包含间隙基材的液晶装置的制作方法

文档序号:33337914发布日期:2023-03-04 01:43阅读:36来源:国知局
包含间隙基材的液晶装置的制作方法
包含间隙基材的液晶装置
1.相关申请的交叉引用
2.本技术根据35 u.s.c.
§
,要求2020年4月20日提交的第63/012543号美国临时申请的优先权权益,其内容通过引用全文纳入本文。
技术领域
3.本公开一般涉及包含至少一个间隙基材的液晶装置,更具体地,涉及包含至少两个液晶层并且该至少两个液晶层通过间隙基材分离的液晶窗。


背景技术:

4.液晶装置用于各种建筑和运输应用,例如,窗户、门、空间分隔和建筑物和汽车的天窗。对于许多商业应用来说,期望液晶装置在导通和关断状态之间提供高的对比度,同时还提供优异的能量效率和成本效率。使用更大量的液晶材料和/或光吸收添加剂可实现更高的对比度。然而,随着液晶层变得更厚,变得更难以控制晶体的取向,这可不利地影响整个装置的光学效率和对比度。因此,目前为止,使用单液晶盒(liquid crystal cell)设计来实现高对比度一直具有挑战。
5.常规上已经使用包括双盒结构(例如,两个并排液晶盒单元)的液晶装置来获得期望的高对比度。然而,双盒结构也具有各种弊端,例如,单元的总重量和厚度增加,以及由于存在额外的玻璃层和电极部件导致制造成本和复杂性更高。额外的玻璃界面还可能导致在双盒结构上具有光学损耗。
6.因此,需要为商业应用提供可接受的对比度的更轻和/或更薄的液晶装置。还有利的是,降低制造这种液晶装置的成本和复杂性。进一步有利的是,提高这种液晶装置的能量效率和光学效率。


技术实现要素:

