用快速振荡电势来限制正负离子的制作方法

文档序号:2925273阅读:277来源:国知局
专利名称:用快速振荡电势来限制正负离子的制作方法
技术领域
本发明涉及质谱仪。
背景技术
质谱仪对样本粒子如原子、分子等的质量进行分析,其通常包括离子源、一个或多个质量分析仪以及一个或多个检测器。在离子源中,样本粒子被离子化。样本粒子可用多种技术来进行离子化,这些技术例如可采用化学反应、静电力、激光束、电子束或者是其它的粒子束等。这些离子被传输到一个或多个质量分析器以便其基于这些粒子的质量/电荷比将这些粒子分离开来。这种分离可以是时间上的分离,如在飞行时间分析器中,也可是空间上的分离,如在磁性部分分析器中,还可是在频率空间中的分离,如在离子回旋共振(ICR)腔中。这些离子还可根据其路径或轨迹稳定性分离到一个多极离子阱或离子导中。分离后的离子可被一个或多个检测器检测出来,其提供数据从而形成样本粒子的一个质谱。
在质谱仪中,用磁场或电势或者是磁场加电势来对离子进行引导、捕获或分析。例如,在ICR腔中使用磁场,在多极阱如三维(“3D”)四极离子阱或两维(“2D”)四级阱中使用多极电势。
例如,线性2D多极阱可包括多极电极组件,如分别包括四个、六个、八个或更多个电极的四极、六极、八极或更多电极组件。这些杆状电极可绕着一个轴布置在组件中从而形成一个通道,其中离子沿径向被杆状电极上所加的射频(RF)电压所产生的一个2D多极电势限定在该通道中。这些离子通常在通道的轴向方向上被杆状电极或其它电极如阱中的板状透镜电极上所加的DC偏压限定在轴向上。在杆状电极所限定的一部分通道中,DC偏压可产生静电电势,该电势沿轴向限定正离子或负离子,但不能同时限定两种离子。此外,可在杆状电极上加上AC电压从而激励、发出或激活某些捕获的离子。
在MS/MS试验中,所选择的前体离子(也被称为母离子)首先被隔离或选择,然后再经反应或激活从而分裂形成产品离子(也称为子离子)。产品离子的质谱可经测量从而确定出前体离子的结构组分。通常,前体离子经撞击激励分裂(collision activated dissociation-----CAD)而裂开,其中前体离子被离子阱中的电场加速,该离子阱还包括一种低压隋性气体。所激励的前体离子与惰性气体的分子撞击并因撞击分裂成产品离子。
产品离子还可通过电子捕获分裂(electron capture dissociation----ECD)或者离子-离子的交互作用而产生。在ECD中,低能量电子被多次加电的正前体离子捕获,然后因电子的捕获而分裂。为了在ICR腔中诱导出ECD,前体离子和电子沿径向被强磁场所限定,其中的强磁场通常约为3-9特斯拉(Tesla)。在轴向上,正前体离子和电子相邻区域中的静电势所限定。在相邻区域的边界附近,前体离子和电子的轨迹可相互交叠,由此可形成ECD。作为选择,所捕获的前体离子可曝露于低能量电子流中。
多极离子阱通常采用RF多极电势来在径向上对离子进行限定。一个电子的质量/电荷比通常是前体离子质量/电荷比的十万分之一到一百万分之一。然而,常规的多极捕获同时只能限定那些质量/电荷比差别不超过约几百倍的粒子。有人建议,如果可用附加的磁场来捕获电子或者是引导出大量的电子流,那么可在多极阱中实现ECD。
现在,离子-离子的交互作用已用在3D的四极阱中产生产品离子,这里,一个振荡的3D四极电势可同时对中间空腔中的正负离子进行限定,此时不需要静电势来提供轴向的限定。

发明内容
在一个形成有一内腔的二维(2D)多极离子阱或离子导中,离子被径向和轴向上的振荡电势所限定。通常来讲,本发明在一个方面中提供了一种用来捕获或引导离子的技术。将离子引入到一个离子阱或离子导中。该离子阱或离子导包括一个第一组电极以及一个第二组电极。第一组电极和第二组电极在布置上应形成一个离子通道从而捕获或引导所引入的离子。将周期性变化的电压加到第一组电极中的电极上从而生成一个第一振荡电势,其至少在第一维方向上将离子限定在离子通道中,以及将周期性变化的电压加到第二组电极中的电极上从而生成一个第二振荡电势,其至少沿第二维方向上将离子限定在离子通道中。
本发明特定实施例包括下面的一个或多个特征。将周期性电压加到第一和第二组电极上可形成对离子的三维限定。第一振荡电势可在径向对离子进行限定。第二电势可在轴向对离子进行限定。第一和第二组电极可包括多个部件,并至少具有一个共用的部件。离子的引入操作可包括将正离子和负离子引入到离子阱中或离子导中。离子阱或离子导可包括一个第一端和一个第二端,并且正负离子分别在第一端和第二端引入。该离子阱或离子导可包括两个或多个部分,并且可将一个或多个DC偏压加到离子阱或离子导的这一个或多个部分上从而将正离子或负离子限定在这一个或多个捕获区域中。将周期性电压加到第一组电极中的电极上的操作可包括加上具有第一频率的周期性电压,并且将周期性电压加到第二组电极中的电极上的操作可包括加上具有第二频率的周期性电压,其中的第二频率不同于第一频率。第一频率和第二频率的之比大约是一个整数,或者是一个整数比。第一和第二频率之比大约为二。第一和第二振荡电势可具有不同的空间分布。该离子通道可沿轴各对称,并且第一振荡电势可在离子通道的至少一部分轴上基本形成零电场,并且第二振荡电势能在离子通道的同一部分轴上形成非零的电场。第一振荡电势可包括一个振荡的四极、六极或者是更多极的电势。第二振荡电势可包括一个振荡的局部二极电势。第一和第二振荡电势可为所引入的每一个特定质量和电荷的离子形成一个赝势,由此所形成的每一个赝势就沿着离子通道确定一个对应的势垒。第一组电极可包括多个杆状电极。第二组电极可包括多个杆状电极,并且/或包括一个或多个板状离子透镜电极。第二组电极可在离子通道的第一端包括一个第一板状离子透镜电极,并在离子通道的第二端包括一个第二板状离子透镜电极。
总的来讲,本发明的另一方面提供一种装置。该装置包括一个第一组电极以及一个第二组电极以及一个控制器。第一组电极和第二组电极在布置上形成一个离子通道从而捕获或引导离子。控制器在结构上将周期性变化的电压加到第一组和第二组电极中的电极上从而生成一个第一振荡电势和一个第二振荡电势,其中第一和第二振荡电势具有不同的空间分布,并分别沿径向和轴向将离子限定在离子通道中。
