投影仪光源以及采用这种光源的投射式图像显示设备的制作方法

文档序号:2946198阅读:412来源:国知局
专利名称:投影仪光源以及采用这种光源的投射式图像显示设备的制作方法
技术领域

背景技术
本发明涉及用在投影仪例如液晶投影仪或高射投影仪的光源中的反射器的改进。
此前已采用由电弧管和反射和发射电弧管中的光的反射器组成的这种光源做投影仪例如液晶投影仪或高射投影仪的光源。作为电弧管,一般采用短电弧式金属卤素灯,在这种灯的电弧管中充满金属卤化物,以便应用该金属固有的发射光,该灯在两个电极之间具有很短的间隙。另外,作为反射器,应用了这种反射器,在这种反射器中,在耐热玻璃材料的内壁表面上涂有由氧化钛或二氧化硅组成的多层膜。现在已经成功地采用超高压汞灯和氙气灯来代替这种金属卤素灯,这种超高压汞灯可以容易获得很高的强度,而氙气灯表现出很好的彩色特性。在这些灯中,超高压汞灯的光发射效率已有很大提高,提高的方法是,增加灯点亮时灯中汞蒸汽的压力,增加到高于120个大气压,从而获得高亮度。另外,除汞以外,在灯中还加入添加剂,以便改进光谱分布特性,由此可以增加彩色特性。
然而因为上述汞灯的最佳操作温度范围很窄,所以造成一些问题,即如果灯泡不用在要求的最佳范围,则发光效率降低或灯泡的使用寿命缩短。
用一种方法来制造用在投影仪光源中的反射器,这种方法包括以下步骤加压成形热膨胀率较低的耐热玻璃;在反射器的整个内表面上涂一层反射率为90%的铝蒸汽沉积膜;在其整个表面上用抗氧化工艺处理该铝蒸汽沉积膜。
这些年,市场上对灯的亮度提出了越来越高的要求,作为反射器内表面上的反射膜,已成功地应用由二氧化钛和二氧化硅组成的多层光学膜,以便得到大于铝蒸汽沉积膜反射率的反射率。从反射器投射的光束一般是平行光束或会聚光束。因此反射器反射表面的形状一般是抛物面或椭圆面。
下面参照图1,该图是截面图,示出一般用的投影仪光源,该投影仪采用超高压汞灯和由石英玻璃作的电弧管,其功率消耗约为100W级,具有55μL的内部体积,在该光源内的相对端部具有电极,其电极的弧长度设定在约1~4mm的范围内。电弧管1中充有作为发光物质的汞和作为启动辅助气体的氩气,在氩气中加有溴化氢,该溴化氢和氩气具有正常的体积比。电极引线杆3焊接在钼箔4上,形成导线电极密封部件5。在反射器开口侧电极密封部件5通过导线18连接于作为电源端子的导线装置19。用作另一个电源端子的灯头6固定在反射器底侧的电极密封部件5上。灯头6利用接合剂8连接和固定在反射器7的底部分,在反射器的整个内表面上具有多层反射膜,该膜可以反射可见光和透过红外光,在此时,固定电弧管1,使得电弧管的电弧轴线大体位于反射器的焦点上,由于反射器在前部开口上采用法兰部分,所以可以装上其热膨胀率与反射器7的热膨胀率相同的前表面玻璃板9。该前表面玻璃板9适合于在电弧管爆裂时,防止电弧管的碎片散开。该玻璃板9在其相对表面上涂有抗反射涂层。
图2示出一种常用配置,在这种配置中,使用包含如图1所示投影仪光源的照明光学系统作为光学仪器例如液晶投影仪、高射投影仪等的光源。冷却风扇10装在该投影仪的侧表面或后表面上。另外,从冷却风扇10吹出的空气吹到反射器7上,从而可以获得要求的冷却效果。另外,也可以抽出包围光源的在光源点亮期间由光源加热的空气,这样也能形成空气流,冷却反射器7。
作为调节照明光强度的措施,已经应用图像显示元件或DMD(数字微镜装置)例如液晶显示板,在这种显示板中,像素被排列成矩阵图案,采用投影仪光源的照明光学系统可以使照明光的强度均匀分布。电视信号或从计算机来的图像信号可以输入到此图像显示器件上,从而在屏幕上显示图像。从光源发出的光由图像显示器件上的图像调制。然后放大调制的光,并通过投影透镜进行投射。所谓投射式图像投影仪,包括单独的屏幕,放大的光投射在该屏幕上。而所谓背投式图像显示设备包括一个屏幕,放大的图像投射在该屏幕的后侧以显示图像。这些图像显示设备在市场上非常普及。

发明内容
将耐热玻璃板加压成形到需要的形状便可制造用在如上所述投影仪的先有技术光源中的反射器。这种耐热玻璃板流动性很差,在加压成形耐热玻璃板时,很难控制材料温度和重量。另外,不能采用比热高的热水或油来调节模具的温度,因此与通用的热塑性或热固性塑料材料相比,这种玻璃板的形态稳定性是很差的。
图12是一种结构图,示出分成两半的反射器,这种反射器中,反射表面为椭圆形横截面的反射器7j和反射表面为圆形横截面的反射器7k(直径116mm,反射表面直径为54mm,深度为100mm)彼此相连接,作为光源的电弧管1的灯头6结合于反射器7j。在图12中,采用相同的参考标记来表示与图1中部件相同的部件,因此省去其详细说明。
为了检查反射器的成形精度,通过加压成形耐热玻璃板试制如图12所示的反射器7k。成形精度(与设计形态相比的误差)超过700μm,即使应用拔模斜角为3度的模具,由于形成的物品发生收缩,所以在反射器的开口,也得到基本上垂直的表面,因此脱模性能差。结果成形的物品变形为的马鞍形形状,变形达到1300μm,即不能获得满意的形状。
加压成形的并且其较大孔径超过90mm的反射器在可成形性(复制性或重现性)方面也会产生问题,因此,该反射器必须具有单调的内表面结构例如椭圆形或抛物线形。具体是,用耐热玻璃制造的先有技术反射器造成的第一个问题是,不能以高精确度稳定地获得类似于设计结构的内表面结构。
因为采用加压形成耐热玻璃构成的先有技术反射器,所以取出模制品的取出方向仅限于两个垂直方向中的任一个。因此便产生第二个问题,即不能形成复杂的结构,例如在反射器的外表面上不能形成凹部和凸部。
由于上述先有技术固有的上述问题,提出了本发明,因此本发明的目的是提供一种投影仪用的光源和包含该光源的投影仪,该光源包括反射器,该反射器在精度方面、可成形性方面、可加工性方面、耐热性方面及反射率方面具有极好的特性。
具体是,按照权利要求1所述的本发明,提供了一种结构,该结构具有以下特征反射器包括第一反射器和第二反射器,该第二反射器在垂直于反射器光轴的平面上彼此分开,第一反射器包括保持电弧管的保持部分,而第二反射器包括发射光的开口,另外,第一反射器用第一材料例如耐热玻璃制造,而第二反射器用第二材料制造,该第二材料的热变形温度低于第一材料的热变形温度。
另外,用耐热有机材料制作的反射器部分可以将电弧管接通时电弧管产生的热量通过掺入反射器中的高度导热物质的作用传输到散热片上,该散热片例如形成在反射器外表面上的突出部分,如权利要求3或4所述。因此可以将热量有效地输送到外边,这样便可以增加冷却效果。如果散热片平行于风扇吹出的空气流的方向附接,则可以用极高的精度散热。
另外,如权利要求7所述,反射器可以在一个平面上分成至少两部分,该平面平行于反射器(具体是第二反射器)的光轴,并包含该光轴,因此反射表面具有这样的结构,这种结构的设计自由度很大。