7.本文公开了液晶装置,其包括第一玻璃基材组件和第二玻璃基材组件,第一液晶层和第二液晶层,以及将第一液晶层与第二液晶层分离的第三间隙基材组件。本文还公开了液晶窗,其包括如本文公开的液晶装置以及附加的玻璃基材,所述附加的玻璃基材通过密封间隙与液晶装置分离。
8.在各个实施方式中,本公开涉及液晶装置,其包括:第一基材组件,其包括第一玻璃基材、第一配向层和设置在第一玻璃基材与第一配向层之间的第一电极层;第二基材组件,其包括第二玻璃基材、第二配向层和设置在第二玻璃基材与第二配向层之间的第二电极层;第三基材组件,其包括第三配向层、第四配向层、第三电极层、第四电极层和第三基材,其中,第三电极层被设置在第三基材与第三配向层之间,并且其中,第四电极层被设置在第三基材与第四配向层之间;第一液晶层,其被设置在第一基材组件与第三基材组件之间;和第二液晶层,其被设置在第二基材组件与第三基材组件之间。
9.在非限制性实施方式中,第一液晶层可直接接触第一配向层和第三配向层,并且
第二液晶层可直接接触第二配向层和第四配向层。第一玻璃基材和第二玻璃基材的厚度可独立地在约0.1mm至约4mm的范围内。第一玻璃基材和第二玻璃基材可以独立地选自钠钙硅酸盐玻璃、铝硅酸盐玻璃、碱金属铝硅酸盐玻璃、硼硅酸盐玻璃、碱金属硼硅酸盐玻璃、铝硼硅酸盐玻璃和碱金属铝硼硅酸盐玻璃。根据各个实施方式,第三基材的厚度可在约0.005mm至约1mm的范围内。在某些实施方式中,第三基材的厚度可以基本上等于第一液晶层或第二液晶层的厚度。例如,第三基材可以包括玻璃、陶瓷或塑料材料。
10.在另外的实施方式中,第一电极层、第二电极层、第三电极层和第四电极层的厚度可独立地在约1nm至约100nm的范围内。第一电极层、第二电极层、第三电极层和第四电极层可以独立地选自透明导电氧化物、石墨烯、金属纳米线、碳纳米管和导电油墨层。在某些实施方式中,第一电极层、第二电极层、第三电极层和第四电极层中的至少一者可包括图案,例如,多条线或者多个正方形或矩形像素。根据非限制性实施方式,第一电极层和第二电极层可以连接到电源,并且第三电极层和第四电极层可以彼此电学连接但是不连接到电源。在另外的实施方式中,第一电极层和第二电极层可以连接到电源,并且第一电极层和第四电极层可以彼此电学连接,第二电极层和第三电极层可以彼此电学连接。在另外的实施方式中,第一电极层和第二电极层可以连接到第一电源,并且第三电极层和第四电极层可以连接到第二电源。
11.本公开的另外的实施方式包括第一液晶层和第二液晶层,其厚度独立地在约0.001mm至约0.2mm的范围内。第一液晶层和第二液晶层例如可包括非手性向列液晶、手性向列液晶、胆甾型液晶或近晶型液晶。在一些实施方式中,液晶层可任选地进一步包括至少一种额外组分,其选自染料、着色剂、手性掺杂剂、可聚合反应性单体、光引发剂和聚合结构。
12.配向层可存在于液晶装置中并且可直接接触第一液晶层和/或第二液晶层。配向层的厚度可独立地在约1nm至约100nm的范围内。配向层的示例性材料包括但不限于:具有层各向异性的主链或侧链聚酰亚胺,具有表面各向异性的光敏偶氮苯基化合物以及具有周期性表面微结构的无机薄膜。
13.本文还公开了液晶装置,其包括:第一基材组件,其包括第一玻璃基材、第一电极层和任选的第一配向层;第二基材组件,其包括第二玻璃基材和第二电极层,以及任选的第二配向层;第三基材组件,其包括第三电极层、第四电极层、第三基材,以及任选地,第三配向层和第四配向层中的一者或两者;第一液晶层,其被设置在第一基材组件与第三基材组件之间;和第二液晶层,其被设置在第二基材组件与第三基材组件之间。
14.本文还公开了液晶装置,其包括:第一基材组件,其包括第一玻璃基材、第一配向层和设置在第一玻璃基材与第一配向层之间的第一电极层;第二基材组件,其包括第二玻璃基材和第二电极层;第三基材组件,其包括第三配向层、第三电极层、第四电极层;和第三基材,其中,第三电极层被设置在第三基材与第三配向层之间,并且其中,第三基材被设置在第三电极层与第四电极层之间;液晶层,其被设置在第一基材组件与第三基材组件之间;和电致变色层,其被设置在第二基材组件与第三基材组件之间。
15.本文还公开了液晶窗,其包括上述实施方式的任何一种液晶装置以及玻璃基材,所述玻璃基材通过密封间隙与液晶装置分离。在各个实施方式中,密封间隙可以包含空气、惰性气体或其混合物。
16.在以下的具体实施方式中给出了本公开的其他特征和优点,其中的部分特征和优点对本领域的技术人员而言根据所作描述即容易理解,或者通过实施包括以下具体实施方式、权利要求书以及附图在内的本文所述实施方式而被认识。
17.应理解,前面的一般性描述和以下的具体实施方式都仅仅是示例性的,并且旨在提供用于理解权利要求书的性质和特性的总体评述或框架。包括的附图提供了对本公开的进一步的理解,附图结合于本说明书中并构成说明书的一部分。附图例示了本公开的各个实施方式,并与说明书一起用来解释各个实施方式的原理和操作。
附图说明
18.结合以下附图阅读时,可以进一步理解下文的具体实施方式。只要可能,在所有附图中将使用相同的附图标记来表示相同或类似的部分。应理解,附图未按比例显示,并且附图不旨在限制每个所示部件的尺寸或者一个部件相对于另一部件的相对尺寸。
19.图1根据本公开的各个实施方式描绘了液晶装置的截面图;
20.图2根据本公开的另外的实施方式描绘了液晶装置的截面图;
21.图3根据本公开的进一步的实施方式描绘了液晶装置的截面图;
22.图4根据本公开的进一步的实施方式描绘了液晶装置的截面图;
23.图5根据本公开的某些实施方式描绘了液晶装置的截面图;并且
24.图6根据本公开的非限制性实施方式描绘了液晶窗的截面图。
具体实施方式
25.本文公开了液晶装置,其包括:第一基材组件,其包括第一玻璃基材、第一配向层和设置在第一玻璃基材与第一配向层之间的第一电极;第二基材组件,其包括第二玻璃基材、第二配向层和设置在第二玻璃基材与第二配向层之间的第二电极;第三基材组件,其包括第三配向层、第四配向层、第三电极层、第四电极层和第三基材,其中,第三电极层被设置在第三基材与第三配向层之间,并且其中,第四电极层被设置在第三基材与第四配向层之间;第一液晶层,其被设置在第一基材组件与第三基材组件之间;和第二液晶层,其被设置在第二基材组件与第三基材组件之间。
26.本文还公开了液晶装置,其包括:第一基材组件,其包括第一玻璃基材、第一电极层和任选的第一配向层;第二基材组件,其包括第二玻璃基材和第二电极层,以及任选的第二配向层;第三基材组件,其包括第三电极层、第四电极层、第三基材,以及任选地,第三配向层和第四配向层中的一者或两者;第一液晶层,其被设置在第一基材组件与第三基材组件之间;和第二液晶层,其被设置在第二基材组件与第三基材组件之间。
27.本文还公开了液晶装置,其包括:第一基材组件,其包括第一玻璃基材、第一配向层和设置在第一玻璃基材与第一配向层之间的第一电极层;第二基材组件,其包括第二玻璃基材和第二电极层;第三基材组件,其包括第三配向层、第三电极层、第四电极层;和第三基材,其中,第三电极层被设置在第三基材与第三配向层之间,并且其中,第三基材被设置在第三电极层与第四电极层之间;液晶层,其被设置在第一基材组件与第三基材组件之间;和电致变色层,其被设置在第二基材组件与第三基材组件之间。本文还公开了液晶窗,其包括本文公开的任何一种液晶装置以及玻璃基材,所述玻璃基材通过密封间隙与液晶装置分
