照明模组及其应用的制作方法

文档序号:12708064阅读:206来源:国知局
照明模组及其应用的制作方法与工艺

本发明涉及照明领域,更进一步,涉及一照明模组及其应用,其提供预定需求的照明。



背景技术:

光在人们生产生活中扮演着重要的角色,不同类型的光产生不同的作用,不同应用场景对于光线的需求不同。

以摄像模组为例,各种摄像模组的拍摄过程就是借助光线在被摄物体上的反射来完成图像的采集,因此光线对于摄像模组的工作具有至关重要的作用。比如,人们在日常拍照的过程中,适宜的光线有助于拍摄效果优异的照片。除了自然光之外,摄像模组通常需要配置补光部件,以使得摄像模组在不同的环境中都可以获得较好的光线补充。或者提供投射模组,用来投射光线而被摄像模组而捕获。

现有的摄像模组补光方式中,通常采用LED(Light Emitting Diode,发光二极管)灯来进行补光照明。LED灯在一定程度上可以提供摄像模组需要的拍摄光线,可是同时存在一些不利因素。

首先,基于LED灯的发光原理以及部件的基本结构的限制,LED灯的出射光线通常具有较大的发散角,这使得照射区域面积较大,远超出了需要照射的区域面积,而且单个LED灯的照射面通常是圆形,而当需求的面积非圆形时,剩余部分的光线就成为一种浪费。因此LED照射对于光能的有效利用率较低,造成资源的浪费。

其次,同样是基于LED灯的发光原理,LED灯出射光场的形状通常是圆角发散,而对于预定形状的光场的要求就很难达到。当然通过几个LED特殊阵列的组合,可以使得出射广场在整体效果上趋近预定的形状,可是过程相对复杂,需要考虑的协调因素较多,而且在细节区域仍旧表现的是LED灯的出射光场的形状特征,这些都使得LED灯的对于预定形状的出射广场要求难以达到,因此对于一些特殊应用难以达到,比如,虹膜识别。

此外,由于摄像模组的光学特性,传感器成像区域不同部分接收到的光强不同,通常边缘区域接收的光强比中心区域小,因此会造成拍摄图像的中心区域和边缘区域的亮度不均一的现象(shading,阴影现象),这就需要设计特殊光场强度分布的补光,而对于普通的LED灯对于光强分布的控制却不易达到。

还值得一提的是,虹膜识别是现代智能影像技术发展应用的一个重要方向,而补光照明在其中具有不可或缺的作用。而现有补光方式中,仍旧是采用LED发光元件来完成补光,不能很好地满足虹膜摄像模组的补光要求。



技术实现要素:

本发明的一个目的在于提供一照明模组及其应用,其通过自由度的设计,设计预定形状的光场分布,从而可以配合不同的应用环境的光场要求。

本发明的另一个目的在于提供一照明模组及其应用,其通过自由度的设计,设计方锥形状的光场分布,配和方形光场需求,提高光源利用率。

本发明的另一个目的在于提供一照明模组及其应用,其通过自由度的设计,设计预定要求的光场强度分布,从而可以配合不同强度分布的光场,形成预定强度分布。

本发明的另一个目的在于提供一照明模组及其应用,其通过自由度的设计,设计预定要求的光场强度分布,从而可以补偿不同强度分布的光场,产生均匀光强分布。

本发明的另一个目的在于提供一照明模组及其应用,其通过自由度的设计,将出射光场分布的边缘增强,补偿摄像模组拍摄时亮度不均匀的特性。

本发明的另一个目的在于提供一照明模组及其应用,其选用VCSEL作为发光光源,光电转换效率高,阈值小,响应速度快,出射光线均匀。

本发明的另一个目的在于提供一照明模组及其应用,其改进一线路板的散热性能,从而使得所述照明模组稳定工作,减少发热。

本发明的另一个目的在于提供一照明模组及其应用,其适于拍摄模组或TOF(Time of Flight)模组照明,另外还可以应用于虹膜识别中,提供虹膜识别所需红外照明光源。