对于反射器可用的耐热有机材料,可以应用热固性树脂,该树脂称作BMC(块状模制料),其获得方法如权利要求7所述,即将热塑性聚合物、硬化剂、填充料、玻璃纤维、有机填充料以及能够增强导热性的氢氧化铝(alumina hydroxide)加入到收缩性小的不饱和的聚酯树脂中,利用模制BMC得到的模制品能够高精确度地控制模制品的温度和重量以及控制模具的温度和材料。这种材料模塑性也极好。
如图9所示,即使反射器内表面的结构很复杂,与常规椭圆或抛物面表面公式相比包括非球面公式中的高次方系数,也可以获得高精度的反射表面。可以用其中掺入高导热性物质的耐热有机材料模制造反射器,因此,可以得到高度精确的反射器。
另外,如权利要求24所述,形成在反射器反射表面上的反射膜具有可以透过波长不大于410nm的紫外区域中的光线的特性。采用在上述热固性树脂中加入紫外线吸收剂的这种结构,可以防止有害的紫外线漏到反射器的外面。由于反射膜的特性,波长不小于800nm的近红外范围的光线也可以透过反射膜。结果,可以吸收热通量(包括近红外线和红外线),因此可以防止包含在投影仪中的部件的温度上升,增强其使用寿命。波长在可见光线区中的420~700nm范围内的光线透射率如果能够限制到不超过15%的值,则可以获得效率高的反射器。
另外,如权利要求16所述,在第一反射器和第二反射器中的任一个反射器上可以形成突出部,而在另一个反射器上形成与该突出部配对的孔,这些配对的突出部和孔可以彼此结合,从而使第一反射器与第二反射器对齐和固定,并且在第一和第二反射器之间形成间隙。采用这种结构,可以减小第一反射器和第二反射器之间的接触表面积,因此可以减小从保持电弧管的第一反射器传送到第二反射器的热量。这样,制造第二反射器的材料例如耐热树脂便具有较大的允许温度范围的裕度。对于如权利要求17或18所述的这种结构,最好在该突出部和孔彼此结合时,将第一和第二反射器之间的间隙确定为0.1mm~2mm,并将成对的突出部和孔的数目设定为至少3对。采用这种结构,在间隙中的空气层可以限制热量从第一反射器传到第二反射器,而在光源中通常产生的热量可以通过此间隙辐射出去。
如权利要求27或28所述,在第二反射器的外壁表面上最好植入直径30~50μm和长度0.1~0.3mm的合成树脂硬毛,使其增加外壁表面的表面积,从而增加散热量,并起到这样一种作用,由于存在由硬毛形成的空气层,即使人的手接触到反射器的外壁,也能降低灼伤的危险。
另外,在采用BMC的模具中,包含侧芯或垂直滑动芯的模具部件可以沿若干方向滑动,因此即使反射器具有复杂的外部结构,也可以增强其模塑性。
在投射式图像投影仪或背投式图像显示设备中,由于采用上述投影仪光源,可以增强灯的光转换效率,由此可以获得明亮的和令人满意的图像。
下面参照附图,说明本发明的优选实施例。
下面结合


本发明的实施例,从该说明中可以明显看出本发明的其它目的、特征和优点。

图1是截面图,示出通用的投影仪光源,该投影仪采用超高压汞灯作为光源;图2是一个视图,示出光学仪器例如液晶投影仪的光源的使用结构的配置图;图3是透视图,示出本发明投影仪光源的一个实施例;图4是截面图,示出本发明光源的实施例;图5是透视图,示出本发明投影仪光源的实施例;图6是透视图,示出本发明投影仪光源的实施例;图7是透视图,示出本发明投影仪光源的实施例;图8是一种视图,示出本发明投影仪光源的使用结构的配置图,该光源可用作一种光学仪器例如液晶投影仪的光源;图9是截面图,示出本发明的包括光源灯和反射器的投影仪光源;图10是截面图,示出本发明的包括光源灯和反射器的投影仪光源;图11是截面图,示出本发明的包括光源灯和反射器的投影仪光源;图12是截面图,示出本发明的包括光源灯和复合反射器的投影仪光源;图13是放大截面图,示出灯泡周围的超高压灯的一部分;图14是一个视图,示出超高压汞灯点亮时,其灯泡周围发光能量的分布;图15示出直流激励式超高压汞灯的光分布特性;图16示出交流激励式超高压汞灯的光分布特性;图17示出通用的超高压汞灯的光谱能量分布;图18是用于解释非球面结构的图;图19示出使用本发明投影仪光源的液晶投影仪的照明光学系统的配置图;图20是垂直截面图,示出背投式图像显示设备的主要部分,该设备中装有本发明的投射光学系统;图21是垂直截面图,示出背投式图像显示设备的主要部分,该设备中装有本发明的投射光学系统;图22是特性曲线图,示出在反射器反射表面上形成的反射膜的光谱透射率;图23是分解透视图,示出分成三部分的反射器;图24是截面图,示出绝缘套管;图25是投影仪的光源,该光源采用图23所示的分成三部分的反射器组装而成;图26示出灯的结构;图27是一个视图,说明在图25所示的光源中将第一反射器7p固定在第二反射器7q和7s上的方法;图28是透视图,示出从后侧看去的图25所示的光源;图29示出本发明的第四实施例;
图30示出其中使用该光源的投射式图像显示设备的配置图;图31示出本发明的第五实施例;图32示出图9所示的包括三个分开部分的反射器实施例。
具体实施例方式
应当注意到,本申请人已经提出日本专利申请No.2001-114763,该申请涉及一种能够解决上述本发明问题的结构。本申请提出这样一种结构,即用耐热有机材料作为反射器的基体材料以代替耐热玻璃,这种材料相对于设计结构而言极大地增强了模制精度,同时又能确保耐热性。
下面说明具体的结构形式。为了检查用在投影仪光源中的反射器结构的精度,采用Showa Highpo1ymer co.,Ltd生产的RIGOLAC BMC(RNC-428)材料试制球面反射器(直径116mm(反射表面半径54mm)和深度100mm),如图12中用参考标记7k表示的球面反射器,该RIGOLAC BMC(RNC-428)材料是耐热有机材料。结果表明,与设计结构相比,偏差最大为10μm,而且由于可以将模具的准确温度调节和重量控制设定到不超过0.5%的值,所以在批量生产中可以限制不均匀度并不超过3μm。另外,因为BMC即使在模制表面基本上垂直时也具有极好的脱模性,所以表现出很好的复制性能,基本上不需要从模具中取出模制件时所需的脱模角等等。因此可以高精度地稳定地获得反射器反射表面的结构,这种结构与其设计结构很一致。应当注意到,上述BMC是块状模制材料的简写。
在采用BMC的模具中,包含侧芯和垂直滑动芯的模具部件可以沿若干方向滑动,所以即使外部结构很复杂,也可以得到令人满意的模塑性。可以在反射器的外壁上设置散热片,因而得到一种优点,即由于设置了散热片而增强耐热性。