离。
28.现将参考例示了本公开各个方面的图1-6来论述本公开的实施方式。图1-5例示了液晶装置100(图1)、200(图2)、300(图3)、400(图4)和500(图5)的非限制性实施方式的截面图。图6例示了液晶窗的非限制性实施方式的截面图。以下总体说明旨在提供所要求保护的装置的总体评述,并将参考非限制性描述的实施方式在整个公开文本中对各个方面进行更具体的论述,这些实施方式在本公开的上下文中可彼此互换。
29.参考图1,液晶装置100包括第一基材组件100a和第二基材组件100b。第一基材组件100a包括第一玻璃基材101,所述第一玻璃基材101具有第一表面101a和第二表面101b。第一电极层103在第一玻璃基材101的第二表面101b上形成并且/或者与第二表面101b直接接触。第一基材组件100a还包括第一配向层106。第一配向层106在第一电极层103上形成并且/或者与第一电极层103直接接触。第一电极层103因此被设置在第一玻璃基材101与第一配向层106之间,如图1所示。根据各个实施方式,在第一电极层103与第一基材101之间,或者第一电极层103与第一配向层106之间不存在额外的层。在另外的实施方式中,第一基材组件100a由第一基材101、第一电极103和第一配向层106组成。第一基材组件100a在本文中可以互换地称为“外”基材组件,第一玻璃基材101在本文中可以被称为“外”基材,并且第一电极层103在本文中可以被称为“外”电极。
30.类似地,第二基材组件100b包括第二玻璃基材102,所述第二玻璃基材102具有第一表面102a和第二表面102b。第二电极层104在第二玻璃基材102的第一表面102a上形成并且/或者与第一表面102a直接接触。第二基材组件100b还包括第二配向层109。第二配向层109在第二电极层104上形成并且/或者与第二电极层104直接接触。第二电极层104因此被设置在第二玻璃基材102与第二配向层109之间,如图1所示。根据各个实施方式,在第二电极层104与第二基材102之间,或者第二电极层104与第二配向层109之间不存在额外的层。在另外的实施方式中,第二基材组件100b由第二基材102、第二电极104和第二配向层109组成。第二基材组件100b在本文中可以互换地称为“外”基材组件,第二玻璃基材102在本文中可以被称为“外”基材,并且第二电极层104在本文中可以被称为“外”电极。
31.液晶装置100还包括第三基材组件100c,其被设置在第一基材组件100a与第二基材组件100b之间。第三基材组件100c包括第三电极层123、第四电极层124、第三配向层107、第四配向层108和第三基材105。第三基材105可类似于第一基材101和第二基材102而包括玻璃,或者可以包括任何其他合适的材料,例如陶瓷或塑料。第三电极层123和第四电极层124在第三基材105的相背表面上形成并且/或者与第三基材105的相背表面直接接触。第三基材105因此被设置在第三电极层123与第四电极层124之间,如图1所示。根据各个实施方式,在第三基材105与第三电极层123之间,或者第三基材105与第四电极层124之间不存在额外的层。第三配向层107和第四配向层108分别在第三电极层123和第四电极层124上形成并且/或者分别与第三电极层123和第四电极层124直接接触。第三电极层123因此被设置在第三配向层107与第三基材105之间,并且第四电极层124被设置在第四配向层108与第三基材105之间。
32.在某些实施方式中,在第三电极层123与第三配向层107之间,或者第三电极层123与第三基材105之间不存在额外的层。在另外的实施方式中,在第四电极层124与第四配向层108之间,或者第四电极层124与第三基材105之间不存在额外的层。在另外的实施方式
中,第三基材组件100c由第三电极层123、第四电极层124、第三配向层107、第四配向层108和第三基材105组成。第三基材组件100c在本文中可以互换地称为“间隙”基材组件,并且第三基材105在本文中可以被称为“间隙”基材,第三电极层123和第四电极层124在本文中可以被称为“间隙”电极。
33.液晶装置100还包括第一液晶层110和第二液晶层111,第一液晶层110被设置在第一基材组件100a与第三基材组件100c之间,第二液晶层111被设置在第二基材组件100b与第三基材组件100c之间。第一液晶层110可以直接接触第一基材组件100a的第一配向层106并且直接接触第三基材组件100c的第三配向层107。根据各个实施方式,在第一液晶层110与第一配向层106之间,或者第一液晶层110与第三配向层107之间不存在额外的层。类似地,第二液晶层111可以直接接触第二基材组件100b的第二配向层109并且直接接触第三基材组件100c的第四配向层108。在某些实施方式中,在第二液晶层111与第二配向层109之间,或者第二液晶层111与第四配向层108之间不存在额外的层。根据另外的实施方式,液晶装置可以由第一基材组件100a、第二基材组件100b、第三基材组件100c、第一液晶层110和第二液晶层111组成。
34.图2例示了液晶装置200的非限制性构造。类似于图1的液晶装置100,液晶装置200包括第一基材组件100a、第二基材组件100b、第三基材组件100c、第一液晶层110和第二液晶层111。装置200中的这些部件及它们的子部件相对于彼此的取向可以与上文参考装置100所述的相同。图2还例示了如何可以使用第一密封部s1和第二密封部s2来密封液晶装置200。
35.第一基材组件100a例如可以通过将第一电极层103涂覆、印刷或以其他方式沉积在第一基材101的第二表面101b上,以及将第一配向层106涂覆、印刷或以其他方式沉积在第一电极层103上来生产。类似地,第二基材组件100b可以通过将第二电极层104涂覆、印刷或以其他方式沉积在第二基材102的第一表面102a上,以及将第二配向层109涂覆、印刷或以其他方式沉积在第二电极层104上来生产。第三基材组件100c可以通过将第三电极层123和第四电极层124涂覆、印刷或以其他方式沉积在第三基材105的相背表面上,以及将第三配向层107和第四配向层108涂覆、印刷或以其他方式沉积在第三电极层123和第四电极层124上来生产。接着可布置这些基材组件,其中,第三基材组件100c在第一基材组件100a与第二基材组件100c之间,由此形成两个间隙,这两个间隙可被液晶材料填充以形成液晶层110、111。在一些实施方式中,可使用间隔件(未示出)来维持期望的盒间隙以及得到的液晶层厚度。可将液晶材料密封在盒间隙中并围绕所有的边缘使用任何合适的材料,例如,可光固化或可热固化的树脂,以形成第一密封部s1。可任选地应用第二密封部s2以保护基材和/或电极的暴露边缘和/或装置中的任何电连接不受机械冲击及不暴露于液体,例如水或冷凝物。