本发明的另一个目的在于提供一照明模组及其应用,其通过回流焊工艺制造,节省工序工时。

本发明的另一个目的在于提供一照明模组及其应用,其通过模组化设计,使得所述照明模组具有较小的体积,适用范围更广。

为了实现以上发明目的,本发明的一个方面提供一照明模组,其包括:

一光源组件;和

一光学元件;其中所述光学元件具有预设的自由度,被设置于所述光源组件前侧,使得所述光源组件产生的光线经过所述光学元件作用后形成预定形状光场分布。

根据本发明的一实施例,所述照明模组中的所述光源组件产生的光线经过所述光源组件作用后,形成的所述预定形状光场分布为一方锥形光场分布。

根据本发明的一实施例,所述照明模组中的所述光源组件产生的光线经过所述光源组件作用后,形成一方形的投射面。

根据本发明的一实施例,所述照明模组中的所述光源组件产生的光线经过所述光学元件作用后,形成一预定的光场强度分布。

根据本发明的一实施例,所述照明模组中的所述预定的光场强度分布为边缘增强的光场强度分布。

根据本发明的一实施例,所述照明模组中的所述光学元件是一衍射光学元件。

根据本发明的一实施例,所述照明模组中的所述光学元具有至少一台阶,浮雕状地被设置于所述光学元件表面。

根据本发明的一实施例,所述照明模组中的所述光学元件的预设的自由度选自组合中的一个或多个:台阶位置、台阶宽度、台阶深度、台阶形状、台阶数量。

根据本发明的一实施例,所述照明模组中的所述光学元件由可回流焊材料制成。

根据本发明的一实施例,所述照明模组中的所述光源组件包括一线路板和一发光元件,所述发光元件设置于所述线路板上,位于所述光学元件后侧。

根据本发明的一实施例,所述照明模组中的所述发光元件为一VCSEL。

根据本发明的一实施例,所述照明模组中的所述VCSEL产生红外光。

根据本发明的一实施例,所述照明模组中的所述线路板由铝基板或氮化铝基板制成。

根据本发明的一实施例,所述照明模组包括一支架,被连接于所述线路板,所述光学元件被安装于所述支架,以使得所述光学元件位于所述发光元件前侧。

根据本发明的一实施例,所述照明模组中的所述线路板、所述支架以及所述光学元件形成一密封的内空间,形成模组化的结构。

根据本发明的一实施例,所述照明模组中的所述支架由可回流焊材料制成。

根据本发明的一实施例,所述照明模组由回流焊工艺制成。

根据本发明的另一个方面,提供一虹膜识别补光组件,其配合一虹膜摄像模组,投射时形成一虹膜识别区,所述虹膜识别组件具有预设的自由度,适于投射形成与所述虹膜识别区一致的一补光区。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述补光于覆盖所述虹膜识别区,且面积大于所述虹膜识别区。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述补光区为方形。

根据本发明的另一实施例,所述虹膜识别补光组件包括一光源组件和一光学元件,其中所述光学元件具有所述预设的自由度,被设置于所述光源组件前侧,使得所述光源组件产生的光线经过所述光学元件作用后投射形成方形的所述补光区。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述光源组件产生的光线经过所述光学元件作用后,形成一预定的光场强度分布。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述预定的光场强度分布为边缘增强的光场强度分布。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述光学元件是一衍射光学元件。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述光学元具有至少一台阶,浮雕状地被设置于所述光学元件表面。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述光学元件的预设的自由度选自组合中的一个或多个:台阶位置、台阶宽度、台阶深度、台阶形状、台阶数量。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述光学元件由可回流焊材料制成。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述光学元件包括一线路板和一发光元件,所述发光元件设置于所述线路板上,位于所述光学元件后侧。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述发光元件为一VCSEL。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述VCSEL产生红外光。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述线路板由铝基板或氮化铝基板制成。