除检验上述结构的精度而外,将Al(铝)用汽相沉积法沉积在反射器的内表面上,从而形成反射表面,同时将200W的超压汞灯固定在焦距为30mm的反射器上。然后点亮该灯,在这种情况下,测量反射器的反射表面的温度和外壁表面的温度,结果表明,在20℃室温和不吹风的情况下,反射表面的温度为132℃,而其外壁温度是83℃。因此获得了满意的试制结果,相对于材料热变形温度具有近70℃的裕度,该材料热变形温度为200℃。
然而,对于反射器的电弧管和内壁表面之间的距离,已经指出,如果焦距不大于40mm,则对于耐热温度不存在裕度,而且如果输入功率超过250deg,则对于耐热温度不存在裕度,因此可能引起耐热性问题。
下面参照附图3和4说明本发明的第一实施例,此实施例可以解决上述问题。图3示出本发明第一实施例的反射器,该反射器包括至少两个部分(第一反射器和第二反射器),这些反射器用至少两种热变形温度不同的材料制作。在这一实施例中,反射器的基本特征是设置两个由垂直于反射器光轴的平面彼此分开的部分,在作为边界的分裂平面的两侧分别采用两种不同的材料。图4是截面图,示出沿A-A’线截取的图3的本发明第一实施例的反射器。在图3和图4中,采用相同的参考标记来表示与图1所示部件相同的部件,因此可以省略其详细说明。
因为在靠近作为热源的电弧管1的灯泡的一部分(包含保持电弧管1的保持部件和周围部件)中,反射器的温度变高,所以在此部分采用第一反射器7a,该反射器具有小的孔径,并用耐热玻璃制造,该耐热玻璃的热变形温度很高(约500-600℃)。众所周知,即使采用耐热玻璃制造的并且直径不大于60mm的反射器,其结构精度也只能达到约50μm。此时,由于线膨胀将引起爆炸,所用的耐热玻璃的线膨胀率最好不超过50×10-5(1/K-1)。
另外,因为在光投射方向上远离电弧管1的灯泡的第二反射器7b的温度低,所以第二反射器7b最好用一种材料模制,在这种材料中,在为耐热材料的收缩性低的不饱和聚酯树脂中加入作为低收缩性制剂的热塑性聚合物、硬化剂、填料、玻璃纤维、无机填料等,从而可增强其耐热性(热膨胀温度约200-250℃),这种材料可以是例如由ShowaPolymer co.,Ltd生产的Rigo1ac BMC(RNC-428)材料。因此可以得到模制精度很高的反射器。因为RNC-841利用了碳酸钙做填充料,所以其导热率为0.5W/m.K,从而得到满意的特性。对于进一步增加导热率的材料,可采用氢氧化铝作填充料的并由同一个公司生产的RNC-841,其导热率为0.8W/m.K,这种导热率与RNC-428的导热率的约1.6倍一样高。
如上所述,反射器用至少两种不同的材料制作,这两种材料具有不同的热变形温度,包含用于保持电弧管的部件和周围部件的部分(第一反射器7a)用具有耐热温度的材料制作,而包含投射光的开口的部分(第二反射器7b)用模塑性好的材料制作。由此可以解决上述问题。应当注意到,可以采用未示出的固定方法将第一反射器7a和第二反射器7b彼此固定在一起。下面将说明具体的固定结构和方法。
参照图3,在耐热材料制成的第二反射器7b的外壁表面的上、下部分形成有散热片11、12。该耐热有机材料显示出很好的模塑性,即使对于上述很复杂的外部结构,因此提供散热片可以获得极好的散热能力。
下面参照图5、6和7,这些图示出本发明的第二实施例,反射器具有一种结构,在这种结构中,该反射器由包含其反射表面光轴的一个平面分成两部分(图5中见7c、7d,图6中见7e、7f,而图7中见7g、7h)。由包含反射表面光轴的平面彼此分开的两部分最好是用耐热玻璃制造的反射器部分和用耐热有机树脂制造的反射器部分。然而实际上,如果对于热变形温度要得到足够的裕度,则由包含反射表面光轴的平面彼此分开而获得的两部分可以用一种材料例如耐热有机材料制作。
参照图5,如果反射器具有垂直对称的结构,则可以达到共用模具的目的,从而获得这样一个优点,即可降低大批量生产的成本。另外,除在反射器7d外壁表面的上部分设置散热片11以外,还可以在反射器7c的下部分设置类似的散热片12,这样,可以进一步增强散热效率。
参考图6,除在反射器7e的外壁表面的上部分设置散热片14而外,还可在反射器7f的下部分加上类似的散热片15。图8所示反射器的结构与图5所示反射器的结构相同,只是设置的散热片的方向垂直于反射器的光轴。取决于反射器冷却空气流的方向(取决于附接风扇的位置),可以进一步增加散热效率。
另外参考图7,由于在反射器7g外壁表面的上部分设置散热片14,在反射器7h外壁表面的下部分设置散热片15,以及在外表面的左右侧部分设置散热片16(在外壁表面左侧部分上的散热片16在图中不能见到),而且这些散热片相对于灯泡的轴线是对称的,所以可以极大地增加散热能力。在图5、6和7中,采用相同的参考标记表示与上述图中所示部件相同的部件,因此可以省去这些部件的说明。
应当注意到,虽然已经参照图5、6和7进行说明,在这些说明中,反射器由包含反射表面光轴的平面分成两部分,但是本发明不限于此种结构。必须明确地表示。本发明的重要特征旨在共同使用模具,从而可以降低大批量生产的成本。因此转动对称的反射器可以分成不少于两部分,例如由包含反射表面光轴的平面分成四部分。
在只使用一种耐热有机材料作为形成反射器的材料时,因为焦距不大于4mm的反射器导致对于耐热温度没有裕度,输入功率超过250W时也导致对于耐热温度不存在裕度,存在这样的问题,所以最好使输入功率不超过250W的超高压汞灯和焦距不小于4mm的反射器彼此结合。超高压汞灯的电极间距离设定为不超过1.8mm,如果超过1.8mm,则会降低发光效率。
下面参照图8,该图示出使用本发明的图7所示反射器的结构,该结构用于光学仪器例如实际液晶投影仪或高射投影仪的光源,冷却风扇10装在投射光源装置的下表面,使得可以将空气吹在装设有散热片的反射器7g和7h上,从而可以增强冷却效率。在另一种方法中,可以抽出光源点亮后已经加热的包围该光源的空气,形成一种空气流,从而达到冷却反射器的目的。
在图3、5、6、7和8所示的情况下,散热片的方向彼此是不同的,如果光源被用作投射式图像显示设备中的投射光源装置来安装,则自然地沿平行于冷却风扇吹出的空气流的方向配置散热片,结果表明,散热达到极高的效率。
下面参照图23~28说明本发明的第三实施例,在此实施例中,反射器分成三个部分。在图23~28中,用相同的参考标记表示与上面已说明的图中所示部件相同的部件,由此省去这些部件的详细说明。
图23是分解透视图,示出反射器被分成三部分,该反射器包括第一反射器7p、第二反射器7q和7s,第一反射器7p具有较小孔径,配置在反射器的底表面侧,靠近用作热源的电弧管,用耐热玻璃(其热变形温度为约500℃~600℃)制成,该第二反射器7q和7s在光投射的方向上远离电弧管的灯泡,用作为基体材料的耐热有机材料制作。该第二反射器7q和7s是这样获得的,在开口侧由包含反射表面光轴的平面将反射器分成两部分,并且彼此对称,在其反射表面上涂有由铝、银、银合金等构成的金属薄膜。第一反射器7p的反射表面上涂有由上述二氧化钛和二氧化硅构成的多层光学薄膜。