本发明的特定实施例包括下面的一个或多个特征。控制器在结构上能同时沿径向和轴向在离子通道中限定正负离子。该控制器在结构上能将周期性电压加到具有第一频率的第一组电极中的电极上,并且能将周期性电压加到具有第二频率的第二组电极中的电极上,其中的第二频率不同于第一频率。第一频率和第二频率的之比大约是一个整数,或者是多个整数的比值。第一组电极可包括多个杆状电极。第二组电极可包括多个杆状电极,或者是一个或多个板状离子透镜电极。第二组电极可在离子通道的第一端包括一个第一板状离子透镜电极,并在离子通道的第二端包括一个第二板状离子透镜电极。
本发明的实施可具有以下一个或多个优点。正负离子可同时限定在一个由电极结构和所加电压在一2D多极离子阱中形成的一个内腔或捕获区域。由于是同时限定在同一空腔中,因此可通过离子-离子之间的相互作用生成产品离子。该2D多极离子阱比一个3D四极阱能捕获更多的正负离子(通常能多百分之三十到一百)。因此,该2D多极阱可为后面的分析提供更多的产品离子,从而使后面的分析具有更高的信号噪声比以及较低的,还可对裕度较低的产品离子进行检测。与引入到3D四极离子阱相比,这些正负离子可以更为方便地引入到一个2D多极离子阱中。例如,正离子可在一线性2D多极阱的一端引入,而负离子则在另一端引入。正离子可以是前体离子,而负离子则可是试剂离子,其可诱导电荷转移到或离开前体离子。作为选择,也可是正离子为试剂离子而负离子为前体离子。作为选择,负试剂离子可从前体离子提取出带电核素,其通常为一个或多个质子。这种电荷的转移可减少前体离子的价数,转换前体离子的电荷极性,或者是诱导前体离子的分裂。对于前体离子如磷缩氨酸(phosphopeptide)离子来说,电荷转移反应可激励分裂从而形成产品离子谱,其比单独用CAD形成的同一核素的产品离子谱具有更多的信息。这种电荷转移可诱导前体离子之外其它离子的分裂或者是离子电荷的减少,如前次电荷转移反应所形成的产品离子的分裂或电荷减少。在一个线性2D四极阱或者是其它的2D多极杆组件中,具有相反电荷符号的前体离子和试剂离子可被一个重叠的RF电势在不同的磁场下沿径向和轴向捕获在同一腔体中。分段的线性阱最初可将前体离子和试剂离子保存在分开区段中,并且在后面通过使前体离子和试剂离子在相同的一个或多个区段中进行相互作用而诱导出分裂。在使它们相互作用之前,可通过常规的方式如通过现有的隔离方法来选择前体离子或试剂离子的方式将前体离子或试剂离子控制在不同的区段中。只需将正负离子群隔离开来就能在任一时刻使离子与离子的相互作用停下来。在一个其中的离子群包括有正离子、负离子或正负离子并且这些离子被一个主RF电势所形成的电场径向限定的通道中,可用一个次RF电势来形成电场,该电场基于离子的质量和电荷而不是离子电荷的符号有选择地将离子群限定在通道的轴向方向上。由此,轴向的限定可用作一个阀或是一个门,其打开关闭从而允许或阻止离子沿轴向通过。轴向的限定可由加到透镜端头板状电极上的次RF电压所生成的电势来提供。在一个具有两个或多个轴向区段的组件中,离子在轴向被组件不同区段中多极杆上所加的不同RF电压所限定。组件的一个或多个区段可通过多个独立的2D多极阱来实现。轴向限定也可通过多极离子阱中多极杆状电极之间、周围或旁边的辅助电极上所加的次RF电压来实现。由于线性离子阱可容易适用于其它的质谱仪,因此在线性离子阱中进行完离子与离子的反应试验之后,产品离子很容易就能传输到不同的质量分析器进行分析,如TOF、FTICR或者是不同的RF离子阱质谱仪。由此离子-离子试验可适用更为广泛的仪器,而不仅限于3D四极离子阱。
下面参照附图和详细说明来描述本发明一个或多个实施例的详细情况。除非另有提及,动词“包括”和“包含”用作开放式的含义,即其用来表示“被包括”或“被包含”的对象是一个更大集合体或组中的一个部分或组成,其不排除该集合体或组中的其它部分或组成的存在。术语“前”、“中”、“后”用来表示一装置在示意图中的各个部分,如一多极离子阱或其等同结构,其并不涉及装置各个部分绝对意义上的实际位置,如在装置翻过来或旋转时。通过说明书、附图以及权利要求书,本发明的其它特征和优点将会更加清楚。


图1为根据本发明一方面的用于质谱装置的示意图;图2A-2D的示意图所示为用振荡电势对离子进行轴向限定的情况;图3的流程图示意性地展示了根据本发明一个方面的质谱方法;图4的流程图示意性地展示了一种诱导离子-离子反应的方法;图5A-5F示图示意性地展示了在多极阱中诱导离子离子反应的一个
具体实施例方式
图1所示为一个质谱系统100,其根据本发明的一个方面进行操作。系统100包括一个前体离子供体110、一个2D多极离子阱120、一个试剂离子供体130以及一个控制器140。该前体离子供体110用来生成离子,其包括前体离子。由前体离子供体110生成的离子注入到2D多极离子阱120中。试剂离子供体130生成包括有试剂离子的离子。由试剂离子供体130生成的离子也注入到2D多极离子阱120中。该2D多极离子阱120形成一个通道,其中前体离子和试剂离子被控制器140加到离子阱120中不同电极上的周期性变化的电压所产生的振荡电势沿径向和轴向限定在该通道中。
前体离子供体110包括一个或多个前体离子源112,从而从样品分子如较大的生物分子生成前体离子;以及离子传输光路115从而将所生成的离子从前体离子源112导到离子阱120。前体离子可用电喷离子化(ESI)技术、热喷离子化技术、场技术、等离子体或激光解吸附技术、化学离子化技术或者是其它的技术来生成前体离子。该前体离子可以是正离子或负离子,并具有一价或多价。例如用ESI技术从具有多个可离子化点的较大分子生成多价离子。
试剂离子供体130包括一个或多个试剂离子源132从而从样品分子生成试剂离子;以及离子传输光路115从而将所生成的离子从试剂离子源132导到离子阱120。在相互作用时,试剂离子可诱导电荷从试剂离子转移到其它离子,如前体离子供体110所提供前体离子。该试剂离子可诱导质子转移或电子转移到/或离开前体离子。对于正前体离子来说,试剂离子可包括由全氟二甲基环己烷(perfluorodimethylcyclohexane----PDCH)或SF6导出的阴离子。对于负前体离子来说,试剂离子可以是正离子如氙离子。特定试剂离子的选择取决于前体离子和/或离子阱的参数。
对于正前体离子来说,试剂离子源132可用化学离子化技术、ESI技术、热喷技术、粒子轰击技术、场技术、等离子体或激光解吸附技术技术来生成负试剂离子。例如在化学离子化技术中,在一化学等离子体中通过结合或分离处理来生成负试剂离子,其中的等离子体包括中性的、带正电的以及带负电的粒子如离子或电子。在化学等离子体中,低能量电子可被中性粒子捕获从而形成一个负离子。该负离子可能是稳定的,也有可能分裂成包括有负离子的产品离子。然后可通过例如静电场从化学等离子体中提取出负试剂离子。在另一实施方式中,试剂离子源132采用其它的技术来生成试剂离子。例如,可选择合适的电压并使用ESI来生成正离子或负离子。