根据本发明的另一实施例,所述虹膜识别补光组件包括一支架,被连接于所述线路板,所述光学元件被安装于所述支架,以使得所述光学元件位于所述发光元件前侧。

根据本发明的另一实施例,所述虹膜识别补光组件中的所述支架由可回流焊材料制成。

附图说明

图1是根据本发明的一个优选实施例的一照明模组立体示意图。

图2是根据本发明的一个优选实施例的所述照明模组的爆炸示意图。

图3是图1中沿A-A线的剖视示意图。

图4是根据本发明的上述优选实施例的所述照明模组的出射光场示意图。

图5是根据本发明的上述优选实施例的所述照明模组的出射光场投影示意图。

图6是根据本发明的上述优选实施例的所述照明模组的出射光场光强分布示意图。

图7是图1中B对应的放大示意图。

图8是根据本发明的上述优选实施例的所述照明模组的发光元件制作过程示意图。

图9A、9B、9C是根据本发明的上述优选实施例的所述照明模组的一应用示意图。

图10是根据本发明的上述优选实施例的所述照明模组的另一应用示意图。

具体实施方式

以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中 的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。

参照图1至图8是根据本发明的一优选实施例的一照明模组1,其可以应用于各种需要补光照明的环境,特别地,所述照明模组1可以提供预定形状光场分布以及预定光强以及预定光线类型的照明或产生投射光线,使得所述照明模组1可以替代现有的LED以及LD补光的方式,配合不同部件的工作,如,摄像模组、TOF模组。

参照图1至图3,根据本发明的上述优选实施例的所述照明模组1包括一光源组件10、一支架20和一光学元件30。

所述光源组件10用于产生光线,所述光学元件30被安装于所述支架20,所示支架20被设置于所述光源组件10上,以使得所述光学元件30位于所述光源组件10前侧。当所述光源组件10发出光线时,光线经过所述光学元件30的作用出射,以使得光线形成预定形状的出射光场分布。

值得一提的是,根据本发明的一实施例,所述光源组件10发出的光线经过所述光学元件30折射、反射、衍射等作用而出射,从而使得所述光源组件10发出的光线得以通过所述光学元件30的编辑作用再照射至预定区域,同时光线被编辑后形成预定形状的出射光场分布,区别于现有技术的LED灯的直接照射方式以及LED灯形成的光场。

根据本发明的上述优选实施例,所述支架20形成中通的支撑壳体结构,使得所述支架20支撑连接于所述光源组件10时,所述光学元件30位于所述光源组件10的前侧,所述光源组件10、所述支架20以及所述光学元件30内部形成密封的一内空间,从而使得所述光源组件10出射的光线别约束于所述照明模组1内,避免外界光线对所述光源组件1出射的光线的干扰。

更具体地,根据本发明的一实施例,所述光学元件30可以通过粘贴或焊接的方式被固定地连接于所述支架20。所述支架20以粘贴或焊接的方式被固定连接于所述光源组件10上,从而形成密封的所述内空间。

根据本发明的上述实施例,所述支架20采用可回流焊材料制成,从而使得所述照明模组在制造的过程中可以采用回流焊工艺,节省工序工时。举例地但不限于,采用回流焊工艺将所述支架连接于所述光源组件20、将所述光学元件30 连接于所述支架20。

根据本发明的上述实施例,所述光学元件30为一衍射光学元件(Diffractive Optical Element,DOE),所述衍射光学元件基于光衍射理论,利用计算机辅助设计、并用大规模集成电路制作工艺,在基片上(或传统光学器件表面)刻蚀产生两个或多个台阶深度的浮雕结构,是一种纯位相衍射光学元件。也就是说,由所述光源组件10出射的光线经过所述衍射光学元件的衍射作用,再出射至外部空间。根据本发明的上述实施例,所述光源组件10出射的光线经过所述衍射光学元件的作用出射至外部空间,并且在外部空间形成具有预定形状的光场分布。