36.在一些实施方式中,如图2所示,第一电极层103和第二电极层104可以至少部分暴露,例如延伸到密封部s1和s2的外侧,以能够电连接到电源(未示出)。图2还例示了对装置200中的电极进行电连接的一个非限制性构造。在所示的实施方式中,第三电极层123和第四电极层124彼此电连接,或者通过接头125而“短路”。由此,间隙(例如,第三和第四)电极层123、124不连接到电源,而外(例如,第一和第二)电极层103、104被供电。不希望囿于理论,认为该实施方式可以降低液晶装置200所需的驱动电压。
37.图3例示了液晶装置300的非限制性构造。类似于图1-2的液晶装置100、200,液晶装置300包括第一基材组件100a、第二基材组件100b、第三基材组件100c、第一液晶层110和第二液晶层111。装置300中的这些部件及它们的子部件相对于彼此的取向可以与上文参考装置100所述的相同。图3还例示了对液晶装置300中的电极层进行电连接的不同构造。在所示的实施方式中,第三电极层123和第四电极层124通过接头126a、126b电连接到第一电极层和第二电极层。第一电极层103可以通过接头126a连接到第四电极层124,并且第二电极层104可以通过接头126b连接到第三电极层123。由此,间隙(例如,第三和第四)电极层123、124连接相对的外(例如,第一和第二)电极层103、104,而外(例如,第一和第二)电极层连接到电源(未示出)。
38.图4例示了液晶装置400的非限制性构造。类似于图1-3的液晶装置100、200、300,液晶装置$00包括第一基材组件100a、第二基材组件100b、第三基材组件100c、第一液晶层110和第二液晶层111。装置400中的这些部件及它们的子部件相对于彼此的取向可以与上文参考装置100所述的相同。图4还例示了对液晶装置300中的电极层进行电连接的不同构造。在所示的实施方式中,第一电极层103和第二电极层104电连接到第一电源(未示出),并且第三电极层123和第四电极层124单独地连接到第二电源(未示出)。由此,间隙(例如,第三和第四)电极层123、124和外(例如,第一和第二)电极层103、104彼此不电连接,并且可以彼此独立地运行。
39.图5例示了液晶装置500的替代性构造。类似于图1的液晶装置100,液晶装置500包括第一基材组件100a、第二基材组件100f、第三基材组件100g和第一液晶层110。在所示的实施方式中,在第二基材组件100f与第三基材组件100g之间存在电致变色层131而非第二液晶层。当装置500包括电致变色层131而不是液晶层时,可以从装置500移除第二配向层108和第四配向层109。当然,所描绘的构造不是限制性的,并且电致变色层131可被插入到装置500中的其他位置中,例如,替换第一液晶层110(并相应地移除第一配向层106和第三配向层107)。电致变色层131可通过第三电极123和第四电极124来控制,以改变透射通过该层的光的程度。
40.在电致变色层131中可使用任何合适的电致变色材料,举例来说,包括锂离子、电致变色染料和纳米晶体。当施加影响光的衰减的电压时,电致变色材料可以经受化学和/或物理变化。例如,当施加电压时,锂离子可以从第三电极(例如,包含licoo2)经由隔膜而迁移到第四电极(例如,包含wo3)。锂离子与第四电极的相互作用可造成其反射光,这可有效地使电极变暗/不透明。锂离子将保持在该位置直到电压反向,电压反向造成锂离子移动回第三电极并恢复到明亮/清晰状态。电致变色染料可以在施加电压时改变颜色,由此改变导通状态和关断状态之间的光的衰减。取决于施加的电压,纳米晶体可以类似地允许更多或更少的光通过电致变色层。在电致变色层131中还可使用其他电致变色材料、涂料和/或组件而不加以限制。
41.现将更详细论述液晶装置100、200、300、400和500的各部件。根据非限制性实施方式,外(例如,第一和第二)基材、间隙(例如,第三和第四)基材、电极层和配向层中的至少一者可以包含光学透明材料。如在本文中所使用的,术语“光学透明”旨在表示部件和/或层在光谱的可见区内(~400-700nm)的透射率大于约80%。例如,示例性的部件或层在可见光范围中的透射率可以大于约85%,例如,大于约90%,或者大于约95%,包括其间的所有范围
和子范围。在某些实施方式中,玻璃基材、间隙基材、电极层和配向层全部包含光学透明材料。
42.在非限制性实施方式中,第一玻璃基材101和第二玻璃基材102可以包含光学透明玻璃片。第一玻璃基材101和第二玻璃基材102可具有任何形状和/或尺寸,例如,矩形、正方形或任何其他合适的形状,包括规则和不规则的形状以及具有一个或多个曲线边缘的形状。根据各个实施方式,第一玻璃基材101和第二玻璃基材102的厚度可以小于或等于约4mm,例如,在以下范围内:约0.1mm至约4mm、约0.2mm至约3mm、约0.3mm至约2mm、约0.5mm至约1.5mm、或约0.7mm至约1mm,包括其间的所有范围和子范围。在某些实施方式中,玻璃基材的厚度可小于或等于0.5mm,例如,0.4mm、0.3mm、0.2mm或0.1mm,包括其间的所有范围和子范围。在非限制性实施方式中,玻璃基材的厚度可在约1mm至约3mm的范围内,例如,约1.5mm至约2mm,包括其间的所有范围和子范围。在一些实施方式中,第一玻璃基材101和第二玻璃基材102可以包括相同的厚度,或者可以具有不同的厚度。
43.第一玻璃基材101和第二玻璃基材102可以包括本领域已知的任何玻璃,例如,钠钙硅酸盐玻璃、铝硅酸盐玻璃、碱金属铝硅酸盐玻璃、硼硅酸盐玻璃、碱金属硼硅酸盐玻璃、铝硼硅酸盐玻璃、碱金属铝硼硅酸盐玻璃和其他合适的显示玻璃。在一些实施方式中,第一玻璃基材101和第二玻璃基材102可以包括相同的玻璃,或者可以是不同的玻璃。在各个实施方式中,玻璃片可以经化学强化和/或热回火。举例来说,合适的商购玻璃的非限制性实例包括康宁股份有限公司(corning incorporated)的eaglelotus
tm
、和玻璃。例如,可根据第7,666,511号、第4,483,700号和第5,674,790号美国专利来提供化学强化玻璃,所述文献全文通过引用纳入本文。
44.根据各个实施方式,玻璃基材可选自通过熔合拉制工艺生产的玻璃片。不希望受理论束缚,认为熔合拉制工艺可提供具有相对较小的波度(或高平坦度)的玻璃片,这可以有益于各种液晶应用。在某些实施方式中,一种示例性玻璃基材因此可以包括小于约100nm的表面波度,这通过接触式轮廓测量仪来测量,例如,小于或等于约80nm、小于或等于约50nm、小于或等于约40nm或者小于或等于约30nm的波度,包括其间的所有范围和子范围。semi d15-1296“fpd glass substrate surface waviness measurement method(fpd玻璃基材表面波度测量方法)”概述了通过接触式轮廓测量仪来测量波度(0.8~8mm)的一种示例性标准技术。参考图1-2,在一些实施方式中,第一玻璃基材101的第一表面101a和第二表面101b中的至少一者和/或第二玻璃基材102的第一表面102a和第二表面102b中的至少一者包括如上所述的表面波度,例如,小于约100nm。类似地,在非限制性实施方式中,第三基材105的相背主表面(未标记)中的至少一者也包括小于约100nm的表面波度。
