一种自动调焦光学系统及调焦方法与流程

文档序号:32460522发布日期:2022-12-07 03:52阅读:195来源:国知局
一种自动调焦光学系统及调焦方法与流程

1.本发明涉及光学技术领域,尤其涉及一种自动调焦光学系统及调焦方法。


背景技术:

2.微分干涉成像系统由于其结构的特殊性,适用于检测透明物体的结构和缺陷以及检测高度差异极其微小的样本,包括细胞、金相组织、液晶屏导电粒子、电容式触摸屏的线路和磁头检测,广泛应用与生物医疗、液晶面板检测等领域。
3.在现有的技术中,微分干涉成像检测系统通常有手动对焦和自动对焦两种方式,现有的自动对焦技术,通常是电机驱动光学系统整体轴向移动,即调整工作距离。
4.但现有的自动对焦技术,光学系统机械式的往返运动会造成磨损,且电机驱动的对焦速度并没有特别快,还会引入电机噪声。


技术实现要素:

5.本发明提供了一种自动调焦光学系统及调焦方法,以解决机械调焦对焦速度慢和引入电机噪声的问题。
6.根据本发明的一方面,提供了一种自动对焦光学系统,其中包括微分干涉光学模块、液态对焦模块、处理模块和驱动模块;
7.所述微分干涉光学模块用于出射探测光束以对待探测物进行探测并获取探测图像;
8.所述液态对焦模块设置于所述微分干涉光学模块的光路中;
9.所述处理模块分别与所述微分干涉光学模块和所述驱动模块电连接,用于根据所述探测图像确定所述待探测图像的离焦信息,根据所述离焦信息确定所述液态对焦模块的调节信息并发送所述调节信息至所述驱动模块;
10.所述驱动模块与所述液态对焦模块电连接,用于根据所述调节信息调节所述液态对焦模块的屈光度。
11.可选的,微分干涉光学模块包括光源单元、起偏单元、微分干涉单元、物镜单元、目镜单元、滤波单元、检偏单元、成像位置调节单元和成像单元;
12.所述液态对焦模块位于所述微分干涉单元与所述目镜之间的光路中;
13.所述光源单元包括第一光源和第二光源,所述第一光源用于出射第一探测光束,所述第二光源用于出射第二探测光束,所述第一探测光束与所述第二探测光束的波长范围不同;
14.所述起偏单元分别位于所述第一探测光束和所述第二探测光束的传播路径上,用于调制所述第一探测光束形成第一偏振探测光束,调制所述第二探测光束形成第二偏振探测光束;
15.所述微分干涉单元分别位于所述第一偏振探测光束和所述第二探测光束的传播路径上,用于调制所述第一偏振探测光束形成第一微分偏振探测光束,调制所述第二偏振
探测光束形成第二微分偏振探测光束;
16.所述物镜单元和所述待探测物依次位于所述第一微分偏振探测光束和所述第二微分偏振探测光束的传输路径上,所述第一微分偏振探测光束经所述待探测物反射后形成第一微分偏振反射光束,所述第一微分偏振反射光束依次经所述物镜和所述微分干涉单元调制后形成第一成像光束,所述第一成像光束携带所述待探测物的探测信号;所述第二微分偏振探测光束经所述待探测物反射后形成第二微分偏振反射光束,所述第二微分偏振反射光束依次经所述物镜单元和所述微分干涉单元调制后形成第二成像光束,所述第二成像光束携带所述待探测物的探测信号;
17.所述液态对焦模块分别位于所述第一成像光束和所述第二成像光束的传播路径上,用于调整所述第一成像光束和所述第二成像光束的焦距;
18.所述滤波单元包括第一滤波透镜和第二滤波透镜,所述第一滤波透镜和所述第二滤波透镜的滤波范围不同;所述检偏单元包括第一检偏透镜和第二检偏透镜;所述成像单元包括第一成像单元和第二成像单元;所述第一成像光束依次经所述目镜单元、所述第一滤波透镜、所述第一检偏透镜、所述成像位置调节单元后在所述第一成像单元的第一位置和第二位置成像,所述第一位置和所述第二位置对称于与所述第二成像单元共轭的像平面;所述第二成像光束依次经所述目镜、所述第二滤波透镜和所述第二检偏透镜后在所述第二成像单元成像。