离子传输光路115和135将前体离子源112和试剂源132生成的离子传输到多极离子阱120。该离子传输光路115和135可包括一个或多个2D多极杆状组件如四极或八极杆状组件从而将所传输离子沿径向限定在通道中。该离子传输光路115或135在结构上只能传输正离子或负离子,或者选择质量/电荷比在一定范围内的离子。该离子传输光路115或135可包括透镜、离子隧道、板或杆从而使所传输的离子加速或减速。作为选择,该离子传输光路115或135可包括离子阱从而临时保存所传输的离子。
多极离子阱120包括一个前端板状透镜121、一个后端板状透镜128以及透镜121和128之间的一个或多个区段。在图1所示的实施例中,离子阱120包括一个前端区段123、一个中间区段125以及一个后端区段127。前端透镜121形成有一个前孔122从而接收离子传输光路115从前体离子源112传输过来的离子,后端透镜128形成有一个后孔129从而接收离子传输光路135从试剂离子源132传输过来的离子。每一个区段123、125和127均包括一个相应的2D多极杆状组件,如一个包括有四个四极杆状电极的四极杆状组件。每一个多极杆状组件在操作上均至少能在某一维上将离子绕着离子阱120的轴124限定在通道中。在此通道中,可用离子阱120中多极杆状电极和透镜121和128上所加电压所生成的振荡电势将离子沿径向和轴向限定在区段123、125、127中的一个或多个区段中。在另一实施例中,一个或多个区段123、125和127可通过独立的2D离子阱来实现。在图1所示的实施例中,第一组电极(其可包括那些与前段123、中段125和后段127中的一个或多个相对应的电极)在操作上至少能将离子限定在离子通道的第一维空间中,从而捕获或引导所引入的离子。在这种特定的情况下,第一组电极就用来在径向上将离子限定在离子通道中。第一组电极可包括多个杆状电极。第二组电极(其可包括与前端透镜121和后端透镜128相对应的电极)在操作上至少能将离子限定在离子通道的第二维空间中。在这种特定的情况下,第二组电极就用来在轴向上将离子限定在离子通道中。第二组电极可包括多个杆状电极或者是一个或多个端板离子透电极。在本实施方式中,第一和第二组电极在操作上能在三维上对离子进行限定。尽管在这个特定的示例中,第一组和第二组电极是不连续的电极组,但在另一实施方式中,第一和第二组电极具有共用的部件(但其用不同的电压来激励)。例如,第一组电极可包括由前段123、中段125和后端127组成的多个电极,同时第二组电极可包括由前段123和后段127组成的多个电极。控制器140将对应的一组RF电压143、145和147分别加到区段123、125和127中的多极杆状组件上,从而生成振荡的2D多极电势,该电势将离子绕着轴124沿径向限定在通道中。在一实施方式中,控制器140将一组主RF电压加到区段123、125和127中的每一个杆状组件上。对于具有两对对置杆的四极组件来说,该组主RF电压可包括一个用于第一对对置杆的第一RF电压,以及一个用于第二对对置杆的第二RF电压,其中第二RF电压与第一RF电压具有相同的频率但相位相反。作为选择,控制器140可将不同频率或相位的RF电压143、145和147加到离子阱中不同区段内的多极杆状组件上。
控制器140还将RF电压141和148分别加到前端透镜121和后端透镜128上。RF电压141和148可以与分别加到前段123和后段128中杆状组件上的RF电压143和147具有不同的频率或相位。加到前端透镜121和后端透镜128上的RF电压141和148产生振荡电势,其能沿轴向将正负离子绕着轴124同时限定通道的对应端部。后面将参照图2A-2D来进一步描述如何用振荡电势来在轴向对离子进行限定。
控制器140可将不同的DC偏压151-158加到透镜121和128以及离子阱120中不同区段内的杆状组件上。根据阱120中某一区段中所加DC偏压符号的不同,可将正离子或负离子沿轴向限定在该区段中。例如,可通过将负的DC偏压加到前段123中的多极杆上同时将基本为零的DC偏压加到中段125和前端透镜121上来将正前体离子捕获到前段123中。同样,可通过将正的DC偏压加到后段127中的多极杆上同时将基本为零的DC偏压加到中段125和后端透镜121上来将负试剂离子捕获到后段127中。如后面参照图4-5F所描述的那样,通过将不同的DC偏压加到不同的区段和透镜上,正负离子就能接收或分离到离子阱120中。控制器140还可将附加的AC电压加到离子阱中的电极上从而基于离子的质量/电荷比将离子从离子阱120射出。
图2A示意性地展示了如何将正离子210和负离子215同时限定在离子透镜220旁一端头区段230处的一个2D多极离子阱中。例如,端头区段230可以是离子阱120的前段123或者是后端127,同时离子透镜220可以是系统100(参见图1)中的前端透镜121或者是后端透镜128。
端头区段230包括一个2D多极杆状组件232,其从一RF电压源240接收RF电压从而生成一个振荡2D多极电势,从而将沿径向限定正离子210和负离子220靠近到该多极离子阱的轴线234。例如,杆状组件232可以是一个四极杆状组件,其绕着轴234产生一振荡2D四极电势。
离子透镜220从RF电压源245接收RF电压从而生成一个振荡电势,该振荡电势沿轴向限定正离子210和负离子215。即,轴向限定电势能防止离子210和215通过离子透镜220中的孔225逃离端头区段230。该轴向限定电势与组件232所生成的多极电势相比具有不同的空间分布。其中多极电势在轴234处形成基本为零的电场,而轴向限定电势则至少在轴234中靠近离子透镜220的一个部分处形成基本非零的电场。
多极杆状组件232包括杆状电极,其接收具有第一频率的RF电压;以及离子透镜220,其接收具有第二频率的RF电压。在一实施方式中,第一频率和第二频率之间是一个有理数。例如,第一频率基本上是第二频率的整数倍或者是整分数。作为选择,第一频率也可是第二频率的其它任一倍数或分数。或者,第一和第二频率也可基本相等,同时离子透镜220接收一RF电压,该RF电压与杆状组件232所接收的RF电压不同相。通常,杆状组件232接收多元相位的多个RF电压。在一四极杆状组件中,相邻的杆状电极所接收的电压的相位差为180度。这样,离子透镜220就能接收一RF电压,其与四极杆状组件中杆状电极所接收的每一个电压均相差(正负)90度的相位。