45.第三基材105以及可能存在于液晶装置中的任何其他间隙基材可包括上文参考第一玻璃基材101和第二玻璃基材102所述的玻璃材料。在一些实施方式中,外(例如,第一和第二)基材和间隙(例如,第三基材)可以全部包含玻璃材料,该玻璃材料可以是相同或不同的玻璃材料。根据其他实施方式,间隙基材(例如,第三基材105)可以包括除玻璃之外的材料,例如,塑料和陶瓷,包括玻璃陶瓷。合适的塑料材料包括但不限于聚碳酸酯类,聚丙烯酸酯类,例如聚甲基丙烯酸甲酯(pmma),以及聚乙烯类,例如,聚对苯二甲酸乙二醇酯(pet)。如果存在额外的间隙基材,则它们可以包括与第三基材105相同的材料或者可以包括不同的材料。
46.第三基材105以及液晶装置中可能存在的任何其他间隙基材可具有任何形状和/或尺寸,例如,矩形、正方形或任何其他合适的形状,包括规则和不规则的形状以及具有一个或多个曲线边缘的形状。根据各个实施方式,第三基材105的厚度可以小于或等于约4mm,例如,在以下范围内:约0.005mm至约4mm、约0.01mm至约3mm、约0.02mm至约2mm、约0.05mm至约1.5mm、约0.1mm至约1mm、约0.2mm至约0.7mm或约0.3mm至约0.5mm,包括其间的所有范围和子范围。在某些实施方式中,间隙基材的厚度可小于或等于0.5mm,例如,0.4mm、0.3mm、0.2mm、0.1mm、0.05mm、0.02mm、0.01mm或更小,包括其间的所有范围和子范围。如果存在额外的间隙基材,则它们可以包括与第三基材105相同的厚度,或者它们可以包括不同的厚度。
47.根据各个实施方式,在液晶装置的运行期间,间隙基材(例如,第三基材105)的相背表面可以处于相同或基本相同的电位。不希望受理论束缚,认为在间隙基材上维持基本恒定的电位可减少液晶盒上的电压降,由此提高整个装置的能量效率。在某些实施方式中,间隙基材可以包括介电常数基本上等于或大于液晶材料的介电常数的材料。在某些实施方式中,液晶介电常数可在约1至约100的范围内,例如,约5至约90、约10至约80、约15至约70、约20至约60、约25至约50或约30至约40,包括其间的所有范围和子范围。作为非限制性实例,第三基材105以及装置中可能存在的任何其他间隙基材的介电常数可以大于或等于约1,例如,大于或等于约5,大于或等于约10,大于等于约20,大于或等于约50,或者,大于或等于约100,例如,约1至约100,例如约5至约90,约10至约80,约15至约70,约20至约60,约25至约50或约30至约40,包括其间的所有范围和子范围。在各个实施方式中,第三基材105以及装置中存在的任何其他间隙基材的介电常数可以大于或等于约10。
48.根据另外的实施方式,间隙基材可以包括高导电性材料,例如,具有下述电导率的材料:至少约10-5
s/m、至少约10-4
s/m、至少约10-3
s/m、至少约10-2
s/m、至少约0.1s/m、至少约1s/m、至少约10s/m或者至少约100s/m,例如,在0.0001s/m至约1000s/m的范围内,包括其间的所有范围和子范围。通过液晶装置中的构造改变也可实现间隙基材上的基本恒定的电位,例如,通过在间隙基材的任何一侧上提供短路电极层来实现,如图2所示,上文有更详细论述。
49.液晶材料的取向可通过单位矢量来描述,其在本文中也被称为指向矢(“director”),代表液晶分子的长分子轴的平均局部取向。液晶装置中的基材可具有一定的表面能,该表面能促进在没有外加电压的情况下,在接地或“关断”状态,液晶指向矢具有期望的配向。当液晶指向矢相对于基材平面具有垂直或基本垂直的取向时,实现了垂直或垂面配向。当液晶指向矢相对于基材平面具有平行或基本平行的取向时,实现了平面或沿面配向。当液晶方向相对于基材的平面具有较大的角度时,达到了倾斜配向,其显著不同于平面或垂面配向,即,该较大的角度在约20
°
至约70
°
的范围内,例如,约30
°
至约60
°
,或约40
°
至约50
°
,包括其间的所有范围和子范围。
50.通过使基材和/或电极的表面涂覆有配向层,例如,如图1-5所示的配向层106、107、108和109,可实现液晶的具体配向。配向层可包括某种材料的薄膜,其具有一定的表面能和各向异性,以促进与其表面直接接触的液晶具有期望的取向。示例性的材料包括但不限于主链或侧链聚酰亚胺,其可经机械摩擦以产生层各向异性;光敏聚合物,例如偶氮苯基化合物,其可暴露于线偏振光以产生表面各向异性;以及无机薄膜,例如二氧化硅,其可利
用热蒸发技术沉积以在表面上形成周期性微结构。促进液晶分子的垂直或垂面取向的有机配向层可经摩擦而产生相对于基材平面呈除90
°
以外的预倾角。液晶分子相对于基材表面的预倾角将破坏从垂直取向转换期间的对称性,并且可限定液晶转换的方位角方向。
51.可以沉积有机配向层,例如,通过将溶液旋涂到期望的表面上或者使用印刷技术来沉积。可使用热蒸发技术沉积无机配向层。根据各个实施方式,第一配向层106、第二配向层107、第三配向层108和第四配向层109,以及装置中可能存在的任何额外的配向层可具有小于或等于约100nm的厚度,例如,在下述范围中的厚度:约1nm至约100nm、约5nm至约90nm、约10nm至约80nm、约20nm至约70nm、约30nm至约60nm或约40nm至约50nm,包括其间的所有范围和子范围。在一些实施方式中,配向层106、107、108、109以及任何其他额外的配向层可包括相同的厚度,或者可以具有不同的厚度。
52.虽然可通过使用配向层来获得液晶的改进配向,但是这种配向层不是本文公开的液晶装置所必需的部件。虽然图1-5描绘了与液晶层110、111的两侧均接触的配向层,但是可移除其中的一个或多个配向层以使得没有配向层与液晶层接触或者仅有一个配向层与液晶层接触。由此,参考图1,可以从装置100移除其中的一个或多个配向层106、107、108和109而不会偏离本公开的范围。第一基材组件100a可包括第一基材101和第一电极103或者由第一基材101和第一电极103组成,即,不存在第一配向层106。类似地,第二基材组件100b可包括第二基材102和第二电极104,或者由第二基材102和第二电极104组成。第三基材组件100c可仅包括第三基材105、第三电极123和第四电极124,或者包括第三基材105、第三电极123和第四电极124结合第三配向层107或第四配向层108中的仅一者,或者仅由第三基材105、第三电极123和第四电极124组成,或由第三基材105、第三电极123和第四电极124结合第三配向层107或第四配向层108中的仅一者组成。类似地,可从图2-5所示的装置200、300、400、500中移除配向层106、107、108和109中的一者或多者。可相应地改变液晶窗600以移除一个或多个配向层。
53.第一电极层103、第二电极层104、第三电极层123和第四电极层124可以包括一种或多种透明导电氧化物(tco),例如,铟锡氧化物(ito)、铟锌氧化物(izo)、镓锌氧化物(gzo)、铝锌氧化物(azo)和其他类似的材料。或者,电极层103、104、123、124可以包括其他透明材料,例如,导电网,例如,其包含金属,例如银纳米线或其他纳米材料,例如石墨烯或碳纳米管。还可以使用可印刷的导电油墨层,例如,c3nano股份有限公司的activegrid
tm
。根据各个实施方式,电极层103、104、123、124的片电阻可在约10ω/