在该第二反射器7q上靠近分裂表面处装有卡子56,而在第二反射器7s上对应于卡子56的位置形成突出部57,将卡子56和突出部57彼此配装,便可将第二反射器7q和7s彼此组装在一起。相反,可以在第二反射器7q和7s的其他分裂表面的附近,在第二反射器7q上形成突出部57,而在第二反射器7s上形成卡子56,即它们形成为这样的结构,使得它们彼此对称。
另外,第二反射器7q和7s上具有固定凸台54,各个反射器上有两个,用于将这些反射器组装到第一反射器7p上。采用附接固定件A53将第一反射器7p附接在第二反射器7q和7s上,该附接固定件A53的中央形成孔53c。另外,在其周边环形部分上具有四个片簧部件53a和四个空气导流板53b,前者是弹性部件,向反射器开口侧的中心倾斜,后者是平板部件,其倾斜方向与该弹簧部件53a的倾斜方向相反。该四个弹簧部件53a和四个空气导流板53b可以沿环形部件的周边方向交替地进行附接。另外,使第一反射器7p的底部被插入到附接固定件A53的中心孔53c中,利用附接固定件A53的四个弹簧部件53a的弹性保持第一反射器7p。利用螺钉55将附接固定件固定于固定凸台54,从而将第一反射器7p压在和固定在第二反射器7q和7s上,这样便组装成一个单一的反射器,对于弹簧部件53a,下面将参照图27中的部分(a)进行说明。另外,在第二反射器7q和7s上具有沟槽60,前部玻璃板9可以固定和保持在该沟槽内。
在第二反射器7q和7s的分开表面上形成半圆筒形的凹部,该凹部用于夹住包括导线(未示出)和用于绝缘该导线的卷轴形绝缘套管51的电源线,以便将电力输送到光发射管(灯)1。图24是截面图,示出绝缘套管,如图24所示,第二反射器7q和7s的分开表面在半圆筒形的凹部被紧固在一起,从而保持住其间的绝缘套管51。因为第二反射器7q和7s的反射表面上形成金属薄膜,所以灯的导线(未示出)必须绝缘,该导线(未示出)穿过绝缘套管51的孔而被绝缘。如果在第二反射器7q和7s的反射表面上涂上多层光学薄膜而不用金属薄膜,则自然不需要绝缘套管51。应当注意到,在图23中示出一种用于将灯头固定在反射器上的灯头附接凸台58和一种导线固定凸台59。
如上所述,由于对于第二反射器7q和7s采用上述耐热有机材料作为基体材料,所以即使其外部结构很复杂,也可以获得极好的模塑性,因此可以用极简单的方式组装其反射器,同时可以用耐热玻璃制造位于反射器底侧的靠近电弧管的第一反射器7p,这样可以得到很高的耐热性。另外,因为第二反射器7q和7s具有彼此对称的结构,所以可以共用模具,因此可以提供这样的优点,即降低大批量生产的成本。
参考图25,该图示出采用图23所示由三个分开的反射器组装的光源,连接于远离灯头6的一侧的灯的供电导线52从绝缘套管51的孔中引出,该导线的前端焊接在孔中形成的金属端子52a上,或者与该端子形成压力接触。另外,将电力输送到光源的电源连接件61的一侧通过壳体61a的中间连接于未示出的电源,而其另一侧连接于焊接在金属端子61b上的或者与该端子形成压力接触的两根导线,各个金属端子在其前端具有孔,两根导线中的一根导线通过金属端子61b的中间利用螺母62固定和连接于灯头6,而其中另一导线利用螺钉63以及导线52的金属端子52a固定和连接于导线固定凸台59,由此与灯的另一侧形成电连接。由于这种配置如图26所示,这种准备可与灯本身的准备一起进行,即将导线52穿过套管51,使金属端子52a焊接在导线52中的一根上或者与这根导线形成压力接触,而将另一根导线焊接于灯上或者与该灯形成压力接触。因此可以不需要提供作为中转部分的导线固定件19。另外,在组装时也不需要焊接导线或者使该导线形成压力接触,这样可以简化组装操作。
另外,即使由于任何原因使灯坏了或者反射膜与第一反射器7p剥离,也可以照样继续使用第二反射器7q和7s,因此,仅需将耐热玻璃制成的反射器7p和如图26所示的灯更换成新的便可以重新使用光源。因此得到维修性能极好的优点。这是因为利用附接固定件A53可以将第一反射器7p可选地组装在第二反射器7q和7s上或者从该第二反射器取下来,焊接于光发射管(灯)的导线52和导线穿过的绝缘套管51可选地通过卡子56和突出部57之间的配装附接上去或者取下来。应当注意到,该灯可以用接合剂8固定在第一反射器7p上,因此灯和第一反射器7p必须同时用新的更换。
图27是一个说明图,用于说明将耐热玻璃制成的第一反射器7p固定于用耐热有机材料作基体材料制成的第二反射器7p和7s的方法,该耐热有机材料其耐热性低于图25所示光源中耐热玻璃的耐热性,图27(b)是放大图,示出图25所示光源,而图27(a)是放大图,示出图27(b)中由圆圈A圈住的部分。如图27(a)所示,第一反射器7p具有许多半球形的突出部64,而第二反射器7q和7s具有凹部65,该凹部为半球形凹部,其位置对应与突出部64,这些突出部64和凹部65彼此配装,可以使第一和第二反射器之间在位置上对准,并且第一反射器7p和第二反射器7q和7s彼此形成点接触。因此可以减小第一反射器7p和第二反射器7q和7s的接触面积,从而可以减少从高温第一反射器7p传到低温第二反射器7q和7s的热量,由此可以增加用作第二反射器7q和7s基体材料的耐热有机材料的允许温度的裕度。应当注意到,突出部64的数目以及对应于前者的凹部的数目最好分别定为三个,因为三个可以形成稳定的接触。另外,在第一反射器7p和第二反射器7q和7s之间的间隙t定为0.1-2mm。由于在第一反射器7p和第二反射器7q和7s之间存在间隙,所以在间隙中的空气层可以抑制热量从第一反射器7p传到第二反射器7q和7s,而且可以通过此间隙排出光源中通常有的热量。如果间隙t比较大,虽然可以降低热传导,但是光也可能通过该间隙从光源漏出。因此间隙最好不超过2mm。
图27(a)示出图23和图25中所示的弹簧部件53a,为清楚起见该弹簧部件被放大了,该弹簧部件53a形成有叶片形平板件,利用该叶片形的平板件的弹性可以将第一反射器7p压在和固定在第二反射器7q和7s上。附带地说,图27所示的固定方法当然也适用于图3和图4所示的第一实施例。
下面参考图28说明附接固定件A53中空气导流板53b的作用,图28示出图25所示的从其后侧倾斜地看去的光源,图中去掉电源连接件。从图28可以清楚看到,该空气导流板53b斜对着灯头6,从而在这些导流板和第一反射器7p的外壁之间限定一个间隙。如果采用冷却风扇(未示出)使空气沿离开光源的后表面的方向排出,使其冷却光源,则空气按箭头所示的方向流过在第一反射器7p和空气导流板53b之间的间隙,由此可以高效冷却高温的第一反射器7p。