图2B所示的坐标系250示意性地展示了一条轨迹260,该轨迹是正离子210或负离子215在靠近离子透镜220时的典型运动轨迹。在该坐标系250中,纵坐标252表示时间,横坐标表示离子沿着轴234到离子透镜220的轴向距离。该轨迹260展示了离子在没有本底气体的情况下的运动。如果有本底气体分子,那么该离子的轨迹则会不同。例如,较小的气体分子会对较大离子的运动形成阻尼;或者是该离子的轨迹可能会因离子和气体分子之间的随机碰撞而随机变化。
轨迹260包括三个部分262、264和266。在第一轨迹部分262中,离子仅在多极电势中移动,从而在径向限定离子靠近轴234,这里的多极电势形成基本为零的电场。由此,沿着轴线234,离子可以以一个基本均匀的速度轴向移动,并接近离子透镜220中的孔225。在轨迹260中,这个基本均匀的速度是由第一轨迹部分262基本不变的斜率所表示的。
在第二轨迹部分264中,离子会受到离子透镜220上所加RF电压所产生的振荡电势形成的电场的作用。该振荡电势形成的电场强迫离子根据所加RF电压的频率来回振荡。离子所经历的这些振荡由第二轨迹部分264中的波浪形轨迹表示。这些波浪可描述为离子绕着几个振荡过程中的平均位置所对应的中心的快速振荡。正如图2B中中心轨迹268所示意的那样,该中心的移动与离子本身的移动相比要更缓慢更平滑。
该中心轨迹268可用绝热近似法来确定,该近似法的详细内容(包括其应用的限制)可参见Dieter Gerlich在State-selected and stat-to-stateion-molecule reaction dynamics,Partl.Experiment中的“Inhomogeneous RFfieldsA versatile tool for the study of processes with slow ion”,编辑Check-Yiu NG和Michael Baer,化学物理学进展(Advances in ChemicalPhysics Series),卷LXXXII,1992John Wiley & Sons公司。该绝热近似法分别描述了第二轨迹部分264中的快速振荡以及振荡中心沿中心轨迹268的缓慢移动。对于一个特定的离子来说,中心轨迹268可描述为就像是该离子在一赝势Vp(其也被称为有效电势或者是拟位势)中移动,该赝势Vp独立于时间和离子电荷的符号。然而,该赝势Vp依赖于离子的质量、电荷数(“Z”,其表示离子电荷的净数目和符号,Q=Ze)、以及引起快速振荡的振荡电势的特性。对于一个用来产生下面这种电场E(r,t)的振荡电势来说,其中的电场E(r,t)随着位置r处的角频率(“Ω”)和强度E(r)按下式变化E(r,t)=E(r)cross(t),位置r处的赝势Vp按下式给出Vp(r)=Ze E(r)2/(4mΩ2) (公式1)
当离子沿着轴线234靠近孔225时,透镜220产生一个强度E(r)不断增强的电场以及根据公式1一个不断增大的赝势Vp。乘积Ze Vp的负梯度指向透镜220和由透镜220形成的孔225的反向,因为赝势的符号与离子电荷的符号相同。该负梯度决定了离子平均受力的方向和强度。在该力的作用下,离子在到达孔225之前会如中心轨迹268所示的那样反向移动。由此,该离子就被透镜220上所加RF电压所产生的振荡电势沿着轴向绕着轴线234限定在通道中。
由于赝势Vp与离子的电荷数Z具有相同的符号,因此其就能对正离子210和负离子215进行限定。赝势Vp取决于离子的质量m和离子的电荷(Q=Ze)。正是基于这种关系,相同的振荡电势就可用来对一些离子形成限定,同时能使其它离子通过。
图2C所示示例中,一个较小的离子212和一个较大的离子214移近端头部分230中的透镜220。该离子212和214具有相同的电荷和类似的动能,但较大的离子214的质量要大于较小的离子212。离子212和214被RF电压源240加到多极杆状电极232上的RF电压所产生的2D多极场沿径向限定靠近轴线234。RF电压源245将RF电压加到离子透镜220上从而生成一个振荡电场,该电场在对较小离子212进行限定的同时能使较大的离子214离开端头部分230并穿过透镜220的孔225。
图2D示意性地展示了图2C所示示例的赝势。在其中的坐标系270中,纵坐标272表示赝势,横坐标274表示沿着轴线234到透镜220的轴向距离。所表示的赝势由离子透镜220所产生的同一振荡电势来形成。
该振荡电势给较小离子212形成一个第一赝势282,为较大的离子214形成一个第二赝势284。由于这些赝势由同一个振荡电势形成,因此对二者来说电场强度E(r)是相同的(参见公式1)。由此,第一和第二赝势282和284与距离透镜220的轴向距离(“r”)的函数具有类似的波形。在距离透镜220较远时,赝势282和284基本为零,随着相应离子不断接近透镜220,赝势也会不断增加。不断增加的赝势282和284形成了一个势垒,即相应赝势在离子阱轴线234上的最大值。第一赝势282形成第一势垒283,其高于第二赝势284所形成的第二势垒285。势垒283和285的差来自于较小离子212和较大离子214之间的质量/电荷差。对于其它的具有不同质量和/或电荷值的离子来说,计算出公式1在轴线234上的最大值就能确定其赝势势垒。
较小离子212和较大离子214分别具有平均能量水平292和294。将离子能量在一个振荡电势周期内进行平均就能得到平均能量水平。在该示例中,平均能量水平292和294具有相当数值。对于较小的离子212来说,平均能量水平292小于相应的势垒283。因此,较子的离子212就沿轴向被所对应的势垒283限定起来。在到达平均能量水平292基本等于赝势282的那一点之后,较小的离子212就返回离开透镜220。然而,对于较大的离子214来说,其平均能量水平294要大于所对应的势垒285。因此,较大的离子214沿轴向就不会被振荡电势所限定,从而离开端头部分230并穿过孔225。
上述的绝热近似法以及对应的赝势在使用上有一些限制。例如,该绝热近似法只能用在电场强度|E(r)|明显大于电场梯度(“VE”)乘以快速振荡特征振幅所测出的变化。即,如果电场变化超过了某一离子一次振荡的极限,绝热就没用了,并且赝势也不能用来描述离子的运动。
基于该条件,当离子的质量为m电荷为Z,并且其处于角频率Ω的电场中时,无因次绝热参数ζ就为ζ=2Z|VE|/mΩ2通常来讲,绝热近似法在绝热参数ζ大约小于0.3时才是有效的。该绝热参数ζ与离子的质量电荷比m/Z成反比。即,离子的质量电荷比越大,绝热近似法越有效。