(欧姆/

)至约1000ω/

的范围内,例如,约50ω/

至约900ω/

、约100ω/

至约800ω/

、约200ω/

至约700ω/

、约300ω/

至约600ω/

或约400ω/

至约500ω/

,包括其间的所有范围和子范围。
54.第一电极层103、第二电极层104、第三电极层123和第四电极层124可使用本领域已知的任何技术来制造,例如,真空溅射、膜层压或印刷技术。参考图1-5,第一电极层103和第二电极层104可分别沉积在第一玻璃基材101的第二表面101b和第二玻璃基材102的第一表面102a上。第三电极层123和第四电极层124可沉积在第三基材105的相背表面上。每个电极层的厚度例如可独立地在约1nm至约1000nm的范围内,例如,约5nm至约500nm、约10nm至约300nm、约20nm至约200nm、约30nm至约150nm或约50nm至约100nm,包括其间的所有范围和子范围。
55.根据非限制性实施方式,第一和第二电极层103、104和/或第三和第四电极层123、124可以包括叉指电极层。叉指电极层包括在单个表面上的一对电极,它们用不同的电压供电。液晶层可使用平面内转换(ips)通过叉指电极来控制。电场从较高电压的叉指电极开始,行进通过任何周围的介质(例如相邻的液晶层),并且终止于较低电压的叉指电极。参考图1,电极层103可包括在第一基材101的第二表面101b上的叉指电极。外加电场接着可从第二表面101b上的高电压叉指电极行进,环路通过第一液晶层110,并且终止于表面101b上的低电压叉指电极。电极层104可类似地包括在第二基材102的第一表面102a上的叉指电极,可向所述叉指电极施加电场以控制第二液晶层111的配向。在这样的实施方式中,可以移除第三电极层123和第四电极层124,从制造成本和/或复杂性的观点看,这可以是有利的。叉指电极层的位置可以不仅限于外基材组件。叉指电极层也可以是间隙基材组件的部分。例如,第三电极层123和第四电极层124可以包括叉指电极,并且可以移除第一电极层103和第二电极层104。
56.在非限制性实施方式中,第一电极层103、第二电极层104、第三电极层123和第四电极层124可包括图案,使得它们产生期望的区域或像素,以允许转换整个液晶装置或仅装置的期望部分。例如,电极层103、104、123、124可经图案化而形成具有垂直或水平取向的多条线或条纹。这种图案可用于构造例如窗户透射,通过打开交替的条纹或者通过将相邻的电极条纹设置到不同的透射强度而类似于机械遮光。替代性的图案是可行的并且被视为落在本公开的范围内,例如,正方形或矩形像素矩阵,其可用于构造例如提供任意图案的窗户透射。在各个实施方式中,图案化线和/或像素的宽度可在约1mm至约500mm的范围内,例如,约2mm至约400mm、约3mm至约300mm、约5mm至约200mm、约10mm至约100mm或约20mm至约50mm,包括其间的所有范围和子范围。
57.如上文关于图1-4所述,电极层103、104、123、124可以各种构造电连接或配对。在通电的“导通”状态,施加在一个或两个电极对上的外加电压在装置中产生一个或多个电场,其可用于对装置中的液晶的取向进行重新配向。溶解在液晶混合物中或与液晶合并的额外的分子通常遵循与液晶相同的取向。在“关断”状态,液晶和盒中的任何额外的分子将以自由能最小的方向配向。该状态可通过作用在液晶上的锚定力(例如,通过配向层作用)来定义。施加于电极的电压因此允许用户改变液晶和额外的分子的取向,以控制穿过液晶层的光的衰减程度。在明亮/清晰状态下,可选择液晶的几何结构和选择,以向入射在盒上的所有偏振光提供相等或基本相等的透射率。类似地,在黑暗/模糊状态下,液晶的几何结构和选择可向入射在盒上的所有偏振光提供相等或基本相等的衰减。
58.液晶装置100、200、300和400可包括两个或更多个液晶层,例如,第一液晶层110和第二液晶层111。在装置中还可以存在额外的液晶层。液晶层可包括液晶和一种或多种额外的组分,例如,染料或其他着色剂、手性掺杂剂、可聚合的反应性单体、光引发剂、聚合的结构或它们的任何组合。液晶可具有任何液晶相,例如,非手性向列液晶(nlc)、手性向列液晶、胆甾型液晶(clc)或近晶型液晶,它们可在宽的温度范围内运行,例如,约-40℃至约100℃。
59.根据各个实施方式,液晶层110、111可包括填充有液晶材料的盒间隙或腔室。液晶层的厚度或者盒间隙距离可通过分散在液晶层中的颗粒间隔件和/或柱状间隔件来维持。第一液晶层110和第二液晶层111以及任何额外的液晶层可具有小于或等于约0.2mm的厚
度,例如,在以下范围内:约0.001mm至约0.1mm、约0.002mm至约0.05mm、约0.003mm至约0.04mm、约0.004mm至约0.03mm、约0.005mm至约0.02mm或约0.01mm至约0.015mm,包括其间的所有范围和子范围。在一些实施方式中,第一液晶层110和第二液晶层111以及装置中存在的任何其他液晶层可包括相同的厚度,或者可以具有不同的厚度。
60.可使用本领域已知的任何液晶转换模式,举例来说,例如,tn(扭曲向列)模式、va(垂直配向)模式、ips(平面内转换)模式、bp(蓝相位)模式、ffs(边缘场转换)模式和ads(高级超维场转换技术)模式。在某些实施方式中,可能需要模拟的转换模式,其中,施加于电极的电压大小的逐渐变化允许透射光强度水平的改变以达到灰阶效果。液晶装置还可以用于仅具有两个可用的光强度透射水平——明亮/清晰(高光透射)和黑暗/模糊(低光透射)——的二元转换模式。二元模式转换的一个潜在优点在于能够以双稳态方式运行,以使得电功率仅在导通和关断状态之间的切换过程中被消耗,但是一旦达到这些状态则不消耗电功率。