如图4至图6所示,是根据本发明的上述优选实施例的所述照明模组形成的预定光场分布。所述光源组件10产生的光线经过所述光学元件30,即所述衍射光学元件的作用,形成一棱锥形状的光场分布100。在现有技术中,通常采用LED灯配合一摄像模组工作,产生所述摄像模组所需的补光照明,可是由LED灯产生的光线发散角较大,而且通常为圆形的光场分布,因此在工作的过程中产生光能资源的浪费,同时产生的多余的热量影响摄像模组的工作,而根据本发明的上述优选实施例,所述光源组件10产生的光线经过所述光学元件30,即所述衍射光学元件的衍射作用后,形成梯形方锥形状的光场分布,所述梯形方锥形状的光场分布具有较小的发散角,光能利用率高,特别适于需要方形照明区域的应用环境。

进一步,根据本发明的上述优选实施例,所述光源组件10经过所述光学元件30形成的所述光场分布100为梯形方锥光场分布,即梯形四棱锥光场分布。相应地,所述梯形方锥形状的光场分布100形成一方形的投射面200。也就是说,当所述照明模组1照射时,形成的照射区域为方形。值得一提的是,方锥形状的所述光场分布100以及方形的所述投射面200适于与所述摄像模组配合工作,提高光能的利用率,在所述摄像模组对应的拍摄区域形成方形的照射区域。

本领域的技术人员应当理解的是,所述光源组件10产生的光线经过所述光学元件10作用形成的所述方锥形状的光场分布,仅作为举例而不是本发明的限制,所述照明模组1可以根据需要设计形成不同预定形状的光场分布,如,圆锥形、三棱锥形、四棱锥、多边形棱锥或者非对称形状的光场分布等。

根据本发明的上述优选实施例,所述光学元件30具有预设自由度,从而形成预定形状的所述光场分布100。也就是说,通过对所述光学元件30自由度的 设计,使得所述光源组件10发出的光线经过所述光学元件30,即所述衍射光学元件的作用出射后,形成预定形状的所述光场分布100。

对于不同的应用的环境,可能对于光场分布的形状要求不同,相应地,不同的应用环境,也可能对不同的光场强度分布要其不同,也就是说,一方面可能要求形成预定形状的投射面,另一方面,要求投射面上的具有预定的亮度分布。以摄像模组为例,在拍摄的过程中,通常由于自身的光学性能限制,在拍摄的图像上出现中心区域亮而边缘区域逐渐变暗的shading(阴影)现象,影响图像的均匀性。对于这种现象就需要相应的光照来弥补摄像模组在拍摄过程中形成的shading现象。

根据本发明的上述优选实施例,所述光学元件30具有所述预设自由度,从而形成预定强度的光场强度分布。也就是说,通过对所述光学元件30的自由度的设计,使得所述光源组件10发出的光线经过所述光学元件30,即所述衍射光学元件的作用出射后,形成的预定形状的所述光场分布100,同时所述光场分布的强度分布预定,即达到预定强度、预定形状的所述光场分布100。更具体地,参照图6,根据本发明的一实施例,通过所述光学元件30的自由度的设计,使得所述光源组件10产生的光线经过所述光学元件30的作用出射后,形成边缘增强的强度分布,适于补偿一摄像模组在拍摄过程中形成的中心亮而边缘暗的shading现象,使得所述摄像模组拍摄的图像具有更好的均匀性。

值得一提的是,通过对所述光学元件30的自由度的设计,使得所述光源组件10产生的光线经过所述光学元件30的作用出射后形成预定形状以及预定强度分布的光场,因此,在本发明的一实施例中,可以通过所述光学元件30的自由度的设计,形成一强度均匀分布的光场,特别适于应用于需要提供均匀光场的环境。

本领域的技术人员应当理解的是,所述光学元件30形成的边缘增强的光场强度分布,仅作为举例而不是限制,通过所述光学元件30的自由度的设计可以形成不同强度分布的光场分布,从而满足不同应用环境的亮度需求,不限于边缘增强。