19.可选的,微分干涉光学模块还包括掩模图案单元;
20.所述掩模图案单元位于所述第一探测光束的传播路径上,用于调制所述第一探测光束形成图案探测光束。
21.可选的,掩模图案单元包括光栅组件。
22.可选的,成像位置调整单元包括第一透反镜片和第一反射镜片;
23.所述第一成像光束经所述第一透反镜片透射后入射至所述第一位置,经所述第一透反镜片反射后再经所述第一反射镜片反射后入射至所述第二位置。
24.可选的,微分干涉光学模块还包括第二透反镜片和第三透反镜片;
25.所述第二透反镜片位于所述起偏单元与所述微分干涉单元之间的光路中以及所述微分干涉单元与所述液态对焦模块之间的光路中,用于反射所述第一偏振探测光束和所述第二偏振探测光束至所述微分干涉单元,透射所述第一成像光束和所述第二成像光束至所述液态对焦模块;
26.所述第三透反镜片位于所述目镜单元与所述滤波单元之间的光路中,用于反射所述第一成像光束和所述第二成像光束至所述第一滤波透镜,透射所述第一成像光束和所述第二成像光束至所述第二滤波透镜。
27.可选的,微分干涉光学模块还包括第二反射镜片和第四透反镜片;
28.所述第二反射镜片位于所述第一光源与所述第四透反镜片之间的光路中,用于反射所述第一探测光束至所述第四透反镜片;
29.所述第四透反镜位于所述第二反射镜片与所述起偏单元之间光路中以及所述第二光源与所述起偏单元之间光路中,用于透射所述第一探测光束至所述起偏单元,反射所述第二探测光束至所述起偏单元。
30.可选的,液态对焦模块包括相对设置的第一外壳和第二外界;
31.设置于所述第一外壳和所述第二外壳限定空间内的第一保护层和第二保护层,所述第一保护层和所述第二保护层相对设置;
32.设置于所述第一保护层和所述第二保护层限定空间内的液态透镜。
33.可选的,第一光源包括红外光光源,所述第二光源包括白光光源。
34.根据本发明的另一方面,提供了一种自动调焦光线系统的调焦方法,应用于本发明第一方面所述的自动对焦光学系,其中包括:
35.基于微分干涉光学模块获取待探测物的探测图像;
36.根据所述探测图像确定所述待探测图像的离焦信息;
37.根据所述离焦信息确定液态对焦模块的调节信息并发送所述调节信息至所述驱动模块,以使所述驱动模块根据所述调节信息调节所述液态对焦模块的屈光度。
38.本发明实施例的技术方案,通过在自动调焦光学系统中,利用液态透镜实现光学系统的变焦过程,液态透镜的屈光度响应时间在毫秒量级,大大提高了自动对焦光学系统的对焦速度,且整个光学系统在对焦过程中没有机械运动,是通过液态透镜改变焦距,这也就消除了因机械运动带来的磨损,并且整个光学系统体积小,结构紧凑,噪声小,稳定性好。
39.应当理解,本部分所描述的内容并非旨在标识本发明的实施例的关键或重要特征,也不用于限制本发明的范围。本发明的其它特征将通过以下的说明书而变得容易理解。
附图说明
40.为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
41.图1为本发明实施例提供的一种自动对焦光学系统的方框示意图;
42.图2为本发明实施例提供的一种自动对焦光学系统的结构示意图;
43.图3本发明实施例提供的一种自动对焦光学系统中成像位置调整单元的结构示意图;
44.图4为本发明实施例提供的一种液态对焦模块的结构示意图;
45.图5为液态透镜三种屈光度状态的结构示意图;
46.图6为本发明实施例提供的一种自动调焦光学系统的调焦方法的流程图。
具体实施方式