参考示出第四实施例的图29,灯头分成两部分,这两部分分别与反射器7q和7s结合成一体,第二反射器7t的形成方法是将灯头两个分开部分中的一个部分与图25所示的第二反射器7q结合成一体,而第二反射器7u的形成方法是将灯头两个分开部分的另一部分与图25所示的第二反射器7s结合成一体。由此灯头可与反射器结合成一体,从而减少光源的部件数目。即使在此实施例中,第二反射器7t和7u也是彼此对称的。应当注意到,在图29中去掉了电源连接件,而且用相同的参考标记表示与上述图中所示部件相同的部件,下面省去了这些部件的说明。
一般说来,光源41附接在灯头板70上,然后将该板装在灯箱83中,再将该灯箱83装在灯的外壳81内,该灯的机壳81的后表面上装有排放空气的冷却风扇10,用于冷却光源,而在其壁表面形成空气入口82,其方向不同于从光源投射光的方向,如图30所示。如上述组成的灯的外壳装在投射式图像显示设备中,使用人员或维修人员可以用一个新的光源替换旧的光源。灯箱83的后表面在冷却风扇10一侧具有排气口85,而在对应于空气入口82的位置具有空气入口86。另外,在图中示出灯箱的把手84,可以用该把手拉出灯箱85。
通常,因为反射器用耐热玻璃制造,所以灯头板不能与反射器形成一体。然而按照本发明,因为采用可以简单模制的耐热有机材料作反射器开口侧的灯头板材料,而且因为在底部一侧的反射器与开口侧的反射器形成点接触,如对图25光源说明的,所以也可以降低附接于反射器开口侧的灯头板温度(从约100℃降到室温左右),因此在开口侧分成两部分的第二反射器7q和7s可以与分成两部分的灯箱结合成一体。此种实施例的结构是示于上述图29中的结构。
下面参考图31,该图示出本发明的第五实施例,该图是一种视图,用于说明将在开口侧与灯头板形成一体的反射器7v和7w用卡子固定在底侧的第一反射器7p上的方法,不用附接固定件A53来进行组装,在开口侧的第二反射器7v和7w具有许多卡子67(在此图中每个反射器用两个卡子),以便将该第二反射器固定在底侧的第一反射器7p上,利用卡子67可以固定第一反射器7p。采用这种配置可以不需要用附接固定件A53,由此可以降低成本。另外由于不用紧固螺钉,也不需要螺钉紧固驱动器,这样便具有减少组装工时的优点。应当注意到,在图31中采用相同的参考标记来表示与上述图中所示部件相同的部件,下面省去这些部件的说明。
图23-28和图29及31所示的实施例没有图3、5和6所示的散热片,这些实施例与由耐热有机材料制作的分成两部分的第二反射器结合,本发明不限于这些实施例,在这些实施例也可以加上散热片。
下面参照图23-31说明这些实施例,在这些实施例中反射器分成三部分(包括耐热玻璃作的第一反射器和第二反射器,利用包含光轴的平面将反射器分成两个第二反射器,这两个第二反射器用耐热有机材料制作),本发明不限于这些实施例。应当清楚看出反射器的开口侧可以用耐热有机材料作为基体材料制成,这种反射器的开口侧可以分成不小于两个部分,例如由包含反射器反射表面光轴的平面分成四个部分,这些部分是转动对称的。采用这种配置可以共用模具。另外,在底侧的用耐热玻璃制作的反射器也可以由包含反射器反射表面光轴的平面分成两个以上的部分。
即使模制品具有如上所述的复杂外部结构,耐热有机材料也表现出令人满意的模塑性,因此可以在耐热有机材料制作的反射器外壁上形成散热片,增加散热表面,由此增大散热能力。然而作为另一种替代方法,也可以在反射器外壁表面上形成许多凹部和凸部(它们是很精细的)。这种方法是有利的,因为它不仅适用于第二反射器的外壁,而且也适用于用耐热玻璃制作的第一反射器的外壁。
作为增加散热面积的另一种方法,可以用静电喷涂法在耐热有机材料制作的反射器外壁上植上硬毛。可以用静电喷涂法将直径为30-50μm和长度0.1-0.3mm的人造纤维吹到耐热有机材料制作的反射器外壁上,增加散热面积,由此增强散热能力,即使人的手接触到外壁上的硬毛,这种方法也具有减少灼伤危险的优点,因为在硬毛之间形成了空气层。
这种利用硬毛增加散热能力和减少灼伤的方法也适用于其他的高温部件。例如,因为示于图30的用于装入光源的灯箱83(用塑料制作)的内部具有高温,所以在其内壁上也植上硬毛,增加内壁的表面积以增强散热能力。另外,也可以在附接有灯箱把手84的灯箱外壁表面上植上硬毛,在更换灯时用该把手将灯箱83从灯的外壳81中拉出来,这样即使在更换灯时人的手不小心碰到灯箱84,也能减小灼伤的危险。
下面说明包含不小于四次方的高次方系数的反射器7的内壁表面(反射表面)的结构优越性。在公式1中的Z(r)代表图18所示反射器表面的高度,该图用于解释透镜的结构,该图中从反射器的底部到开口部分的方向(灯的轴向方向)取作为Z轴方向,而反射器的径向方向取作为R轴的方向,在该公式中,r是径向距离,RD是曲率半径,CC、AE、AF、AG、AH……是任意常数,n是任意非负整数。因此,如果系数CC、AE、AF、AG、AH…是已知,则可以按照公式1确定反射器表面的高度,即反射器的结构z(r)=(1/RD)r2/[1+1-(1-CC)r2(1/RD)2]]]>+AE*r4+AF*r6+AG*r8+AH*r10+...+AR*rn]]>(公式1)在上述公式1中,如果表示常规反射器的反射表面结构的截面形状是圆,则只存在系数RD,使得CC=0,而在抛物线截面形状的情况下,RD是给定的,并且CC=-1,但是在椭圆截面形状的情况下,RD是给定的,并且如果-1<CC<0,则可以得到关于长轴转动对称的椭圆形状,但如果0<CC,则可以得到关于短轴转动对称的椭圆形状。
与此相反,本发明反射器很容易获得很高的结构准确性,即使结构很复杂,包含不小于四次方的高次方系数,也可以获得精度很高的反射表面。
下面参考图4,该图是截面图,示出反射器的这样一种结构,即该反射器包括反射器部分7a和反射器部分7b,前者的反射截面形状为抛物线表面的一部分,用耐热玻璃制作,后者用耐热有机材料制作,该反射器的结构利用接合剂8连接于电弧管1灯泡的灯头6。另外,图12示出分成两半的反射器结构,在这种反射器中,反射表面具有椭圆截面形状的反射器7j连接于截面为圆形的反射器7k,而反射器7j利用接合剂8连接于电弧管1灯泡的灯头6。在图4和12中采用相同的参考标记表示与图1中所示部件相同的部件,因此下面省去其说明。
虽然在常规上对于任何反射器的反射表面在设计时假定光源是点光源,但是实际上光源不是一个点,而具有一定长度、能量分布以及非对称的光分布。