如图7至图8所示,是根据本发明的一实施例的所述光学元件30的示意图。根据本发明的一实施例,所述光学元件30具有至少一台阶31,浮雕状地被设置于所述光学元件30的表面,形成浮雕结构的所述衍射光学元件。所述衍射光学 元件30具有多个所述自由度,所述自由度可以是以下自由度的一个或多个:举例地但不限于,台阶位置、台阶宽度、台阶深度、台阶形状以及台阶数量等。通过对多个所述自由度的设计,从而使得所述光源组件10产生的光线经过所述光学元件30的作用出射后,形成预定形状的光场分布和/或预定强度的光场分布。更具体地,参照图8,所述光学元件30可以通过对一基板进行掩膜、曝光、显影、刻蚀等步骤形成预定形状的所述衍射光学元件。也就是说,通过设计所述光学元件30的所述多个自由度,举例地但不限于,所述光学元件30的所述台阶31的台阶位置、台阶宽度、台阶深度、台阶形状,台阶数量等,形成预定形状的所述衍射光学元件,使得所述光源组件10的发出的光线经过所述衍射光学元件作用后出射,形成预定形状的光场分布以及预定强度的光场分布,举例地但不限于,边缘增强的方锥形光场分布,从而使得所述光场分布100与应用环境的配合更紧密,提高光能利用率。举例地但不限于,边缘增强的方锥形光场分布和摄像模组配合。

根据本发明的一实施例,所述光学元件30采用可回流焊材料制成,使得所述光学元件30与所述支架20的连接过程可以采用回流焊工艺完成。

进一步,根据本发明的上述优选实施例,所述光源组件10包括一线路板11和一发光元件12,所述发光元件12被设置于所述线路板11上,所述支架20被连接于所述线路板11,从而使得所述光学元件30位于所述发光元件12前侧。所述光学元件12位于所述支架20、所述线路板11和所述光学元件30形成的所述内空间,从而使得所述光学元件30位于所述发光元件12的前侧。也就是说,所述发光元件12产生的光线经过所述光学元件30的作用后出射至外部空间。

根据本发明的上述优选实施例,所述发光元件12为一VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔面发射激光器)。相比传统的LED以及LD(Laser Diode激光二极管),所述VCSEL具有较小的发散角和圆形对称的远、近场分布,同时所述VCSEL具有较高的光电转换效率、较小的阈值以及相应速度快等特性。由于所述VCSEL具有较小的发散角,因此,可以配合所述光学元件30的自由度设计,使得所述照明模组1的出射光场的发散角较小,照明光线更加集中,出射光场光斑均匀分布。

值得一提的是,所述VCSEL为面型阵列发光元件,从而使得所述照明模组1的体积较小。所述光源组件10、所述支架20和所述光学元件30形成模组的照 明组件,从而使得所述照明模组1方便地应用于不同的部件以及不同的场景,举例地但不限于,摄像模组、TOF模组。同时可以根据不同的部件的需求设计所述照明模组1的出射光场形状和强度分布。

值得一提的是,所述支架20连接于所述线路板11,所述光学元件30安装于所述支架20,从而形成密封的所述内空间,使得所述发光元件12被密封于所述内空间内,与外部环境隔离,防止外界光线的干扰,同时阻挡外界灰尘进入所述照明模组内,因此使得所述照明模组实现模组化的设计。同时所述发光元件采用的VCSEL为面型阵列发光形式,使得所述照明模组1得以实现小尺寸的模组化设计,具有更广泛的应用场景,适应电子产品小型化的发展方向。

根据本发明的一优选实施例,所述线路板11为铝基板或氮化铝基板形成的线路板,也就是说,在铝基板或氮化铝基板上刻印电路,从而形成所述线路板11,使得所述线路板11具有良好的散热性能,使得所述VCSEL产生的光能以稳定功率输出。

