基于同位素富集降低极化激元材料光学损耗的器件及方法

文档序号:27321806发布日期:2021-11-10 00:45阅读:296来源:国知局
基于同位素富集降低极化激元材料光学损耗的器件及方法

1.本发明涉及光与物质相互作用领域,特别涉及一种基于同位素富集降低极化激元材料光学损耗的器件及方法。


背景技术:

2.极化激元是由光子与其他粒子与准粒子(例如等离激元、声子、激子等)耦合后形成的玻色子,包括贵金属和石墨烯中的等离极化激元,极性晶体中的声子极化激元,半导体中的激子极化激元,超导体中的库珀对极化激元,铁磁体中的磁振子极化激元以及异质结中的杂化极化激元等。与传统贵金属中的等离激元相比,二维范德瓦耳斯原子晶体中的极化激元具有更高的局域特性和更强的可调控性,其共振频率可以覆盖从紫外到微波波段。近年来,二维极化激元的近场光学图像和光谱信息揭示了许多新奇的物理现象,在亚衍射聚焦,生物传感,纳米成像和超棱镜等领域开展了一系列研究并展示了强大的应用潜力。
3.然而,大的光学损耗一直是阻碍极化激元走向更广泛应用的最大阻碍,极化激元中的光学损耗可以用极化激元的寿命、传播长度、优值来表征。极化激元的寿命越高,传播长度越长,优值越大,表示其光学损耗越低。常温下石墨烯中等离激元寿命仅有亚皮秒,之后出现的二维极化晶体中的声子极化激元寿命有了提高,例如六方氮化硼中声子极化激元寿命约为2皮秒,α

moo3中的声子极化激元寿命为8皮秒。声子极化激元的短寿命限制了纳米微腔,生物探测,微纳波导等器件性能的提高以及更广泛的器件应用。
4.因此,需要找到一种简单易行的降低极化激元材料的光学损耗的方式,可以促进基于极化激元的纳米器件的应用。


技术实现要素:

5.本发明实施例提供一种基于同位素富集来降低极化激元材料的光学损耗的器件及方法,以至少解决现有技术中的以上技术问题。
6.第一方面,本发明实施例提供了一种基于同位素富集降低极化激元材料光学损耗的器件,包括:单元素同位素富集的极化激元材料薄片;和衬底,所述极化激元材料薄片被置于所述衬底上。
7.所述元素是极化激元材料所含有的元素,如声子极化激元材料氧化钼中的钼元素、氧化钒中的钒元素、氮化硼中的硼元素、碳化硅中的硅元素,等离极化激元材料石墨烯和碳纳米管中的碳元素,所述极化激元材料是α晶相钼氧化物α

moo3、α晶相钒氧化物α

v2o5,h晶相氮化硼hbn、碳化硅sic、石墨烯、或碳纳米管。
8.在本发明的一个实施例中,所述单元素同位素为
92
mo、
94
mo、
95
mo、
96
mo、
97
mo、
98
mo、或
100
mo,优选地,所述单元素同位素为
92
mo、
96
mo、或
100
mo。
9.在本发明的一个实施例中,所述α晶相钼氧化物薄片的厚度在50

600nm之间,优选地,所述α晶相钼氧化物薄片的厚度在100

350nm之间。
10.在本发明的一个实施例中,所述衬底为介质衬底,优选地,所述衬底为对所述中红
外激光无强吸收的介质衬底,进一步优选地,所述衬底为无掺杂的单晶硅衬底。
11.第二方面,本发明实施例提供了一种基于同位素富集来降低极化激元材料的光学损耗的方法,包括:
12.将单元素同位素富集的极化激元材料薄片置于衬底上;和
13.用激光照射的afm针尖接触所述元素的同位素富集的极化激元材料薄片,以产生极化激元。
14.本发明的制备方法工艺简单,制备得到的所述元素的同位素富集的极化激元材料,可以产生低光学损耗的极化激元。
15.在本发明的一个实施例中,所述方法还包括:制备所述元素的同位素富集的α晶相钼氧化物薄片。
16.在本发明的一个实施例中,所述方法还包括:使用胶带将所述元素的同位素富集的α晶相钼氧化物剥离为薄片晶体。在该技术方案中,所述胶带的作用为,将α晶相钼氧化物晶体剥离为少数层二维材料。胶带简单易得,成本低,是制备二维材料的常用方法。
17.在本发明的一个实施例中,所述元素的单种同位素丰度在50