下面用具体例子说明。图13是放大图,示出用在图1投影仪光源中的交流激励的超高压汞灯,在围绕该灯泡的一部分中,图14示出灯点亮时灯的发光能量分布。在图13中,在石英玻璃管1中的一对电极2其电极间的间隙(电弧的长度)为有效长度。在100W级的灯泡中,该有效长度约为1.0-1.4mm。在参考图14将相等发光能量点连续地连起来得到的相等发光能量的闭合曲线变成以两个电极a和b为中心点的靠近该电极a和b的相等发光能量闭合曲线。在远离电极a和b的地方可以得到其中包含和包围该两个电极a和b的相等发光闭合曲线。应当注意到,图14中的c和d表示发光能量低的部分。如从该图中看出的,灯点亮时靠近灯泡的发光能量分布是不均匀的,在两个电极附近亮度是最高的。即,可以发现存在两个光发射点。
图15示出直流激励的超高压汞灯的光分布特性曲线,而图16示出交流激励的超高压汞灯光分布特性曲线。电弧管1的光分布特性曲线相对垂直于灯轴线(在图中为0-180度的轴线)的轴线(在图中为90-270度的轴线)是不对称的,如图15和16所示。具体是,图15所示的直流激励的超高压汞灯的光分布具有的非对称性大于图16所示交流激励的超高压汞灯的非对称性。这是因为在直流激励的超高压汞灯中阳极的尺寸一般大于阴极尺寸,因此光局部地聚集在阳极一侧。
如上所述,现有的超高压汞灯最好看作为不具有单一的光源而应当看作为具有两个光源,因此与超高压汞灯连用的反射器其结构存在许多焦点。为了使反射器具有许多焦点,必须使上述公式1中的系数的方次不小于四次方,应当注意到,若电弧长度超过1.8mm则效率反而降低。
如上所述,已经说明反射器内壁表面(反射表面)的结构包含方次大于四次方的系数的情况下的优越性。其间,按照本发明,与设计结构相一致的反射器反射表面的结构可以高精度地稳定地达到,因此反射器的内壁表面(反射表面)包含方次超过四次方的系数。图9和10示出本发明另一实施例的反射器。在图9和10中采用相同的参考标记表示与上面已说明的图中所示部件相同的部件,因此省去这些部件的说明。图9示出这样一种结构,反射器7i反射表面最大直径大于反射器光投射侧上的开口的孔径,利用非球面公式1中的系数可以可靠地得到这种结构。即使采用这种内表面结构,也可以制造由包含反射表面光轴的平面分成两个部分的反射器。
类似地,图10示出反射器7m,该反射器在光投射侧具有的开口孔径由于反射器的光分布而小于抛物线反射表面的孔径。与图9所示实施例相似,采用非球面公式1中的系数可以可靠地获得这种结构。即使采用这种内表面结构,也可以制造具有由大致平行于反射表面光轴的平面分成两部分的结构的反射器。
顺便说说,由大致平行于反射表面光轴的平面彼此分开的两个分开部分中的每个部分最好包括用耐热玻璃制作的反射器部分和由耐热有机材料制作的反射器部分。应当注意到,如果在实际使用中耐热有机材料的热变形温度具有充分的裕度,则由大致平行于反射表面光轴的平面彼此分开的反射器部分可以只用一种材料例如耐热有机材料制作。
图32示出一个实施例,在该实施例中反射器的三个分开部分适用于图29所示的结构。在图32中,反射器包括第一反射器7aa和两个第二反射器7bb、7cc,前者用耐热玻璃制造,位于反射器的底侧,后者是由包含反射表面光轴的平面分开反射器开口侧部而获得的,这两个反射器是用耐热有机材料作为基体材料制作的。第二反射器7bb和反射器7cc是对称的。如上面说明的,因为第一反射器7aa开口孔径较小,所以它能以高精度成形,即使它用耐热玻璃制作,另外,因为反射器7bb和7cc用耐热有机材料作为基体材料制作,所以能以高精度模制具有大孔径的自由曲面,如图32所示。因为第二反射器7bb和7cc可以与分成两部分的灯头板模制成一体,所以可以在灯头板68上形成许多空气导流孔67,该孔靠近第二反射器7bb和7cc的开口向光轴变窄的区域。如果采用冷却风扇10(在此图中未示出)使空气从光源的后侧排出,则空气流过该孔67,然后沿着第二反射器7bb和7cc外壁的曲面流过,由此可冷却反射器或者光源。如果没有孔67,则在空气不会流过第二反射器7bb和7cc开口收缩的区域,这样,在这个区域的冷却效果便很差。
在上述实施例的结构中由包含反射表面光轴的平面将反射器分成两部分,取代了具有这种结构的反射器,而采用另一种反射器,即这种反射器由一个平面分成两部分,该平面与包含光轴的平面是移开一段距离的,这种反射器也在本发明的范围内,即使它由其结构决定。
然而,为了防范在本发明投影仪光源中超高压汞灯的破裂,反射器的平均壁厚度从其前部开口到底部开口逐渐增加,从而可以捕获反射器内破裂灯泡玻璃管散射出的碎片。采取上述防范措施的理由是,使得很强的冲击作用于靠近光发射管的反射器的底部开口侧。反射器的最小壁厚度要求至少2mm,如果认为模塑性是重要的则此厚度最好设定为不小于3mm。靠近灯泡的底部开口的平均壁厚度最好定为5mm。可以确信,在灯使用期间,光发射管的灯泡爆裂时不会有任何碎片散射到由上述BMC制作的壁厚度不小于5mm的反射器的外面。
另外,由于用不同于反射器7的材料制作前部玻璃板,所以可以防止玻璃灯泡破裂时灯泡的碎片散射到投射光学系统中。由于用抗反射涂层覆盖该前部玻璃板两个表面中的各个表面,所以可以降低反射损失。
应当注意到,如果前部玻璃板的内部光吸收率超过5%,在长期使用后,在前部玻璃板两个表面的各个表面上沉积的抗反射膜上由于热膨胀将会产生微瓣形结构(microclacks)。因此,最好采用内吸收性小的材料。另外,如图11所示,如果前部玻璃板9a具有透镜功能的结构,则不仅可以防止玻璃灯泡破裂时灯泡的碎片散射到投射光学系统中,而且还可以与反射表面的结构配合,高度准确控制灯的出射光束。在图11中采用相同参考标记来表示与上面已说明的图中所示部件相同的部件。
下面参考图17和22说明形成在本发明实施例中反射器反射表面上的反射膜的特性曲线。图17示出一般的超高压汞灯的光谱能量分布,在图22中横坐标代表波长(nm),而与该横坐标垂直的纵坐标代表入射在反射膜上的光束的透射率。
从图17的光谱能量分布可以看出,在蓝波长即405nm附近存在很强的光谱。因此反射器中紫外光截止滤光器(cut-filter)的半值波长(50%的透射率)最好定为不小于405nm的波长,如果可能最好是410nm附近的波长。因为在波长不小于800nm的红外区域中存在光谱能量(未示出),所以反射器反射膜的特性是使得红外区域的光可以透过,这样一旦反射器吸收这种光,便同时将这种光辐射到反射器的外面。