值得一提的是,所述发光元件12,即所述VCSEL可以根据需求设定为不同出射波长的光线,从而满足不同环境的需求,举例地但不限于,所述VCSEL出射红外光,从而使得所述照明模组1产生红外光照射,以应用于需要红外光照射的环境,举例地但不限于,虹膜识别。也就是说,所述发光元件12产生红外光,可以配合应用于虹膜识别的环境。

本领域的技术人员应当理解的是,所述光源组件10的所述发光元件12选取为VCSEL,仅作为举例,并不是限制,所述光源组件12可以是其他能够发光或者产生的光线的元件,比如,LED,LD,且所述光源组件12发出的光线,经过所述光学元件30的衍射作用后出射,形成预定形状和/或预定强度的光场分布。

如图9A,9B,9C所示,是根据本发明的上述优选实施例的所述照明模组1应用于一虹膜识别系统的应用示意图。所述虹膜识别系统包括一虹膜摄像模组1000和一补光组件2000,所述补光组件2000配合所述虹膜识别摄像模组1000设置。所述虹膜摄像模组1000通过对用户的虹膜区域进行取景拍摄来获取用户的虹膜特征。由于所述虹膜摄像膜组1000在获取用户的虹膜信息时,采用红外光黑白拍摄,而用户所处的普通环境可能没有足够的红外光源支撑取景拍摄的条件,因此通过设置所述补光组件2000,在所述虹膜摄像模组1000采集用户虹膜特征的过程中,为所述虹膜摄像模组1000提供红外光补充光源。

值得一提的是,所述补光组件2000为所述照明模组1,也就是说,所述照明模组1为所述虹膜摄像模组1000提供红外光补充光源。参照图9B,所述虹膜摄像模组1000的水平视场角为用户的双眼长度方向,垂直视场角为用户双眼宽度方向,因此所述摄像模组1000形成一方形的虹膜识别区1001,从而可以保证完成的采集到用户的眼部的虹膜特征信息。所述补光组件2000,即所述照明模组1,为所述虹膜摄像模组1000提供一补光区2001,以便于为所述虹膜识别区1001提供红外补充光源。

值得一提的是,由于所述照明模组1设计有充分的自由度,可以实现不同需要的出射光场分布,因此,所述照明模组1在于所述虹膜摄像模组1000配合时,可以根据所述虹膜摄像模组1000需要的光场分布设计所述照明模组的所述自由度,使得所述照明模组与所述虹膜摄像模组1000平行放置时,光场分布投射向所述虹膜识别区1001,不同于现有技术的虹膜识别中采用LED补光时的布局。也就是说,所述照明模组1与所述摄像模组平行布置配合补光时,可以通过对所述照明模组1的所述自由度的设计,使得所述照明模组1的光场分布为倾斜非对称的形状。

根据本发明的上述优选实施例,所述补光组件2000,即所述照明模组1,形成预定的光场分布,光线达到照射区域时,形成方形的投射区。为了配合所述虹膜摄像模组1000的所述虹膜识别区1001,通过设计所述照明模组的所述光学元件30的自由度以及所述照明模组1与所述虹膜摄像模组1000的相对距离以及角度关系,使得所述照明模组1的形成的所述补光区2001与所述虹膜摄像模组1形成的所述虹膜识别区1001形状一致,且所述补光区2001完全覆盖所述虹膜识别区1001,为所述虹膜摄像模组1采集用户虹膜特征信息的过程提供充足的红外光源。

值得一提的是,通过对所述照明模组1的所述光学元件30的多个所述自由度的设计,举例地但不限于,台阶位置、台阶宽度、台阶深度、台阶形状,台阶数量等,使得所述照明模组1在投射时形成与所述虹膜摄像模组1000的所述虹膜识别区1001相配合的所述补光区2001。所述补光区2001布局形状与所述虹膜识别区1001一致,且完全覆盖所述虹膜识别区1001,从而充分利用所述照明模组1发出的光线,为所述虹膜摄像模组1000提供充足的补光光源,提高光源利用率。