47.为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
48.需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或
描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
49.图1为本发明实施例提供的一种自动对焦光学系统的方框示意图,如图1所示,一种自动对焦光学系统,包括微分干涉光学模块10、液态对焦模块20、处理模块30和驱动模块40;微分干涉光学模块10用于出射探测光束以对待探测物进行探测并获取探测图像;液态对焦模块20设置于微分干涉光学模块10的光路中;处理模块30分别与微分干涉光学模块10和驱动模块40电连接,用于根据探测图像确定待探测图像的离焦信息,根据离焦信息确定液态对焦模块20的调节信息并发送调节信息至驱动模块40;驱动模块40与液态对焦模块20电连接,用于根据调节信息调节液态对焦模块20的屈光度。
50.其中,探测光束可以理解为由微分干涉光学模块10出射,用以探测待测物体的光束,示例性的,可以为红外光光束或者其他波长光束。待探测物可以理解为根据实际需要来探测的物体。具体的,微分干涉光学模块10出射探测光束对待探测物进行探测并获取探测图像后,将探测图像信息传输至处理模块30,处理模块30根据探测图像确定待探测图像的离焦信息,由内部算法将待探测图像的离焦信息转换为调节信息,并发送给驱动模块40,驱动模块40接收到调节信息后,根据该信息调节液态对焦模块20两端的电流或电压,进而改变其曲率,从而改变其屈光度。
51.由于液态对焦模块20设置于微分干涉光学模块10的光路中,因此当液态对焦模块20的屈光度放生变化时,其对待探测物反射的探测图像光束的调节作用改变,如此可以进一步调节探测图像光束的离焦信息,保证探测图像光束不发生离焦,保证探测图像的清晰度和对比度良好,实现对待探测物探测的精确性。
52.需要说明的是,离焦信息可以理解为离焦量和离焦方向。调节信息可以理解为调节电流或电压的大小信息。
53.本发明实施例的技术方案,通过在自动调焦光学系统中,利用液态透镜实现光学系统的变焦过程,液态透镜的屈光度响应时间在毫秒量级,大大提高了自动对焦光学系统的对焦速度,且整个光学系统在对焦过程中没有机械运动,是通过液态透镜改变焦距,这也就消除了因机械运动带来的磨损,并且整个光学系统体积小,结构紧凑,噪声小,稳定性好。
54.图2为本发明实施例提供的一种自动对焦光学系统的结构示意图,图3本发明实施例提供的一种自动对焦光学系统中成像位置调整单元的结构示意图,结合图2和图3所示,微分干涉光学模块10可以包括光源单元11、起偏单元12、微分干涉单元13、物镜单元14、目镜单元15、滤波单元16、检偏单元17、成像位置调节单元18和成像单元19;液态对焦模块20位于微分干涉单元13与目镜151之间的光路中;光源单元11包括第一光源111和第二光源112,第一光源111用于出射第一探测光束,第二光源112用于出射第二探测光束,第一探测光束与第二探测光束的波长范围不同;起偏单元12分别位于第一探测光束和第二探测光束的传播路径上,用于调制第一探测光束形成第一偏振探测光束,调制第二探测光束形成第二偏振探测光束;微分干涉单元13分别位于第一偏振探测光束和第二探测光束的传播路径上,用于调制第一偏振探测光束形成第一微分偏振探测光束,调制第二偏振探测光束形成第二微分偏振探测光束;物镜单元14和待探测物依次位于第一微分偏振探测光束和第二微