根据上面的说明,反射器表面的反射膜特性曲线被确定为如图22所示的曲线。该反射膜被设计成可以传输具有的短波长不大于410nm的基本上在蓝波长区域中的光线。结果,紫外线(波长不大于380nm)直接照射在作为反射器基体材料的热固性树脂上。然而,因为在这种热固性树脂中加入了紫外光吸收剂来吸收紫外光,所以可以防止有害的紫外光漏到反射器的外面。虽然在峰形很尖锐的情况下,紫外光截止滤光器的透射率特性曲线是极好的,但是这样的峰形导致成本的增加,如果需要可以形成许多层膜。作为反射膜,一般采用由二氧化钛和二氧化硅形成的多层光学膜,要求总层数达到30-50层的反射膜。这样设计,使得反射膜在长波长区域的特性被设定为可以同时透过波长不小于800nm的近红外区域的光线。结果反射器可以吸收(从近红外线到红外线)的热通量,由此可以防止投影仪中其它部件温度升高,这样可以提高使用寿命。在这种配置中,如果制造反射器的热固性树脂的颜色为黑色,则当然可以高效进行光的吸收。利用散热片可以降低因吸收热通量造成的温度升高,因为利用散热片可以有效散热,如上面说明的。
在可见光区域中,如果波长在420-700nm范围的光线的垂直透射率被设定为不超过15%,则可以达到高效的反射器。另外,如果波长在420-680nm的范围的光线垂直透射率设定为小于4%,则与铝沉积膜(具有约90%的反射率,因而光谱反射率曲线基本上是平的)相比,可以更有效的捕获灯泡发出的发散光束。
如上所述,作为施加在反射器反射表面上的反射膜,已经说明除通过可见光外还通过紫外光和红外光的多层光学膜。下面说明金属反射薄膜。即,反射器至少分成在底侧的反射器和开口侧的反射器,如图4所示,在底侧的反射器用耐热玻璃制作,而在开口侧的反射器用耐热有机材料作为基体材料制作。在上述情况下,可以用上述多层膜作为在底侧的用耐热玻璃制作的反射器的反射膜,而采用铝、银、银合金等制成的金属薄膜用作在开口侧的用耐热有机材料制作的反射器的反射膜。具体是,包含银的金属薄膜其反射率相对于450-650nm范围内的波长不小于约98%,这样可以得到波长为650nm时的反射率高于波长为450nm时的反射率这样一个优点。在这种情况下,在开口侧的用耐热有机材料制作的反射器着以辐射率不大于0.5的颜色。例如着以白色。采用这种结构,如果反射表面的基体材料由于任何原因而被看到,则灯发出的热通量将被反射而不被吸收。
虽然已说明本发明的采用超高压汞灯的特定实施例,但是即使采用光亮性极好的氙气灯本发明也能得到类似优点。
图19示出采用本发明的投影仪光源的液晶投影仪中投射光学系统的配置图,该图示出已知的集成光学系统(integrator opticalsystem)(又称作多透镜阵列)20,该系统包括第一多透镜阵列20a和第二多透镜阵列20b,在前者中,入射光束由排列成矩阵状阵列的许多矩形透镜元件分成许多光束,而在后者中,由第一多透镜阵列分开的许多光束由排列成矩阵形阵列的许多矩形透镜元件放大并以叠置的方式投射在液晶板上,该多透镜阵列包括这样一种偏振改变作用,即对应于许多透镜元件配置的许多偏振光束分裂器和许多1/2λ相位板可以发射要求的偏振波。另外,投影仪的光源40和多透镜阵列20相结合可以构成用于投射要求的偏振波分量的偏振投影仪。图中示出分别对应于红色、绿色和蓝色的液晶板31a、31b、31c;用于使来自投影仪光源中的白光束在光谱上分成三种基色光束的分色镜23、25;用于确定光束尺寸的物镜30、28、26;用于将入射在多透镜阵列上的入射光束会聚成会聚光束的聚光透镜22;本发明的投影仪光源40,该光源具有散热片14,该散热片沿垂直于灯的光轴的方向配置;在投影仪光源的一个侧面上配置的冷却风扇10,该风扇用于将投影仪光源的温度控制在要求的温度;用于合成图像光束的反射器21、24、27、29和光合成棱镜32,该图像光束是由相应液晶板调制三基色光束得到的。
下面说明图19所示液晶投影仪的操作。投影仪光源40发射的白光束由多透镜阵列转换成具有要求的偏振分量的光束,然后由反射器21发射和反射此光束。该光束最后入射在聚光透镜22上,该聚光透镜使多透镜阵列20分裂白光束形成的光束分别入射在液晶板31a、31b、31c上。利用反射器27、29入射在液晶板31上的彩色光束由物镜26、28、30校正,因为此彩色光束的光程长度大于其它的彩色光束的光程长度。入射在液晶板31a、31b、31c上的彩色光束透过该板,同时这些光束响应图像信号(未示出)而被光学调制。这些彩色光束然后由光合成棱镜32进行着色合成,然后放大,并由投影透镜101投射在显示屏(未示出)上。
图20和21是垂直截面图,示出装有本发明投影仪光源的背投式图像显示设备的主要部分,下面参照该图,由光学单元100得到的图像通过折返镜104利用投影透镜101放大并投射于显示屏102。图20示出设定高度减小这种情况下的机壳103的结构,图21示出设定深度减小这种情况下的机壳103的结构。
如上所述,本发明提供一种投影仪光源以及装有这种光源的投影仪,该光源具有精度很高的反射器,该反射器具有很好的模塑性和操作性,其反射率也是相当好的。
技术人员还应该明白,虽然上面已说明本发明的实施例,但是本发明不限于这些实施例,可以进行各种改变和变型而不超出本发明的精神和所附权利要求书的范围。
权利要求
1.一种用于将光束发射到显示元件上的投影仪光源,其包括用于发射光束的光发射管;以及凹面反射器,其包括用于保持电弧管的保持部件,并具有用于反射来自电弧管的光束的凹入反射表面,使得光束通过反射器的开口射出;在垂直于反射器的光轴的平面处将所述凹面反射器分成包含该保持部件的第一反射器和包含该开口的第二反射器;以及所述第一反射器用第一材料制成,而所述第二反射器用第二材料制成,该第二材料的热变形温度低于第一材料的热变形温度。
2.如权利要求1所述的投影仪光源,其特征在于,所述第一材料是耐热玻璃,而第二材料是耐热有机材料,该耐热有机材料的热变形温度低于该耐热玻璃的热变形温度。
3.如权利要求1所述的投影仪光源,其特征在于,该第二反射器在至少其外表面上设置有多个突出部,并且这些突出部用耐热有机材料制成,在这种材料中混合有高导热性物质。
4.如权利要求2所述的投影仪光源,其特征在于,所述突出部是平的,其纵向方向基本上平行于来自冷却风扇的空气流动的方向,该冷却风扇用于冷却投影仪光源。
5.如权利要求1所述的投影仪光源,其特征在于,通过在低收缩不饱和聚酯树脂中加入热塑性树脂聚合物、硬化剂、填料、玻璃纤维和有机填料,以及还在其中加入氢氧化铝来制备第二材料。
6.如权利要求1所述的投影仪光源,其特征在于,第一材料是线膨胀系数不大于50×10-5(1/K-1)的耐热玻璃。
7.一种用于将光束发射到显示元件上的投影仪光源,其包括用于发射光束的电弧管和具有凹入反射表面的凹面反射器,用于反射来自电弧管的光束,使得光束经过凹面反射器的开口射出,其中所述凹面反射器具有可在基本上平行于凹面反射器的光轴的平面处分成至少两个部分的结构。
8.如权利要求7所述的投影仪光源,其特征在于,该反射器在其开口中设有前部玻璃板。