在四极阱轴线上的赝势势垒附近,所捕获的离子可能会经历意外的线性、非线性或者是参量性质的激励,并有可能会逃出该四极阱。如果用选择适当的RF电场来捕获这些离子,则可以避免出现这种激励。
图3展示了一种方法300,其基于上述技术来进行质量分析。该方法300由一种包括一2D多极离子阱的系统来完成,其中在该离子阱中,正负离子如前面参照图1-2D所描述的那样被不同的振荡电势沿径向和轴向所限定。例如,该系统可包括系统100(图1),其中可将一RF电压加到前端透镜121或者是后端透镜128上从而在轴向将正负离子限定在离子阱120中。作为选择,该方法300可采用下面参照图6和7所描述的分段阱来完成。
该系统通过不同的振荡电势将前体离子和试剂离子在径向和轴向上限定在多极离子阱中从而诱导前体离子分裂成产品离子(步骤310)。前体离子可以是正离子同时试剂离子为负离子,反之亦然。该前体离子和试剂离子被引到多极离子阱所形成的通道的同一部分中,例如,参见图4-5F所描述的那样。在通道中,正负离子被振荡电势沿径向和轴向所限定。
由于均被限定在通道的同一部分中,因此前体离子和试剂离子相互作用,同时电荷从试剂离子转移到前体离子。电荷的转移可诱导多电荷前体离子的电荷减少或者是前体离子的极性颠覆。电荷转移可具有一能量从而使前体离子分裂成两个或多个粒子。这里所用的术语“相互作用”用来表示一种化学瓜,其中会出现键接、结合、分离、电荷转移、催化或者是其它的化学反应。化学反应通常为一种变化或者是一种转变,该过程中可能是一组离子分解、也可能是与其它物质结合、还有可能是与其它离子的交换组分。术语“相互作用”并不包括那些其中没有出现任何转变的相互作用,例如其中离子仅仅是发生物理碰撞和/或散开的情况。
通常来讲,当CAD单独用于离子阱时,只有前体离子被激励分裂成产品离子,并且所产生的产品离子不会经激励而进一步分裂。然而,在电荷转移所诱导的反应中,试剂离子也有可能会与前体离子的裂片相互作用从而进一步分裂或者是产生其它产品。
在另一实施方式中,前体离子和试剂离子之间的离子对离子之间的相互作用可用于分裂之外的其它目的。例如,与试剂离子的相互作用可用来使那些质量相同但带电多少不同的前体离子的混合物中的电荷减少。这种电荷的减少可使前体离子的所需电荷具有合适的数目。试剂离子也可用来减少例如由某些高电荷前体粒子所生成的多电荷产品离子的电荷。产品离子的电荷减少能简化质量分析以及所形成产品离子质谱的说明。与正负离子同时存在的情况一样,如果只有正离子或只有负离子,其也能被振荡电势沿径向和轴向限定并控制在离子阱中。
系统将试剂离子从离子阱中去除同时保留产品离子(步骤320)。为了保留住正产品离子并去除负试剂离子,可将一负的DC偏压加到包括有这些离子的部分上。当这些离子曝露于负DC偏压时,负试剂离子在轴向就处不稳定的状态,同时正试剂离子在轴向处于稳定的状态。为了保留负产品离子并去除正试剂离子,可将一正的DC偏压加到同一的部分上。作为选择,试剂离子可通过共振喷射去除,或者是在离子阱中沿径向失稳。
该系统根据产品离子的质量/电荷比来对它们进行分析(步骤330)。在一实施方式中,多极离子阱根据产品离子的质量/电荷比有选择地释放产品离子。系统用一个或多个粒子增效器来检测所释放的产品离子,并确定出它们的质量/电荷谱。在另一实施例中,所释放的产品离子可被导到一质量分析器,如一飞行时间分析器,一磁性、电磁、ICR或四极离子阱分析器,或者是其它的质量分析器,从而确定出产品离子的质量/电荷比。产品离子的质量/电荷比可用来重构前体离子的结构。
在另一实施例中,试剂离子、前体离子或者是产品离子可在离子阱中被进一步操控。例如,在对产品离子进行分析之前(步骤330),可将某些产品离子从离子阱中释放出来。
图4展示一种用试剂离子来诱导前体离子分裂的方法400。该方法400可由一系统如(图1的)系统100来完成,其包括一个分段的多极离子阱,该离子阱具有两部分或多个部分,其中多极杆形成一个通道从而捕获或引导离子。
该系统将前体离子释放并隔离到多极离子阱中(步骤410)。为了按照特定的质量/电荷比来隔离正前体离子,这些正离子需从一样本产生并释放到离子阱的离子通道中。然后,离子阱通过例如共振喷射释放出那些质量/电荷比不同于所选择前体离子质量/电荷比的样本离子。由此,只有所需的前体离子保留在离子阱中。作为选择,该离子阱可接收样本离子同时释放出某些非前体离子。
该系统将正前体离子移入多极离子阱的一个第一捕获区域(步骤420)。为此,系统可将一负DC偏压加到第一部分的多极杆上,并且将基本为零或者很小的负DC偏压加到其它部分上。
该系统将负试剂离子释放到多极离子阱的一个第二捕获区域(步骤430)。该第二捕获区域不同于其中捕获了正前体离子的第一捕获区域。分别将负的和正的DC偏压加到第一和第二部分上从而产生静电势垒,由此将第一捕获区域中的正离子与第二捕获区域中的负离子分开。作为选择,第一和第二捕获区域可通过一个第三无离子区来分开,该第三无离子区由一振荡电势形成,该振荡电势由加在电极上的合适电压产生,其能形成赝势,从而沿轴向将正负离子限定并分离到离子阱的通道中。
该系统能使正前体离子和负试剂离子移入到多极离子阱的同一捕获区域从而诱导前体离子分裂(步骤440)。如果DC偏压将第一捕获区域中的离子与第二捕获区域中的离子分开,那么该系统就能通过去除DC偏压而使正负离子移第一和第二捕获区域中。在没有DC偏压的情况下,正负离子可由振荡电势同时捕获到离子阱,从而如前参照附图1-2D所描述的那样将离子沿轴向限定离子阱的离子通道中。如果第一和第二捕获区域被第三捕获区域分开,其中在第三捕获区域中有一振荡电势沿轴向对前体离子和试剂离子进行限定,那么该系统通过改变或关闭该振荡电势从而使前体离子或试剂离子或者是前体离子和试剂离子穿过中间的第三区域。由于前体离子和试剂离子被限定在离子阱的同一捕获区域或者是相同的多个捕获区域中,因此它们相互作用形成电荷转移反应(离子-离子反应),从而使前体离子分裂。
图5A-5E示意性地展示了方法400的一个实施方式,在该方法400中使用了负试剂离子以及沿向限定的振荡电势。在该示例中,一2D多极离子阱500形成一个绕着轴线502的离子通道。该阱500包括一前透镜503、一前段504、一中段505、一后段506、以及一后透镜507。每一个段504-506均包括对应的一组多极杆,其用来接收RF电压(其频率例如大约为1.2MHz)从而产生一振荡多极电势从而沿径向将离子绕轴502限定在离子通道中。此外,透镜503和507也能接收RF电压从而沿轴向将离子限定在离子通道中。在离子阱500中,DC偏压可加到503-507中任易一个部件上。在离子阱500中,只需0.001托的氦气就能对离子形成耗散或阻尼。