61.参考图4,包含两个液晶层110、111和两个可独立运行的电极对(例如,103、104和123、124)的液晶装置400可允许具有三种稳定的光学状态。每个双稳态液晶层可独立地转换到明亮/清晰状态或黑暗/模糊状态。在第一种光学状态中,第一液晶层110和第二液晶层111均转换到明亮/清晰状态。在第二种光学状态中,第一液晶层110和第二液晶层111均转换到黑暗/模糊状态。在第三种光学状态中,第一电极层110或第二电极层111中的一者转换到清晰状态,另一者转换到黑暗/模糊状态。
62.在一些实施方式中,染料或其他着色剂,例如二色性染料可被添加到其中的一个或多个液晶层110、111中,以吸收透射通过液晶层的光。二色性染料通常沿着与染料分子中的跃迁偶极矩的方向平行的方向更强烈地吸收光,所述跃迁偶极矩通常是染料分子的较长的分子轴。长轴垂直于光偏振方向取向的染料分子将提供低的光衰减,而长轴平行于光偏振方向取向的染料分子将提供强的光衰减。
63.在各个实施方式中,在“关断”状态具有最高的光透射的常亮/清晰液晶装置可通过使用垂面配向以及使液晶层包含具有负介电各向异性的液晶和额外的染料分子来实现。在这种构造中,染料分子将在断电的“关断”状态下以低吸收的垂直取向配向,并在通电的“导通”状态下与液晶一起旋转到高吸收的平行取向。类似地,在某些实施方式中,在“导通”状态具有最高的光透射的常暗/模糊液晶装置可通过使用沿面配向以及使液晶层包含具有正介电各向异性的液晶和额外的染料分子来实现。在这种构造中,染料分子将在断电的“关断”状态下以高吸收的平行取向配向,并在通电的“导通”状态下与液晶一起旋转到低吸收的垂直取向。
64.一般而言,常明亮/清晰和常黑暗/模糊液晶装置均以零雾度或低雾度方式起作用,因此观察者可透过液晶装置观看而几乎没有失真。然而,在某些情况中,可能期望提供具有“隐私”模式的液晶装置,以使得观看者可透过液晶装置观看的图像变暗或漫散。这种隐私模式例如可通过下述来实现:提供光散射效应来捕获液晶层中的光,以使得被染料吸收的光的量增加。
65.液晶层中的光散射效应可以几种不同的方式来实现,这些方式促进或增强液晶的随机配向。可以向液晶混合物添加一种或多种手性掺杂剂以形成高度扭曲的胆甾型液晶(clc),其可以具有提供光散射效应的随机配向,在本文中称为焦锥织构。通过在液晶层基
体中包含聚合物结构(例如,聚合物纤维)也可以促进或帮助随机的液晶配向,这在本文中称为聚合物稳定的胆甾型织构(psct)。使用随机分散在固体聚合物层或聚合物纤维的致密网络或聚合物壁中的小液滴向列型液晶(无手性掺杂剂)也可实现随机的液晶配向,这在本文中称为聚合物分散液晶(pdlc)。
66.根据各个实施方式,聚合物可分散在液晶层的基体中或者玻璃和间隙基材的内表面上。此类聚合物可以通过使溶于液晶混合物中的单体聚合来形成。在某些实施方式中,可以在外基材和/或间隙基材的内表面上形成聚合物突起或其他聚合结构,例如,在具有垂面配向层的常清晰液晶装置中,以限定方位角转换方向并提高光电转换速度。
67.如上所述,可以向液晶混合物添加手性掺杂剂以获得液晶分子的扭曲超分子结构,在本文中称为胆甾型液晶(clc)。clc中的扭曲量通过螺旋节距来描述,其代表局部液晶指向矢在盒间隙厚度上的旋转角度乘以360度。clc扭曲也可通过盒间隙厚度(d)与clc螺旋节距(p)的比值(d/p)来定量。对于液晶应用,可控制溶于液晶混合物的手性掺杂剂的量以在给定的盒间隙距离上实现期望的扭曲量。本领域的技术人员有能力选择适当的掺杂剂及其量来实现期望的扭曲效应。
68.在各个实施方式中,本文公开的液晶层的扭曲量为约0
°
至约25x360
°
(或者d/p在约0至约25.0的范围内),例如,在约45
°
至约1080
°
的范围内(d/p为约0.125至约3),约90
°
至约720
°
(d/p为约0.25至约2),约180
°
至约540
°
(d/p为约0.5至约1.5),或者约270
°
至约360
°
(d/p为约0.5至约1),包括其间的所有范围和子范围。如本文所用,不包括手性掺杂剂的液晶混合物被称为向列型液晶(nlc)。包括手性掺杂剂并且具有小节距和大扭曲的液晶是指d/p大于1的clc混合物。包括手性掺杂剂并且具有大节距和小扭曲的液晶是指d/p小于或等于1的clc混合物。
69.如上所述,当染料分子的长轴平行于偏振光的方向取向时,二色性染料更强烈地吸收光。因此,包括向列型液晶层的装置在仅具有一种线性偏振光的情况中表现最佳。然而,在某些商业应用中,例如,汽车窗玻璃,穿过液晶装置的光是非偏振的。在这样的情况中,可以有利的是提供包含两个或更多个液晶层的液晶装置,所述液晶层包含向列型液晶,并且将液晶层旋转成相对于彼此成垂直取向(例如,旋转90
°
),以有效地衰减非偏振光。或者,使用包含两个或更多个液晶层的液晶装置并且该液晶层包含扭曲的clc液晶也可实现非偏振光的衰减。例如,当clc在盒间隙厚度上提供至少90
°
的扭曲时,染料分子可吸收基本上非偏振光的所有线性偏振分量。
70.在平面或沿面配向的情况中,在“关断”状态,扭曲的clc结构将使染料分子以平行或水平取向配向,由此建立黑暗/模糊状态并具有最小光透射。在“导通”状态,液晶层将通过外加电场重新配向成垂直或垂面取向,由此建立明亮/清晰状态并具有最大光透射。类似地,在垂直或垂面配向的情况中,在“关断”状态,扭曲的clc结构将被液晶层的任一侧上的配向层抑制,这造成染料分子以垂直/垂面取向配向,由此建立明亮/清晰状态并具有最大光透射。在“导通”状态,液晶层将通过外加电场重新配向成平行或水平取向,由此建立黑暗/模糊状态并具有最小光透射。