9.如权利要求7所述的投影仪光源,其特征在于,所述凹面反射器的反射表面具有由下列公式表示的构形z(r)=(1/RD)r2/[1+1-(1-CC)r2(1/RD)2]]]>+AE*r4+AF*r6+AG*r8+AH*r10+...+AR*rn]]>…公式1其中,z(r)是反射表面的高度,其条件是,包含反射表面焦点的光发射管的电弧轴向方向取作Z轴,而垂直于该Z轴的反射器径向方向取作r轴,r是沿径向方向的距离,RD、CC、AE、AF、AG、AH、…A是任意常数,并且n是任意非负整数。
10.如权利要求7所述的投影仪光源,其特征在于,该电弧管具有基本上位于反射表面焦点处的光学中心,并且该电弧管的电弧轴线基本在凹面反射器的光轴上对齐,该反射器用其中混合有高导热性物质的耐热有机材料制成,并且该反射器的底部的平均壁厚度大于该反射器的光束射出部的平均壁厚度。
11.如权利要求7所述的投影仪光源,其特征在于,所述电弧管是短电弧式放电灯,在该灯中充入至少氙或者汞,在电弧管相对端处设置的一对电极在其间具有的距离不大于1.8mm,并且该灯用不大于250W的额定功率接通,该凹面反射器的焦距不大于4mm。
12.如权利要求1所述的投影仪光源,其特征在于,所述第二反射器可在基本上平行于凹面反射器的光轴的平面处分成至少两个部分,并且用于从该凹面反射器外边向电弧管供电的电力线夹在该反射器的分开表面之间。
13.如权利要求12所述的投影仪光源,其特征在于,所述第二反射器包括附接辅助板,用于将投影仪光源附接在预定位置,并且该附接辅助板位于该凹面反射器的光束射出侧上的前表面处。
14.如权利要求1所述的投影仪光源,其特征在于,所述第一反射器和所述第二反射器由附接固定件固定在一起,所述第二反射器具有可与该附接固定件联接的固定凸台;所述附接结构包括接触第一反射器的弹性部件和平的部件,该弹性部件用于保持第二反射器,该平的部件沿一方向倾斜,该倾斜方向与该凹面反射器的光束射出方向相反;当附接固定件联接于该固定凸台时,该第一反射器通过该弹性部件的弹性压靠在第二反射器上,以便将第一和第二反射器彼此固定在一起,并且该平的部件引导用于冷却投影仪光源的冷却风扇吹出的空气,使得空气从该凹面反射器的开口侧沿该凹面反射器的外表面流向保持部件。
15.如权利要求1所述的投影仪光源,其特征在于,所述第二反射器结合有多个延伸向第一反射器的钩形卡子,并通过该卡子钩住和固定该第一反射器。
16.如权利要求1所述的投影仪光源,其特征在于,多个突出部设置在该第一和第二反射器中的一个反射器上,并且与突出部配对的凹入孔形成在该第一和第二反射器的另一反射器中,将配对的突出部和凹入孔配装在一起以便使第一和第二反射器彼此对齐;将第一和第二反射器联接在一起,利用该突出部在第一和第二反射器之间限定一间隙。
17.如权利要求16所述的投影仪光源,其特征在于,第一和第二反射器之间的间隙在突出部和凹入孔彼此配装在一起的这种条件下为0.1-2mm。
18.如权利要求17所述的投影仪,其特征在于,该突出部和凹入孔的对数为至少三对。
19.如权利要求1所述的投影仪光源,其特征在于,多个凹入部和凸起部形成在第一和第二反射器的外壁表面上。
20.如权利要求1所述的投影仪光源,其特征在于,在第二反射器的外壁表面上植入硬毛,硬毛的直径为30-50μm,以及长度为0.1-0.3mm,并且硬毛用合成纤维形成。
21.如权利要求1所述的投影仪光源,其特征在于,该第一反射器和第二反射器可分离地相互联接。
22.如权利要求1所述的投影仪光源,其特征在于,该第一反射器用金属薄膜覆盖在其反射表面上,而第二反射器着以辐射率不超过0.5的颜色。
23.如权利要求22所述的投影仪光源,其特征在于,该第二反射器着以白色。
24.一种用于将光束投射在显示元件上的投影仪光源,其包括用于发射光束的电弧管和凹面反射器,该凹面反射器结合有用于反射电弧管发射的光束的凹入反射表面,使得光束沿其光轴方向射出;所述反射器在其表面上形成有反射膜,该反射膜对于波长不大于410nm的光束具有的垂直透射率不小于50%,但是对于波长为420-700nm的光束具有的垂直透射率不大于15%,而对于波长不小于800nm的光束具有的垂直透射率不小于50%。
25.如权利要求1所述的投影仪光源,其特征在于,第二反射器在其反射表面上形成有反射膜,该反射膜为单层金属膜,该膜对于波长为450-650nm的光束具有的反射率不小于95%,并且该反射膜用银或者银合金制成,使得对650nm的反射率高于对450nm的反射率。
26.一种投射式图像显示设备,其包括用于发射光束的投影仪光源;接收来自该投影仪光源的光束的显示元件,用于响应于输入图像信号调制该光束;以及投影透镜,用于将由显示元件调制的光束投射和放大到屏幕上;所述投影仪光源包括用于发射光束的电弧管;和凹面反射器,该反射器包含用于保持电弧管的保持部件,并具有凹入反射表面,用于反射来自电弧管的光束,使得该光束经过反射器的开口射出;所述凹面反射器在垂直于反射器的光轴的平面处分成包含保持部件第一反射器和包含该开口的第二反射器;以及所述第一反射器用第一材料制成,而所述第二反射器由第二材料制成,该第二材料的热变形温度低于第一材料的热变形温度。
27.一种投射式图像显示设备,其包括用于将光束投射到显示元件上的投影仪光源;用于容纳该投影仪光源的光源箱以及光源容纳部件,该光源容纳部件具有这样一种结构,即可收回地和可展开地容纳该光源箱,其中在光源箱的内壁表面上植入硬毛,硬毛的直径为30-50μm,以及长度为0.1-0.3mm,并且硬毛用合成纤维形成。
28.如权利要求27所述的投射式图像显示设备,其特征在于,所述光源箱在其外表面上还结合有把手,用于从光源容纳部件中抽出光源箱,并在设有把手的外表面上植入硬毛,硬毛的直径为30-50μm,以及长度为0.1-0.3mm,并且硬毛用合成纤维形成。
全文摘要
提供一种投影仪光源,该光源可以有效地投射从作为光源的灯发射的具有足够量的光束,该光源具有极高的精度和极好的操作性。该投影仪光源包括发射光束的电弧管和凹面反射器,该凹面反射器包括用于保持电弧管的保持部件,具有凹入反射表面,该凹入反射表面用于反射电弧管发射的光束,使得该光束经过反射器的开口射出,该凹面反射器包括靠近保持光发射管用的保持部件的第一反射器和位于不是保持部件的那一部件中的第二反射器,该第二反射器采用和第一反射器不同的材料制作。另外,第一反射器用耐热玻璃制作,而第二反射器用包含耐热有机材料的材料制作,该耐热有机材料的热变形温度低于耐热玻璃的热变形温度。
文档编号F21V19/00GK1417635SQ0212652
公开日2003年5月14日 申请日期2002年7月19日 优先权日2001年11月6日
发明者益冈信夫, 平田浩二, 栗原龙二, 小寺喜卫 申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1