分偏振探测光束的传输路径上,第一微分偏振探测光束经待探测物反射后形成第一微分偏振反射光束,第一微分偏振反射光束依次经物镜和微分干涉单元调制后形成第一成像光束,第一成像光束携带待探测物的探测信号;第二微分偏振探测光束经待探测物反射后形成第二微分偏振反射光束,第二微分偏振反射光束依次经物镜单元14和微分干涉单元13调制后形成第二成像光束,第二成像光束携带待探测物的探测信号;液态对焦模块20分别位于第一成像光束和第二成像光束的传播路径上,用于调整第一成像光束和第二成像光束的焦距;滤波单元16包括第一滤波透镜161和第二滤波透镜162,第一滤波透镜161和第二滤波透镜162的滤波范围不同;检偏单元17包括第一检偏透镜171和第二检偏透镜172;成像单元19包括第一成像单元191和第二成像单元192;第一成像光束依次经目镜单元15、第一滤波透镜161、第一检偏透镜171、成像位置调节单元18后在第一成像单元191的第一位置a和第二位置b成像,第一位置a和第二位置b对称于与第二成像单元192共轭的像平面;第二成像光束依次经过目镜15、第二滤波透镜162和第二检偏透镜172后在第二成像单元192成像。
55.其中,第一探测光束与第二探测光束的波长范围不同,如此第一探测光束和第二探测光束获得的探测图像可以分别在不同的成像单元中成像,也就是其中一种探测光束获取的探测图像可以作为另一种探测光束获取的探测图像的对比图像,基于两个探测图像之间的对比确定探测图像的离焦信息。进一步的,第一光源111和第二光源112可以设置在自动调焦光学系统的同一侧,也可以分别设置在自动调焦光学系统两侧,本发明实施例对此不进行限定,图2仅以第一光源111和第二光源112设置在自动调焦光学系统的同一侧为例进行说明。
56.进一步的,第一光源111包括红外光光源,第二光源112包括白光光源。如此一方面保证不同波长的探测光束可以分别在不同的成像单元中成像,便于区分两者的成像;另一方面,红外光波长长,能量低,采用红外光光源不会对光学器件造成损害,保证光学器件正常工作;同时白光光源为生活中常见光源,取材简单,经济适用。示例性的,第一光源111为红外光光源时,其出射的第一探测光束波长范围为0.75μm~1000μm,第二光源112为白光光源时,其出射的第二探测光束波长范围为390nm-780nm。第一探测光束与第二探测光束的波长范围不同,便于分别探测。
57.其中,起偏单元12可以理解为将光源光束调制成偏振光束的器件,示例性的,可以为偏振分束器。具体的,起偏单元12分别位于第一探测光束和第二探测光束的传播路径上,用于调制第一探测光束形成第一偏振探测光束,调制第二探测光束形成第二偏振探测光束,便于后续采用偏振光束对待探测物进行探测。
58.与起偏单元12相对应的,本发明实施例中的微分干涉光学模块还可以包括检偏单元17,检偏单元17同样可以为偏振分束器,用于透过与检偏单元17的偏振轴偏振方向相同的光线。对应探测光束的不同波长,如图2所示,检偏单元17具体可以包括第一检偏透镜171和第二检偏透镜172,分别对不同波长的探测光束进行检偏调节。
59.进一步的,本发明实施例提供的微分干涉光学模块11还可以包括微分干涉单元13、物镜单元14、目镜单元15、滤波单元16、检偏单元17、成像位置调节单元18和成像单元19,第一光源111出射第一探测光束,经过位于其传播路径上的起偏单元12,调制后形成第一偏振探测光束,第一偏振探测光束沿着光路传播,经过微分干涉单元13后,被调制成为第一微分偏振探测光束,第一微分偏振探测光束为两束具有微小夹角且振动方向相互垂直,
