一种紧凑硅基阵列波导光栅的32信道密集型波分复用器

文档序号:30784424发布日期:2022-07-16 07:23阅读:162来源:国知局
一种紧凑硅基阵列波导光栅的32信道密集型波分复用器

1.本发明属于密集型波分复用器技术领域,尤其涉及一种紧凑硅基阵列波导光栅的32信道密集型波分复用器。


背景技术:

2.阵列波导光栅(arrayedwaveguide grating,awg)作为典型波分复用解复用器,具有尺寸小、信道一致性好等优点,因而受到广泛关注。然而,当前硅基阵列波导光栅波分复用器在处理密集型多信道时面临较大挑战:比如单个/单级器件的100ghz信道间隔下32信道输出,其尺寸较大,且邻道串扰较为严重。但是,100ghz间隔、32信道的密集型复用机制与技术在光通信与微波光子领域应用广泛,能够显著提升系统容量和处理速度等。
3.目前,代表性的硅基阵列波导光栅波分复用器多集中在16个信道、200ghz间隔。相关论文包括:1)zhiqun,et al."low-crosstalk silicon photonics arrayed waveguide grating."chinese optics letters(2017);2)sitao,et al."compact dense wavelength-division(de)multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a mach

zehnder interferometer."lightwave technology,journal of33.11(2015):2279-2279;3)changjian xie,et al."a 32-channel 100ghz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings."中国物理b 30.12(2021):120703-120703。上述论文中单个阵列波导光栅的输出信道数多为16个左右,基于2个或多个阵列波导光栅的级联或者交错结构才能实现32信道输出。论文(1)为实现输出信道数的增加,采用两级级联阵列波导光栅成功将信道数拓展至16,输出信道串扰得以降低,理论上达到-30db;但这种级联形式的阵列波导光栅,制作难度极大;论文(2)和(3)都采用了交错式设计,利用马赫曾德尔干涉仪与两个阵列波导光栅级联,实现输出信道数倍增;但问题依然集中于两级之间的波长对准问题,同时两级设计增大了器件的整体结构,降低了整体集成度。可见目前单个阵列波导光栅实现32信道100ghz输出的阵列波导光栅设计,依然是一个难题。
4.根据以上分析可知,多信道(≥32)输出的硅基阵列波导光栅波分复用器的设计,难点主要在于基于紧凑单级阵列波导光栅结构获得100ghz间隔、32信道输出的密集型复用。


技术实现要素:

5.为了在紧凑的单级硅基阵列波导光栅实现的密集型波分复用解复用功能,本发明提供一种紧凑硅基阵列波导光栅的32信道密集型波分复用器。
6.本发明的一种紧凑硅基阵列波导光栅的32信道密集型波分复用器,由硅基器件输入波导、第一平板波导、矩形阵列波导、第二平板波导以及输出波导顺次连接组成。输入波导具有5个端口,其中4个为冗余输入;输出波导具有32个端口。阵列波导由147个条形波导组成,每一个条形波导由直波导、90
°
弯曲波导和锥形波导组成,相邻条形波导之间具有相
等长度差δl。第一平板波导和第二平板波导基本结构为罗兰圆,即一个半径为r的圆与一个半径为r/2的内切圆组成,且两个平板波导为对称设计。
7.进一步的,输出波导的32个端口之间的间距为1.5μm;阵列波导的147个条形波导中相邻两个波导的间距为2.3μm,每个波导的宽度为1μm,自由频谱范围为4200ghz。
8.通过在输入输出波导中加入冗余波导,阵列波导中引入单模波导(即90
°
弯曲波导),从而降低器件内部反射以及模式扩散引起的损耗。
9.进一步的,波分复用器采用标准晶圆设计:基底和上包层采用2μm厚的二氧化硅材料,主体波导光栅结构采用220nm厚的硅材料。主体波导光栅由三部分组成:5个输入波导(其中4个为冗余波导)和32个输出波导,两个平板波导以及147个具有相等固定长度差的波导阵列。
10.阵列波导光栅的损耗主要在平板波导与条形波导,即输入波导、输出波导和阵列波导这类波导的连接处产生;主要原因为波导宽度的骤然变化会引起模式失配,一部分输入光的能量会扩散到其他模式中。这不仅仅会造成器件损耗增大,同时也会增大结构的相位误差,导致输出串扰增大,因此通常在这类结构的连接处将波导宽度拓宽,形成一个锥形结构,尽可能地降低发生模式失配的可能性,从而降低损耗。
11.进一步的,相邻条形波导之间的长度差δl由下式计算:
[0012][0013]
其中,m为阵列波导光栅的衍射阶数,λ0为中心波长,nc为阵列波导的模式有效折射率。
[0014]
进一步的,自由频谱范围fsr与衍射阶数m的关系表示为:
[0015][0016]
其中,ng为阵列波导的模式群折射率,λ0为中心波长,nc为阵列波导的模式有效折射率。
[0017]
本发明的有益技术效果为:
[0018]
1、通过紧凑型阵列波导光栅结构,实现100ghz信道间隔、32信道输出的波分复用器,在光通信与光信号处理中具有重要应用。
[0019]
2、通过增加冗余波导以及单模弯曲波导降低器件的插入损耗和邻道串扰。
[0020]
3、通过控制输出波导以及阵列波导间隔、自由频谱范围等参数,将阵列波导光栅的整体结构控制在1.0
×
1.4mm以内。
附图说明
[0021]
图1为本发明的紧凑硅基阵列波导光栅的32信道密集型波分复用器结构示意图。
[0022]
图1中编号释义:1-输入波导;2-第一平板波导;3-矩形阵列波导;4-第二平板波导;5-输出波导。
[0023]
图2为本发明的紧凑硅基阵列波导光栅的32信道密集型波分复用器的传输响应。
具体实施方式
[0024]
下面结合附图和具体实施方法对本发明做进一步详细说明。
[0025]
本发明的一种紧凑硅基阵列波导光栅的32信道密集型波分复用器如图1所示,由硅基器件输入波导1、第一平板波导2、矩形阵列波导3、第二平板波导4以及输出波导5顺次连接组成。输入波导1具有5个端口,其中4个为冗余输入;输出波导5具有32个端口。阵列波导3由147个条形波导组成,每一个条形波导由直波导、90
°
弯曲波导和锥形波导组成,相邻条形波导之间具有相等长度差δl。第一平板波导2和第二平板波导4基本结构为罗兰圆,即一个半径为r的圆与一个半径为r/2的内切圆组成,且两个平板波导为对称设计。其工作原理是当宽谱光经输入波导进入第一个平板波导2时,光束会在其内部发生衍射后进入阵列波导3,由于相邻的条形波导具有的长度差δl,光束会在阵列波导3内部产生相位差并在第二个平板波导4发生干涉,不同波长的光聚焦到不同的输出波导5处。
[0026]
相邻条形波导之间的长度差δl由下式计算:
[0027][0028]
其中,m为阵列波导光栅的衍射阶数,λ0为中心波长,nc为阵列波导的模式有效折射率。本发明中使用模式为te0基模。在条形波导和自由传播区波导的连接处引入了抛物线锥形波导,拓宽波导宽度,降低两种波导的折射率差,减少相位误差和模式失配。
[0029]
由罗兰圆构成的平板波导的半径r可以由下式计算得到:
[0030][0031]
其中,d
io
为输入输出波导间距,ns为自由传播区波导模式有效折射率,da为阵列波导间距,δλ为信道间隔,ng为阵列波导的模式群折射率。本发明中输出波导间距采用1.5μm,阵列波导间距为2.3μm,阵列波导宽度为1μm,罗兰圆半径为267μm。
[0032]
自由频谱范围(fsr)与衍射阶数m的关系表示为:
[0033][0034]
合理设计器件的fsr与r,实现结构的紧凑化。在本发明中,fsr设计为4200ghz。此外,在条形波导与平板波导的连接处,将条形窄波导拓宽,降低了其与平板波导的模式有效折射率差,从而降低了相位误差,本发明中阵列波导数量设计为147。
[0035]
在输入输出波导以及阵列波导处加入冗余波导,将平面波导界面这部分散射光通过冗余波导传导出去,降低引入的相位误差。同时在阵列波导内部加入了90
°
弯曲的单模波导;这主要用于抑制1μm宽带的阵列波导中的多种模式传输,使阵列波导内部的模式保持单模传输,降低相位误差的引入。
[0036]
结合整体设计,即增加冗余波导、加入单模弯曲波导、锥形波导做连接波导,同时合理选择自由频谱范围以及输出波导和阵列波导间隔等参数,最终的设计结果如图2所示;仿真结果显示相邻信道串扰不高于-40db,插入损耗不大于4db。
[0037]
综上,本发明具有如下特征:1、基于紧凑硅基阵列波导光栅结构实现100ghz信道间隔、32信道输出的密集型波分复用器;2、通过增加冗余波导、加入单模弯曲波导、锥形连
接波导,同时合理选择自由频谱范围以及输出波导和阵列波导间隔等参数,保持器件性能和整体尺寸平衡,将器件整体尺寸控制在1.0
×
1.4mm以内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1