在图5A中,正样本离子511释放到离子阱500中。该样本离子511包括那些具有不同质量以及一个或多个正电荷的离子。样本离子511可由ESI或者是其它离子化技术来形成。
这些样本离子通过前透镜503中的孔释放到离子阱中,并汇聚到中段505的一个捕获区域中。在释放的过程中,可如示意线510所示那样在离子阱500的不同部件上加上不同的DC偏压。前透镜503、前段504以及中段505分别接收负DC偏压513、514和515。负的偏压513、514和515逐级加大,如其分别为-3伏、-6伏以及-10伏,从而使所产生的静电场能迫使正样本离子511朝中段505聚集。后段506接收正DC偏压516,如+3伏,从而使所产生的静电场能防止样本离子511通过后透镜507逃离中段,其中后透镜507接收基本为零的DC偏压,如大约小于30mV的偏压。
图5B展示了将前体离子与离子阱500中段505中捕获的样本离子511隔离的情况。其中除了RF电压之外还将一AC电压加到中段505中的多极杆上从而产生多极电场。该AC电压产生的电场能使该阱释放出那些质量/电荷比不同于所选择前体离子的离子,而只将前体离子留在阱500中。
示意线520展示了隔离过程中加到阱500中不同部件上的DC偏压。前透镜503和后透镜507上分别为基本为零的DC偏压523和527。中段505为负DC偏压,如-10V。前段504和后段506分别为负DC偏压524和526,其数值要小于偏压525从而使所产生的静电场沿轴向将正离子限定在中段505中的捕获区域中。
图5C展示了前体离子531从中段505,其中前体离子531被隔离在该中段中,到前段504的移动。如示意线530所示,中段505的DC偏压535大约为-10V。一个数值超过中段505上DC偏压535的DC偏压534加到前段504上,从而使正前体离子531从中段505移到前段504中。该DC偏压534例如大约为-13V。由此,就产生这样的一个静电场,其使正前体离子531从中段505移到前段504。前透镜503具有一个基本为零的DC偏压533从而产生这样一个静电场,其能防止正前体离子从前透镜503逃离前段504。后段506和后透镜507分别具有负偏压536和基本为零的偏压537,从而使所产生的电场能使正前体离子移向前段504,并防止它们通过后透镜507逃离出去。
图5D展示了负试剂离子541释放到中段505中同时正前体离子531保留在离子阱前段504中的情况,即其中展示有两个捕获区域。试剂离子541由化学离子化或者是其它任易一种合适的离子化技术来产生。负的试剂离子通过后透镜507中的孔释放到离子阱中,并聚集在中段505中。在释放的过程中,如示意线540所示,离子阱500的不同部件上加上不同的DC偏压。后透镜507、后段506以及中段505分别接收正DC偏压547、546和545。正偏压547、546和545越来越大,如其分别为+1V、+3V和+5V,从而使所产生的电场能将负试剂离子541移向中段505。在中段505中,试剂离子与本底气体碰撞并被捕获。
前段504接收负DC偏压544如-5V,从而捕获正前体离子531并将其与中段505中的负试剂离子541分开。前透镜503接收正DC偏压543,如3V,从而使所产生的电场能防止前体离子531通过前透镜503的孔逃离前端504。
图5E展示了正前体离子531和负试剂离子541沿着轴502在多极离子阱500的所有部分504、505和506中混合的情况。如示意线550所示的那样,每一个部分504、505和506均具有基本相同的DC偏压,如基本为零的DC偏压558,从而能使正负离子沿着轴线502移动。同样的DC偏压还加在前透镜503和后透镜507上。
在透镜503和507旁边,正前体离子531和负试剂离子541均在轴向被前镜503和后透镜507上所加的RF电压所产生的振荡电势553和557沿着轴线502限定。例如,前透镜503和后透镜507均接收频率大约为600kHz幅值大约为150V的RF电压,其频率大约是杆状电极上所加RF频率的一半。由此,前体离子531和试剂离子541就被限定在同一腔体、同一捕获区域中,并且它们之间的相互作用可诱导前体离子的电荷转移和分裂。在这种情况下,捕获区域包括有段504、505和506。带电的碎片(如产品离子)可像前体离子和试剂离子一样在轴向被同一振荡电势553和557所限定。
图5F展示了负试剂离子541从离子阱中去除同时保留正产品离子561的情况。如曲线560示意性展示的那样,将负DC偏压565加到中段505上同时将基本为零的DC偏压561和568分别加到前段504和后段506上,就可将负试剂离子541从阱500中去除。DC偏压561、565和568所产生的电场能使负试剂离子541朝向前透镜503和后透镜507离开,并将正产品离子561限定在中段505中。为了通过透镜503和507去除试剂离子,透镜上没需加上DC偏压或RF电场。在去除了试剂离子之后,可通过例如有选择地释放具有不同质量/电荷比的产品离子来对产品离子进行分析。作为选择,产品离子可在离子阱中被进一步操控。
在这里所示的某些示例中,前、中、后段504、505和506一直是对应于捕获区域进行的描述,实际上它们并不需直接对应。例如,如上所述,一个在结构上被分成三区段的离子阱也可在结构上提供一个、两个或者是三个捕获区域,并且每一个捕获区域均包括离子阱的一个或多个区段。
图6示意性地展示了另一个实施例,其中可用振荡电势将正负离子同时沿径向和轴向限定在分段的多极离子阱600中。该多极离子阱600包括一前段610、一中段620和一个后段630,它们绕一轴线601形成一通道。每一个区段610、620和630均包括一多极杆状组件,如一个包括有两对对置杆状电极的四极杆状组件。作为选择,该杆状组件可以是包括有三、四或更多对对置杆状电极的六极、八极或者更多极的组件。在每一个区段610、620和630中,图6均示意性地展示了一对对置的杆状电极,即,前段610中的杆状电极612和614、中段620中的杆状电极622和624以及后段630中的杆状电极632和634。