振幅相等的线偏振光,第一微分偏振探测光束沿着光路传播,入射到待探测物表面,经待探测物反射后形成第一微分偏振反射光束,继续沿光路传播,依次经物镜14和微分干涉单元13调制后形成携带待探测物的图像信息的第一成像光束;在第一光源111出射第一探测光束的同时,第二光源112出射第二探测光束,经过同样的步骤调制后形成携带待探测物的图像信息的第二成像光束。第一成像光束沿着光路传播,相继穿过目镜单元15,第一滤波透镜161,第一检偏透镜171、成像位置调节单元18后投射到第一成像单元191的第一位置a和第二位置b成像;第二成像光依次经过目镜15、第二滤波透镜162和第二检偏透镜172后在第二成像单元192成像。如此不同波长的成像光束可以分别在不同的成像单元中成像。
60.进一步的,液态对焦模块20位于微分干涉单元13与目镜151之间的光路中,如此液态对焦模块20可以调节进入目镜之前的成像光束的焦距信息,保证成像单元可以得到清晰探测图像,便于实现对待探测物的精确探测。
61.进一步的,成像单元19可以理解为一种配置在微分干涉光学模块10中的可以成像的电子器件,示例性的,可以为ccd系统或者cmos系统。
62.可选的,微分干涉光学模块10还包括掩模图案单元103。
63.掩模图案单元103位于第一探测光束的传播路径上,用于调制第一探测光束形成图案探测光束。
64.其中,掩模图案单元103可以理解为一种可以改变光束携带图像形状信息的光学器件,通过在第一探测光束的传播路径上增设掩模图案单元,如此第一探测光束以及第一成像光束均携带掩模图案,形成在第一位置a和第二位置b的探测图像也均携带掩模图案,便于成像在第一位置a的探测图像和成像在第二位置b的探测图像之间进行对比,保证可以简单且清晰对不同位置处的探测图像进行对比,精确获取对比度差异进行进而实现对液态对焦模块的屈光度进行精确调节,保证后续对待探测物的精确探测。
65.可选的,掩模图案单元包括光栅组件。
66.示例性的,当掩模图案单元为一维光栅组件时,由于光栅为等间距的平行狭缝,可以更清晰观察图像中明暗区域最亮的白和最暗的黑之间不同亮度层级,进而可以更直观比较出ab两处图像对比度是否有差异。
67.可选的,继续参考图3所示,成像位置调整单元18包括第一透反镜片181和第一反射镜片182;第一成像光束经第一透反镜片181透射后入射至第一位置a,经第一透反镜片181反射后再经第一反射镜片反射后入射至第二位置b。
68.具体的,第一成像光束经过第一透反镜片181后一分为二,一半光线直接照射在第一成像单元191的第一位置a,另一半光线被第一透反镜片181和第一反射镜片182反射后,照射在第一成像单元191的第二位置b处,如此第一成像光束可以在第一位置a和第二位置b处均成像。由于第一位置a和第二位置b对称于与第二成像单元192共轭的像平面,因此可以通过对第一位置a处的探测图像和第二位置b处的探测图像进行对比确定微分干涉光学模块11发的离焦信息。
69.可选的,继续参考图2所示,微分干涉光学模块10还包括第二透反镜片101和第三透反镜片102;第二透反镜片101位于起偏单元12与微分干涉单元13之间的光路中以及微分干涉单元13与液态对焦模块20之间的光路中,用于反射第一偏振探测光束和第二偏振探测光束至微分干涉单元13,透射第一成像光束和第二成像光束至液态对焦模块20;
70.第三透反镜片102位于目镜单元15与滤波单元16之间的光路中,用于反射第一成像光束和第二成像光束至第一滤波透镜161,透射第一成像光束和第二成像光束至第二滤波透镜162。