本领域的技术人员应当理解的是,所述虹膜摄像模组1000形成所述方形的虹膜识别区1001以及所述照明模组1形成方形的所述补光区2001,仅作为举例而不是限制,当所述虹膜摄像模组1000需要的虹膜识别区1001的形状改变时,与相对应的照明模组1可以根据需求设计出射光场分布,从而形成所需形状的所述补光区2001。

值得一提的是,所述虹膜摄像模组1000采集用户的虹膜特征的识别质量对于虹膜识别过程中的数据处理过程的运算速度和逻辑复杂程度具有重要的影响,而所述补光组件2000的补充光源的就是影响所述摄像模组1000拍摄质量的重要因素之一。选取本发明的实施例的所述照明模组1为所述虹膜摄像模组1000提供红外补充光源,所述照明模组形成与所述虹膜摄像模组1虹膜识别区域一致的所述补光区2001,从而可以为所述虹膜摄像模组1000提供充足的红外光补充光源,完全覆盖所述虹膜识别区域1001,同时减少多余的光源的浪费,因此,所述照明模组1有助于所述虹膜摄像模组1000获取清晰的虹膜信息,有助于提高所述虹膜识别过程中的数据处理过程的运算速度和逻辑复杂程度,提高虹膜识别效率,因此,所述照明模组1适于应用于虹膜识别过程。

还值得一提的是,在图9A示意的应用方式中,所述照明模组1平行于所述虹膜摄像模组1000而放置,这种方式,使得照明模组更易于被安装使用。而在图9C示意的应用方式中,所述照明模组1与所述虹膜摄像模组1000呈预定角度地倾斜设置。也就是说,对于照明模组不同安装方式或者方向,所述照明模组1都可以提供所述虹膜摄像模组1000所需的预定光场分布。本领域的技术人员应当理解的是,所述照明模组1的安装方式或者方向并不是本发明应用的限制,由于可以通过设计所述照明模组1的自由度等参数来设计光分布,因此对于不同安装方式或方向都可以结合自由度来提供需要的预定光场分布,从而可以提供适宜于不同安装方式或方向的照明模组产生预定光场分布,举例地但不限于,与所述虹膜摄像模组1000呈预定角度地倾斜设置。

如图10所示,是根据本发明的上述优选实施例的所述照明模组1配合应用于一摄像模组2。所述照明模组1与所述摄像模组2被并列设置,为所述摄像模组2提供照明光源。

值得一提的是,所述摄像模组1通常拍摄区域是方形的区域,因此需要照明的目标区域也是方形区域,而所述照明模组1形成的预定形状的光场分布与所述 摄像模组1需要的拍摄目标区域相一致,从而充分利用光源。

还值得一提的是,所述摄像模组1由于自身的光学特性限制,在拍摄时,图像上形成中心较亮而边缘较暗的shading现象,而所述照明模组1通过多个所述自由度的设计,举例地但不限于,台阶位置、台阶宽度、台阶深度、台阶形状,台阶数量等,使得光场强度分布边缘增强,相应地可以补偿所述摄像模组1在拍摄图像时的shading现象,使得所述摄像模组1拍摄的图像具有更好的均匀性。

本领域的技术人员应当理解的是,图中所示所述照明模组1配合所述摄像模组2应用于手机设备,仅作为举例,不是本发明的限制,所示照明模组1配合所述摄像模组2应用于手机设备的应用方式还可以应用于其它各种设备,如,笔记本电脑、平板设备、数码相机、摄像头等不同的需要照明补光的设备。

值得一提的是,上述应用方式中,以手机摄像头和虹膜识别中的应用为例进行说明,本领域的技术人员应当理解的是,应用场景不是本发明的限制,在本发明的其他实施例中,还可以与不同产品相配合,提供预定要求的补光,如,TOF(Time of Flight,飞行时间)模组。

本领域的技术人员应当理解的是,所述照明模组配合所述摄像模组1以及所述虹膜摄像模组1000仅作为举例,而不是限制,所述照明模组1不限于配合其它部件的工作,还可以作为独立的照明部件,提供照明环境。

本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1