在中段620中,对置的杆状电极622和624接收同相的RF电压V1从而与中段620中的其它杆状电极一起产生一振荡多极电势如四极电势。所产生的振荡多极电势在径向限定离子使其靠近轴线601,这里的多极电势形成基本为零的电场。
在前段610,对置的杆状电极612和614接收与中段620中杆状电极622和624相同的RF电压从而与前段610中的其它杆状电极一起产生一振荡多极电势,该电势在径向限定离子使其靠近轴线601。除了RF电压V1之外,杆状电极612和614还接收另外一个基本与对置杆状电极612和614中电压V1反相的RF电压V2。由此,该杆状电极612和614还会在前段610中产生一个振荡双极电势。该双极电势在前段610的至少一部分轴线601中会形成一个基本为非零的电场。这样,该振荡双极电势就在轴向上对中段620中捕获的正离子和负离子形成限定。前段610中其它的对置杆状电极也能产生振荡双极电势。对于前段610中不同的对置杆来说,双极电势可具有相同或不同的振荡频率,并且对于相同的频率来说,彼此之间也可同相或不同相。
在后段630中,对置的杆状电极632和634接收的RF电压与前段610中对置杆612和614的相同。由此,后段630中的对置杆632和634也会产生一个振荡的多极电势从而在径向限定离子使其靠近轴线601,以及一个振荡双极电势,其在轴向将离子限定在中段620中。由于该振荡电势能同时限定正离子和负离子,因此离子阱600在操作上可用来在中段620中诱导出离子-离子之间的相互作用以及所对应的分裂。
图7示意性地展示了另一个实施例,其中正负离子均能在径向和轴向被振荡电势限定在一分段的多极离子阱700中。该多极离子阱700包括一前透镜703、区段704-709以及后透镜710。每一个区段704-709均包括一个多极杆状组件,如四极或更高级数的多极电极组件从而将离子绕一轴702捕获或引导到一离子通道中。
该多极离子阱700在操作上能分别接收第一组离子和第二组离子,然后将它们限定在离子阱700的同一区段或相同的多个区段中从而诱导这两组离子相互作用。例如,第一组离子可包括前体离子,而第二组离子则包括试剂离子。第一组离子可通过前透镜703接收进来并保存在区段705中,第二组可通过后透镜705接收进来并保存在区段708中。
通过区段706和707中多极杆所产生的振荡电势可将第一组离子与第二组离子分开。例如,可在区段706和707中产生不同的振荡双极电势从而在轴向将离子分别限定在第一组和第二组中。由此,区段705中的离子可相对于区段708中的离子分开操控。例如,前体离子可在空间上与区段705中的第一组离子隔离开来,同时试剂离子也可在空间上与区段708中的第二组离子隔离开来。
区段706和707中的振荡电势可以调节从而使离子从区段705移到708,反之亦然。例如,除了双极电势之外,可在区段706和707中产生四极电势从而引导区段705和708之间的离子。通过前透镜703和后透镜710所产生的振荡电势或者是区段704和709中产生的双极电势就能将正负离子在轴向限定在离子阱700的两端附近。
在一实施方式中,在一分段的阱,如图7所示的离子阱700中,离子-离子反应出现在第一段中。一个较弱的赝势势垒会形成从而将前体离子和试剂离子从第二段分开,该第二段具有一个较低的轴线DC偏压电势。由于离子-离子之间的反应会在第一段中生成产品离子,因此某些产品离子可能会具有足够大的质量/电荷比以及热动能从而穿过这个较弱的赝势势垒并穿进第二段,在这里,这些离子经碰撞后缓冲并有可能会被捕获。由此,这些产品离子就从第一区段中去除并且不再曝露从而不会与试剂离子进一步发生反应。如此去除产品离子可以减少产品离子的中和以及由此所带来的损失。本发明的方法步骤可由一个或多个可编程的处理器来完成,这些处理器执行一计算机程序从而对输入数据进行操作并产生输出,由此实现本发明的功能。这些方法步骤以及本发明的装置也可由特定功能的逻辑电路如FPGA(field programmable gate array----可现场编程的门阵列)或ASIC(application-specific integrated circuit----特定用途集成电路)来实现。
适用执行一计算机程序的处理器例如包括通用功能以及专用的微处理器以及任易一种数字计算机中的任易一个或多个处理器。通常来讲,处理器会从一只读存储器或者是一随机存取器或者是两者接收指令。计算机的主要部件就是用来执行指令的处理器以及用来保存指令和数据的一个或多个存储器。通常来讲,一计算机还会包括或者是在操作上与一个或多个海量存储器如磁盘、磁致光盘或者是光盘相连从而从中接收数据,或者是将数据传送过去以便保存数据。适合嵌入计算机程序指令和数据的信息载体包括各种形式的非易失存储器,例如其包括半导体存储设备如EPROM、EEPROM以及闪存设备,磁盘如内部硬盘或者是不可拆硬盘,磁致光盘,以及CD-ROM和DVD-ROM盘等。处理器和存储器还可带有或集合在特定功能的逻辑电路中。
为了能与用户进行交互,本发明可在一计算机上实现,该计算机具有一显示设备如CRT(阴极射线管)或LCD(液晶显示器)监视器以便向用户显示信息,以及一键盘和一点取设备如鼠标或轨迹球,用户借此可向计算机提供输入。其它的设备也可用来与用户进行交互,如提供给用户的反馈可以是任何形式的可感知的反馈,如视觉反馈、听觉反馈或者是触觉反馈,用户的输入也可以任易的一种形式如声音的、语言的或者是触摸的形式被接收。
前面已描述了本发明的多个实施例。然而,可以看到在本发明的构思和范围之内还有许多的变化。例如,前述方法中的步骤可以以不同的顺序的进行,并且其仍能得到所需的结果。前述技术可应用于其它的离子阱或导上,如曲轴离子导,其形成一个弯曲的离子通道以便捕获或引导离子;平面RF离子导(平面多极阱)和RF柱状离子管。除了分段的离子阱之外,上述技术也可用多个分开的离子进来实现。
权利要求
1.一种用来捕获或引导离子的方法,其包括将离子引入到一个离子阱或离子导中,该离子阱或离子导包括一个第一组电极以及一个第二组电极,该第一组电极和第二组电极在布置上形成一个离子通道从而捕获或引导所引入的离子;将周期性变化的电压加到第一组电极中的电极上从而生成一个第一振荡电势,其至少在第一维方向上将离子限定在离子通道中;将周期性变化的电压加到第二组电极中的电极上从而生成一个第二振荡电势,其至少在第二维方向上将离子限定在离子通道中。
2.如权利要求1的方法,其中将周期性电压加到第一和第二组电极上能提供对离子的三维限定。
3.如权利要求1或2的方法,其中第一振荡电势的形成在径向上对离子进行限定。