71.应理解,本公开的范围不仅限于图1-5所描绘的实施方式。本文公开的液晶装置可包括额外的液晶层,额外的间隙基材,额外的配向层,和/或额外的电极层,它们可以相同或不同,并且可以任何合适的方式组合而不作限制。装置中的各个液晶层可以包括相同或不
同的液晶材料和/或添加物质,相同或不同的厚度,相同或不同的转换模式,以及相对于彼此相同或不同的取向。如果装置中存在不止一个间隙基材,则间隙基材可以包括相同或不同的材料以及相同或不同的厚度。类似地,装置中的各个配向层可以包括相同或不同的材料,相同或不同的厚度,以及相对于彼此相同或不同的取向。同样地,装置中的各个电极层可以包括相同或不同的材料,相同或不同的厚度,以及相同或不同的图案。
72.在某些实施方式中,通过将液晶装置与相对于彼此处于特定取向的配向层组装在一起可以放大来自液晶结构的光学效应。例如,不同配向层的轴例如可以通过摩擦的方向来定义,这些轴可以彼此平行,彼此反平行,相对于彼此旋转90
°
,或者相对于彼此旋转另一角度。参考图1-4,第一配向层106和第三配向层107以及第一液晶层110在“关断”状态中可以产生第一液晶指向矢,而第四配向层108和第二配向层109以及第二液晶层111在“关断”状态中可以产生与第一液晶指向矢不同的第二液晶指向矢。
73.本文公开的液晶装置可用于各种建筑和运输应用。例如,液晶装置可用作液晶窗,其可被包含在建筑物、汽车和其他运输交通工具(例如,火车、飞机、船等)的门、空间分隔、天窗和窗户中。参考图6,在一些实施方式中,液晶窗600包括额外的玻璃基材601,其通过间隙602与液晶装置100分离。该额外的玻璃基材601可包括具有任何期望厚度的任何合适的玻璃材料,包括上文关于第一玻璃基材101和第二玻璃基材102所述的那些。间隙602例如可通过第三密封部s3密封,并且填充有空气、惰性气体或其混合物,这可以改进液晶窗的热学性能。合适的惰性气体包括但不限于氩气、氪气、氙气及其组合。也可以使用惰性气体的混合物或者一种或多种惰性气体与空气的混合物。示例性的非限制性惰性气体混合物包括90/10或95/5的氩气/空气,95/5的氪气/空气,或者22/66/12的氩气/氪气/空气混合物。根据液晶窗的期望热学性能和/或最终用途,也可以使用其他比值的惰性气体或惰性气体和空气。
74.在各个实施方式中,玻璃基材601是内块板,例如,面向建筑物或运载工具的内部,但是相反的取向,即,玻璃601面向外部也是可能的。用于建筑应用的液晶窗装置可具有任何期望的尺寸,包括但不限于2’x4’(宽度x高度)、3’x5’、5’x8’、6’x8’、7x10’或7’x12’。还设想了更大和更小的液晶窗并且它们旨在落在本公开的范围内。虽然未例示,但应理解,液晶装置600可包括一个或多个额外部分,例如,框架或其他结构部件,电源和/或控制装置或系统。还应理解,虽然图6例示了包含图1的液晶装置100的液晶窗600,但是本文所示和/或所述的任何液晶装置也可用于液晶窗应用。
75.相比于现有技术装置,本文公开的液晶装置和液晶窗可以具有各种优点。例如,所述液晶装置可以具有可与传统的双盒装置相当的高对比度,但是由于在整个结构中使用更少的玻璃,因此具有更薄和/或更轻的轮廓。在某些实施方式中,本文公开的液晶装置的对比度可以大于或等于1:20,例如,大于1:30,大于1:40,或大于1:50,包括其间的所有范围和子范围。在黑暗/模糊状态中的可见光透射率可以小于或等于约3%,例如小于或等于约2%,或者小于或等于约1%,包括其间的所有范围或子范围,而明亮/清晰状态中的光透射率可以大于或等于约70%,例如大于或等于约80%,或者大于或等于约90,包括其间的所有范围和子范围。由于装置中的玻璃界面有所减少,因此也最大程度地减少了光学损耗。根据各个实施方式,本文公开的液晶装置可以具有低雾度值,例如,小于约1%,小于约0.5%,或者小于约0.1%,包括其间的所有范围和子范围。
76.虽然传统的双盒装置包括四块玻璃板,即,每个液晶盒两块,但是本文公开的液晶装置可包括少至三个基材,例如,第一和第二(外)玻璃基材和第三(间隙)玻璃基材。另外,由于间隙基材在整个装置的结构稳定性方面不是关键因素,因此在一些实施方式中,该基材相比于外基材可以具有相对较低的厚度。因此,即使在存在不止一个间隙基材的实施方式中,装置的总厚度和/或重量仍可以比双盒装置的显著更低。由于部件(例如玻璃基材)的数目有所减少,因此制造复杂性和/或成本也可以降低。
77.应理解,各个公开的实施方式可以涉及与特定实施方式一起描述的特定特征、元素或步骤。还应理解,虽然以涉及一个特定实施方式的形式进行描述,但是特定特征、元素或步骤可以各个未例示的组合或排列方式中的替换性实施方式互换或组合。
78.虽然使用过渡语“包含”可以公开特定实施方式的各个特征、元素或步骤,但是应理解的是,这暗示了包括可采用过渡语“由
……
构成”或“基本上由
……
构成”描述在内的替代性实施方式。因此,例如,包含a+b+c的装置的隐含的替代性实施方式包括其中装置由a+b+c组成的实施方式以及其中装置基本上由a+b+c组成的实施方式。
79.对本领域的技术人员而言显而易见的是,可以对本公开进行各种修改和变动而不会偏离本公开的范围和精神。因为本领域的技术人员可以想到融合了本公开的精神和实质的所公开的实施方式的各种改进的组合、子项组合和变化,因此,应认为本公开包括所附权利要求书范围内的全部内容及其等同内容。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1