察者将看到的入射光反射回来的百分比。所有的vlr测量都是用3mm厚的钠钙浮法玻璃上的膜样品进行的。为了表征视觉特性如何随视角变化,使用检测器在距入射光角度8
°
和距入射光角度50
°
处进行测量。
[0096][0097]
表3.高度有色的红外反射器实施例的部件
[0098]
实施例#膜比较例4f6比较例5f7
[0099]
表4.比较例
[0100]
将保护性涂层施加到多层膜的一侧。该涂层为丙烯酸酯单体与纳米颜料和对紫外(uv)光敏感的光引发剂共混而成。m2在mek和1

甲氧基
‑2‑
丙醇的40:60混合物中稀释至40%固体,并添加两种光引发剂,ph1和ph2各占单体重量的1%。如表1所示,基础配方与吸收性纳米粒子(纳米颜料,p2)共混。使用精密挤出模头施加实施例的涂层,并且改变涂层厚度以便获得目标透射率(表3的目标轴上vlt)。通过挤出模头涂布将涂层施加到移动基底,然后对流进行干燥,通过挤出载体溶剂使涂层固化。然后,将涂层暴露在熔合uv系统有限公司(fusion uv systems inc.)的model i600m的uv固化站的uv辐射下来固化涂层,该固化站具有600w/in h

灯泡,用氮气吹扫进行操作。
[0101]
将光学透明的压敏粘合剂(psa)施加到保护性涂层的相对侧上的涂布多层膜,以使涂布多层膜能够附连至玻璃。所用的psa为25份软丙烯酸酯聚合物r1与75份较硬丙烯酸类树脂r2的共混物。将这些树脂在溶剂共混物(8%异丙醇/39%乙酸乙酯/40%甲苯/1%mek/8%庚烷/4%甲基己烷)中稀释至24%总固体,该溶剂共混物被设计成将树脂保持在均匀溶液中,其粘度允许可涂布性。此外,添加吸收剂和稳定剂:a1为0.5重量%,a2为0.2重量%,并且a3为1.8重量%。通过挤出模头涂布将psa施加到移动基底,然后对流进行干燥,通过挤出载体溶剂使涂层固化。以介于9微米和10微米之间的干燥厚度施加psa涂层。
[0102]
结果
[0103][0104]
表5.轴上外观和离轴外观的比较。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1