71.具体的,起偏单元调制形成的第一偏振探测光束沿着光路传播,位于其传播路径的第二透反镜片101将一半光线向下反射至微分干涉单元13,被调制成为第一微分偏振探测光束,第一微分偏振探测光束为两束具有微小夹角且振动方向相互垂直,振幅相等的线偏振光,第一微分偏振探测光束沿着光路传播,入射到待探测物表面,经待探测物反射后形成第一微分偏振反射光束,继续沿光路传播,依次经过物镜14和微分干涉单元13后,第一微分偏振探测光束中两束具有微小夹角且振动方向相互垂直,振幅相等的线偏振光合成一束光线,形成携带待探测物的图像信息的第一成像光束,第一成像光束传播依次经过对焦模块20、目镜单元15后传播至第三透反镜片102,被一分为二,一半传播至第一滤波透镜161,另一半传播至第二滤波透镜162。同时,第二偏振探测光束也经过上述同样步骤传播至第一滤波透镜161和第二滤波透镜162。通过设置第二透反镜片和第三透反镜片保证实现探测光束以及成像光束的正常传播,保证可以获取待探测物额探测图像。
72.可选的,继续参考图2所示,微分干涉光学模块10还包括第二反射镜片104和第四透反镜片105;
73.第二反射镜片104位于第一光源111与第四透反镜片105之间的光路中,用于反射第一探测光束至第四透反镜片105;
74.第四透反镜片105位于第二反射镜片104与起偏单元12之间光路中以及第二光源112与起偏单元12之间光路中,用于透射第一探测光束至起偏单元12,反射第二探测光束至起偏单元12。
75.具体的,第一光源111出射第一探测光束,该光束经过第二反射镜片104,被反射至第四透反镜片105,透过第四透反镜片105后到达起偏单元12;第二光源112出射第二探测光束,该光束沿着光路传播经过位于其传播路径上的第四透反镜片105,被反射至起偏单元12。通过第二反射镜片104和第四透反镜片105的设置,改变了系统中的光路传播方向,使得整个系统中各元器件设置更加集中,缩小了系统设备的体积。
76.在上述实施例的基础上,图4为本发明实施例提供的一种液态对焦模块的结构示意图,如图4所示,液态对焦模块20可以包括相对设置的第一外壳201和第二外壳202;设置于第一外壳201和第二外壳202限定空间内的第一保护层203和第二保护层204,第一保护层203和第二保护层204相对设置;设置于第一保护层203和第二保护层204限定空间内的液态透镜205。
77.其中,第一保护层203和第二保护层204可以理解为具有透光性的光学器件,示例性的,可以为平面透光玻璃。
78.具体的,图5为液态透镜205三种屈光度状态的结构示意图,如图5所示,该液态对焦模块通过调节液态透镜205两端的电流或电压,可以改变液态透镜205中油水相交面薄膜的亲水性,使得薄膜发生形变,从而调节液态透镜205曲率,进而改变其屈光度,最终达到调节镜头焦距的目的,从而配合物镜组和目镜组实现不同景深的清晰成像。此外,由于液态镜头模组的响应时间很短(约25ms),所以可以实现快速对焦。
79.基于同样的发明沟构思,本发明实施例还提供了一种自动调焦光学系统的调焦方
法,具体的,图6为本发明一个实施例提供的一种自动调焦光学系统的调焦方法的流程图,该方法基于前述的自动调焦光学系统实现,如图6所示,该方法包含以下步骤:
80.s110、基于微分干涉光学模块获取待探测物的探测图像。
81.具体的,结合图2和图3中的自动对焦光学系统,说明一下探测图像的获取过程。第一光源111出射第一探测光束,射入位于其光路上的掩模图案单元103,根据该单元中的掩模图案被调制形成图案探测光束继续传播,经过第二反射镜片104反射后沿光路继续传播,透过第四透反镜片105,入射至位于其传播路径上的起偏单元12,调制后形成第一偏振探测光束,第一偏振探测光束沿着光路传播,第二透反镜片101将一半光线向下反射至微分干涉单元13,被调制成为第一微分偏振探测光束,第一微分偏振探测光束为两束具有微小夹角且振动方向相互垂直,振幅相等的线偏振光,第一微分偏振探测光束沿着光路传播,经物镜14入射到待探测物表面,经待探测物反射后形成第一微分偏振反射光束,继续沿光路传播,依次经物镜14和微分干涉单元13后,第一微分偏振探测光束中两束具有微小夹角且振动方向相互垂直,振幅相等的线偏振光合成一束光线,形成携带待探测物的图像信息的第一成像光束。