100%,优选地,所述单种同位素丰度在90

100%,进一步优选地,所述单种同位素丰度在98

100%。
18.在本发明的一个实施例中,所述α晶相钼氧化物薄片的厚度在50

600nm之间,优选地,所述α晶相钼氧化物薄片的厚度在100

350nm之间。
19.在本发明的一个实施例中,所述激光是中红外激光。
20.在本发明的一个实施例中,所述中红外激光的波束为400

2000cm
‑1,优选为550

1050cm
‑1。
21.在本发明的一个实施例中,所述中红外激光的光斑束腰尺寸为0.5

2.0μm,优选为0.5

1.5μm,最优选为1.0μm。
22.在本发明的一个实施例中,所述中红外激光为偏振激光,优选地,所述中红外激光是偏振方向为p的偏振光。
23.在本发明的一个实施例中,所述衬底为介质衬底,介质衬底与金属衬底相比,有更低的损耗,优选地,为对所述中红外激光无强吸收的介质衬底,进一步优选地,为无掺杂的单晶硅衬底。单晶硅衬底在激发极化激元时对所述中红外激光没有红外吸收峰,且反射系数较高。
24.在本发明的一个实施例中,所述元素是极化激元材料所含有的元素,如声子极化激元材料氧化钼中的钼元素、氧化钒中的钒元素、氮化硼中的硼元素、碳化硅中的硅元素,等离极化激元材料石墨烯和碳纳米管中的碳元素,所述极化激元材料是α晶相钼氧化物α

moo3、α晶相钒氧化物α

v2o5、h晶相氮化硼hbn、碳化硅sic、石墨烯和碳纳米管。
25.在本发明的一个实施例中,所述单元素同位素种类为
92
mo、
94
mo、
95
mo、
96
mo、
97
mo、
98
mo、或
100
mo,优选地,所述mo同位素种类为
92
mo、
96
mo、或
100
mo。
26.在本发明的一个实施例中,所述极化激元是声子极化激元、等离极化激元、或激子极化激元。
27.本发明具有以下有益效果:
28.(1)本发明以mo同位素富集的α

moo3为载体,通过由中红外激光照射的afm针尖激发高寿命的声子极化激元。所述方法具有工艺简单,操作方便,在常温大气环境下即可实现
薄片的厚度在100

350nm之间。
47.在本发明的一个实施例中,所述衬底还可以为介质衬底,优选地,为对所述中红外激光无强吸收的介质衬底。
48.在本发明的一个实施例中,α

moo3可以替换为氧化钒α

v2o5、氮化硼hbn、碳化硅sic、石墨烯、或碳纳米管,相应的元素分别替换为钒、硼、硅、或碳元素替代。
49.这里的器件可以是高q值纳米微腔,波导,耦合器等极化激元光子器件。
50.实施例2
51.图2示出了根据本发明一实施例的基于同位素富集的降低α晶相钼氧化物极化激元的光学损耗的方法的流程示意图。如图所示,根据本发明一实施例的基于mo元素同位素富集的降低α

moo3极化激元的光学损耗的方法包括:
52.(1)将mo元素同位素富集的α

moo3薄片置于衬底上;
53.(2)用激光照射的afm针尖接触所述元素的α

moo3薄片,以产生极化激元。
54.本发明用于降低极化激元材料的光学损耗的方法可以用于制备高q值纳米微腔,波导,耦合器等极化激元光子器件。
55.在本发明的一个实施例中,基于mo元素同位素富集的降低α

moo3极化激元的光学损耗的方法包括:
56.(1)取一片
92
mo富集的α

92
moo3,放置于blue

nitto胶带上,对折2次,并缓慢贴敷在单晶硅衬底上,并用热台将单晶硅衬底加热至80℃,并保持2分钟,迅速地撕下胶带,单晶硅衬底上便制备了厚度在100

300nm之间的α

moo3薄片。用同样的方法制备
100
mo富集的α

100
moo3和自然分布的α

moo3薄片;
57.(2)将3种带有α

moo3薄片的硅基底,置于被中红外激光照射的afm针尖下方,用于产生和探测声子极化激元。
58.图3为当入射光为993cm
‑1时,α

92
moo3薄片的声子极化激元成像图。图中明暗相间的条纹即为声子极化激元。
59.图4为当入射光为993cm
‑1时,α

100
moo3薄片的声子极化激元成像图
60.图5为当入射光为993cm
‑1时,mo同位素自然分布的α

moo3薄片的声子极化激元成像图。
61.图6为在图3

5中沿水平方向截取的声子极化激元成像图的轮廓线比较。轮廓线为声子极化激元振荡传播的条纹截面,条纹传播距离越远,表明声子极化激元的寿命越大。图中可以看到,与mo同位素自然分布的α

moo3薄片相比,α

92
moo3和α

100
moo3薄片的声子极化激元传播距离显著增加。
62.图7为3种不同的α

moo3薄片所支持的声子极化激元的传播长度的比较。图中显示,与mo同位素自然分布的α

moo3薄片相比,α

92
moo3和α

100
moo3薄片的声子极化激元传播长度显著增加。α

92
moo3薄片的声子极化激元传播长度最高达到了23um。
63.图8为3种不同的α

moo3薄片所支持的声子极化激元寿命的比较。图中显示,与mo同位素自然分布的α

moo3薄片相比,α

92
moo3和α

100
moo3薄片的声子极化激元寿命显著增加。α

92
moo3薄片的声子极化激元寿命最高达到了47皮秒。
64.图9为3种不同的α

moo3薄片所支持的声子极化激元的优值的比较。图中显示,与mo同位素自然分布的α

moo3薄片相比,α

92
moo3和α

100
moo3薄片的声子极化激元优值显著增
加。α

92
moo3薄片的声子极化激元优值最高达到了78。
65.最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
66.以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到其各种变化或替换,这些都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1