4.如权利要求1的方法,其中第二振荡电势的形成在轴向上对离子进行限定。
5.如权利要求1的方法,其中第一和第二组电极包括多个部件,并至少有一个共用的部件。
6.如前述任一权利要求的方法,其中离子的引入操作包括将正离子和负离子引入到离子阱中或离子导中。
7.如权利要求7的方法,其中离子阱或离子导包括一个第一端和一个第二端,并且正负离子分别在第一端和第二端引入。
8.如权利要求7的方法,其中的离子阱或离子导包括两个或多个区段,本方法进一步包括将一个或多个DC偏压加到离子阱或离子导的一个或多个区段上从而将正离子或负离子限定在这一个或多个区段中。
9.如前述任一权利要求的方法,其中将周期性电压加到第一组电极中的电极上的操作包括加上具有第一频率的周期性电压;并且将周期性电压加到第二组电极中的电极上的操作包括加上具有第二频率的周期性电压,其中的第二频率不同于第一频率。
10.如权利要求9的方法,其中第一频率和第二频率的之比大约是一个整数,或者是一个整数比。
11.如权利要求10的方法,其中第一和第二频率之比大约为二。
12.如权利要求9的方法,其中加到第一和第二组电极上的电压彼此之间不同相。
13.如前述任一权利要求的方法,其中第一和第二振荡电势具有不同的空间分布。
14.如权利要求13的方法,其中的离子通道具有一轴,并且第一振荡电势在离子通道的至少一部分轴上形成基本为零的电场,并且第二振荡电势在离子通道的同一部分轴上形成基本非零的电场。
15.如权利要求13的方法,其中第一振荡电势包括一个振荡的四极、六极或者是更多极的电势。
16.如权利要求13的方法,其中第二振荡电势包括一个振荡的二极电势。
17.如前述任一权利要求的方法,其中第一和第二振荡电势为所引入的每一个特定质量和电荷的离子形成一个赝势,由此所形成的每一个赝势就沿着离子通道均确定一个对应的势垒。
18.如权利要求1的方法,其中第一组电极包括多个杆状电极。
19.如权利要求1的方法,其中第二组电极包括多个杆状电极。
20.如权利要求1的方法,其中第二组电极包括一个或多个板状离子透镜电极。
21.如权利要求20的方法,其中第二组电极在离子通道的第一端包括一个第一板状离子透镜电极,并在离子通道的第二端包括一个第二板状离子透镜电极。
22.一种装置,其包括一个第一组电极以及一个第二组电极,该第一组电极和第二组电极在布置上形成一个离子通道从而捕获或引导离子;以及一个控制器,该控制器在结构上将周期性变化的电压加到第一组和第二组电极中的电极上从而生成一个第一振荡电势和一个第二振荡电势,其中第一和第二振荡电势具有不同的空间分布,并分别沿径向和轴向将离子限定在离子通道中。
23.如权利要求22的装置,其中的控制器在结构上将周期性的电压加到该组电极上从而同时沿径向和轴向将正负离子限定在离子通道中。
24.如权利要求22的装置,其中的控制器在结构上能将周期性电压加到具有第一频率的第一组电极中的电极上;以及将周期性电压加到具有第二频率的第二组电极中的电极上,其中的第二频率不同于第一频率。
25.如权利要求24的装置,其中第一频率和第二频率的之比大约是一个整数,或者是一个整数比。
26.如权利要求22的装置,其中第一组电极包括多个杆状电极。
27.如权利要求22的装置,其中第二组电极包括多个杆状电极,其形成第二部分离子通道。
28.如权利要求22的装置,其中第二组电极包括一个或多个板状离子透镜电极。
29.如权利要求28的装置,其中第二组电极在离子通道的第一端包括一个第一板状离子透镜电极,并在离子通道的第二端包括一个第二板状离子透镜电极。
30.一种装置,其包括一个具有多个电极的二维离子阱或离子导;一控制器,其在结构上将电压加到多个电极中的一些电极上从而将离子阱或离子导分成多个捕获区域,每一个捕获区域在空间上均分隔出一组离子;该控制器在结构上进一步将电压加到多个电极中的一些电极上或者是从多个电极中的一些电极去掉电压,从而使不同捕获区域中的离子相互作用。
31.如权利要求29的装置,其中这些离子组至少包括在一个捕获区域具有第一极性的离子以及在另一捕获区域具有第二极性的离子。
32.如权利要求30的装置,其中控制器在结构上进一步有助于对一个捕获区域中的离子进行操控使之与另一个捕获区域中的离子分开。
33.一种用来操作一个具有多个电极的二维离子阱或离子导的方法,该方法包括将电压加到多个电极中的一些电极上从而将离子阱分成多个捕获区域,每一个捕获区域在空间上均分隔出一组离子;将第一组离子引入离子阱或离子导的一区段;将第二组离子引入离子阱或离子导的另一区段;将电压从多个电极中的上述一些电极上去掉从而诱导第一和第二组离子相互作用。
34.如权利要求33的方法,其中第一组离子包括前体离子,并且第二组离子包括试剂离子。
35.一种用来操作一个具有多个电极的二维离子阱或离子导的方法,该方法包括将第一组离子引入离子阱或离子导;将第二组离子引入离子阱或离子导;将电压加到多个电极中的一些电极上从而将离子分成多个捕获区域,每一个捕获区域在空间上均分隔出一组离子;将第一组离子与第二组离子分开操作。
36.一种用来操作一个具有多个电极的离子阱或离子导以及提供至少两个捕获区域的方法,该方法包括将电压加到多个电极中的一些电极上以针对每一个特定的质量和电荷形成/建立一个赝势势垒;将两组离子引入离子阱或离子导,所述离子组包含前体离子及试剂离子;使两组离子能够相互作用以至少在两个捕获区域中的至少第一捕获区域内产生产品离子;所述赝势势垒的选择可使产品离子的一个部份具有足够的动能从而能穿过至少两个捕获区域中第一与第二个捕获区域之间相关的赝势势垒;因此使得所述产品离子具有足够的动能,因此不再与试剂离子产生反应。
全文摘要
本发明公开了一种用来捕获或引导离子的方法和装置。离子引入到一个离子阱或离子导中。该离子阱或离子导包括一个第一组电极以及一个第二组电极。第一组电极和第二组电极在布置上应形成一个离子通道从而捕获或引导所引入的离子。将周期性变化的电压加到第一组电极中的电极上从而生成一个第一振荡电势,其沿径向将离子限定在离子通道中,以及将周期性变化的电压加到第二组电极中的电极上从而生成一个第二振荡电势,其沿轴向将离子限定在离子通道中。
文档编号H01J49/42GK1910727SQ200580003053
公开日2007年2月7日 申请日期2005年1月21日 优先权日2004年1月23日
发明者约翰·E·p·西卡 申请人:塞莫费尼根股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1