第一成像光束相继通过第二透反镜片101、液态对焦模块20、目镜15,然后被第三透反镜片102反射一半光线至第一滤波透镜161和第一检偏透镜171,又被第一透反镜片181将光线一分为二,一半光线直接照射在第一成像单元191的第一位置a,另一半光线被第一透反镜片181和第一反射镜片反射182后,照射在第一成像单元191的第二位置b,此时第一成像单元获取到a、b两点的图像。在第一光源111出射第一探测光束的同时,第二光源112出射与第一探测光束波长范围不同的第二探测光束,经过第二反射镜105反射后沿光路继续传播,入射至位于其传播路径上的起偏单元12,调制后形成第二偏振探测光束,第二偏振探测光束沿着光路传播,第二透反镜片101将一半光线向下反射至微分干涉单元13,被调制成为第二微分偏振探测光束,第二微分偏振探测光束为两束具有微小夹角且振动方向相互垂直,振幅相等的线偏振光,第二微分偏振探测光束沿着光路传播,经物镜14入射到待探测物表面,经待探测物反射后形成第二微分偏振反射光束,继续沿光路传播,依次经物镜14和微分干涉单元调制13后,第二微分偏振探测光束中两束具有微小夹角且振动方向相互垂直,振幅相等的线偏振光合成一束光线,形成携带待探测物的图像信息的第二成像光束。第二成像光束相继通过第二透反镜片101、液态对焦模块20、目镜15,然后被第三透反镜片102反射一半光线至第一滤波透镜被阻拦,另一半光线直接透射第三透反镜片102,又相继穿过第二滤波透镜162和第二检偏透镜172,最后投射在第二成像单元上191。
82.s120、根据探测图像确定待探测图像的离焦信息。
83.具体的,在获取待探测物的探测图像后,此时第一成像单元上的a、b两点均有待探测物的探测图像,处理模块通过对比a、b位置处探测图像的对比度值的差异,进而得出离焦量和离焦方向等信息。
84.s130、根据离焦信息确定液态对焦模块的调节信息并发送调节信息至驱动模块,以使驱动模块根据调节信息调节液态对焦模块的屈光度。
85.具体的,确定离焦量和离焦方向等信息后,处理模块通过内部算法,将离焦信息转换为液态对焦模块的调节信息,并将调节信息发送至驱动模块,驱动模块根据调节信息进而调节液态对焦模块两端电压/电流值的大小,进而调节液态透镜曲率,从而调节液态对焦模块的屈光度。
86.示例性的,当确定离焦量和离焦方向等信息后,处理模块可以根据离焦信息选择与离焦信息匹配的驱动电压/电流作为目标电压/电流,并控制驱动模块向液态透镜两端输出目标电压/电流,改变液态透镜中油水相交面薄膜的亲水性,使得薄膜发生形变,从而调节液态透镜曲率,进而改变其屈光度,最终达到调节镜头焦距的目的。
87.本发明实施例的技术方案,通过在自动调焦光学系统中,利用液态透镜实现光学系统的变焦过程,液态透镜的屈光度响应时间在毫秒量级,大大提高了自动对焦光学系统的对焦速度,且整个光学系统在对焦过程中没有机械运动,是通过液态透镜改变焦距,这也就消除了因机械运动带来的磨损,并且整个光学系统体积小,结构紧凑,噪声小,稳定性好。
88.应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发明中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明的技术方案所期望的结果,本文在此不进行限制。
89.上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1