用于制造电子源和成像设备的设备的制作方法

文档序号:2962090阅读:123来源:国知局
专利名称:用于制造电子源和成像设备的设备的制作方法
技术领域
本发明涉及一种用于制造电子源和一种成像设备的设备。
已知有热电子发射型及冷阴极电子发射型的两类电子妈射装置。其中,冷阴极发射型装置指包括场致发射型(下文称为FE型)装置,金属/绝缘层/金属型(下文称为MIN型)装置和表面传导电子发射装置。FE型装置的实例包括由W.P.Dyke和W.W.Dolan在《电子物理学进展》第8卷(1956年)第89期的“场致发射”一文中提出的装置和由C.A.Spindt在《应用物理杂志》第47卷(1976年)第5284期的“具有钼锥体的薄膜场致发射的物理性质”一文中所提出的装置。
MIN型装置的实例业已在《应用物理杂志》第32卷(1961年)第646期上C.A.Mead所作“隧道发射放大器”的论文中公开。
表面传导电子发射装置的实例包括由M.I.Elinson在《无线电工程·电子物理学》第10卷(1965年)中所提出的一种装置。
表面传导电子发射装置是利用当电流受迫平行于薄膜表面流动时,电子会由在一衬底上构成的一小片薄膜上发射出的现象而制得的。Elinson提出在这种类型装置中使用二氧化锡薄膜,而Dittmer则在《固体薄膜》第9卷(1972年)第317期的一文中提出使用金薄膜,另一方面,M.Hartwell与C.G.Fonstad在《IEEE汇刊·电子装置会议》第519期(1975年)中,H.Araki et al.在《真空》第26卷(1983年)第1期第22页的中则分别讨论了使用In2O3/SnO2薄膜和碳薄膜的情况。
附图34示意性地说明了由M.Hartwell提出的一种典型的表面传导电子发射装置。在图26中,参考数号1代表一衬底。参考数号4代表一电子导电薄膜,该薄膜通常是用溅射的方式制成一种“H”形的金属氧化膜而制备出的,当该薄膜受电子激励过程影响时,薄膜的一部分最终成为一电子发射区域5,在下文的描述中,上述电子激励过程称为“激励成形”。在图26中,使上述装置的一对电极分离的金属氧化膜的薄的水平的区,它的长度L是0.5至1mm,而宽度W是0.1mm。
但是应注意,表面传导电子发射装置不必非有在一简单操作中制造的“H”形薄膜不可。也可将一对电极象“H”的支柱一样彼此平行地排列在第一位置上,然后构制一导电薄膜以连接上述电极。薄膜的材料与厚度可不同于电极的材料与厚度。
通常,一个电子发射区域5在一表面传导电子发射装置中是通过使装置的导电薄膜4受到电激励的初始过程的影响而产生的,上述过程称为“激励成形”。在激励成形过程中,将一恒定直流电压或以典型的1伏/分的速度上升的一种缓慢上升直流电压施加到导电薄膜4已知的相对两端上,以使薄膜部分地毁坏,形变或变形,从而产生一电子发射区域5,该区域电阻较高。这样,电子发射区域5就成为导电薄膜4的一部分,该部分中通常包括一个或若干个间隙,使得电子能够从间隙中发射出去。注意,一旦表面传导电子发射装置处于一激励成形过程中时,则每当有一适宜的电压加在导电薄膜4上而使一股电流通过发射装置时,上述表面传导电子发射装置就会从它的电子发射区域5处发射电子。
由于表面传导电子发射装置具有一种特别简单的结构并且能够以一种简单的方式制造,所以可将大量的这种装置在一较大的区域内毫不困难地进行有利的排列。实际上,业已做了大量研究以充分发掘表面传导电子发射装置的这一优点。例如,业已提出了包括一种自发射型扁浅成像设备在内的各种成像设备。
在包括大量表面传导电子发射装置的电子源的典型实例中,可如

图14所示,将上述装置排列成平行的行,并将每行装置的正、负极分别连接到共同的导线上(阶梯结构),或是如图10所示,构制一导线矩阵,并将上述装置连接到各自的导线上。
为了使包括许多电子发射装置的成像设备能够稳定地提供清晰、明亮的图像,就要求电子发射装置能够一致地且有效地工作以发射电子。表面传导电子发射装置的效率是由当将某一确定的电压加在装置的电极上时,流经该装置成对的电极间的电流(下文称为“装置电流”)与发射到成像设备真空中的电子所产生的电流(下文称为“电子发射电流”)的比值确定的。如果电子源的所有电子发射装置都能够在如一成像设备等的设备中一致且有效地工作以发射电子,且上述的成像设备包括一荧光体作为其成像件,则这种设备就可成为一种高清晰度成像设备或是一种电视机,这种电视机可以很扁,且其消耗的能量也减少了。这样,这种可节省能量的设备的驱动电路及其它部件也可以由较低的成本来制造。
通过深入细致的研究,本发明的发明者发现,如果象以上所述,在通过激励成形从而在电子发射设备中产生一电子发射区域之后,将某一电压在一种包含有机物质的气氛中加到一表面传导电子发射装置上,则从上述电子发射区域发射出的电子所形成的电流就会显著增加。这种操作称为“激活”。上述现象可归因于作为加压结果而形成的碳的激活的薄膜沉积层或是电子发射区域附近产生的碳化物。
当有一如图14或图10所示的电子源受到激活过程影响时,就会有一脉冲电压同时施加在同一行的所有装置上或是在一个接一个的基础上顺次施加在同一行的装置上,从而在每个装置上形成一种激活物质的薄膜沉积层。
但是,使用上述的激活技术时,是在给定的条件下施加预定一段时间的脉冲电压,于是电子发射装置会表现出不同的激活程度,这可能是一些差异的作用,如导电薄膜的薄膜厚度的偏差一类的装置的制造条件的细微差异,以及取决于装置相对位置的制造环境中的有机物质分压的差异等。于是,最后的结果就会是电子源的装置不能一致地工作并使成像设备的亮度分布也表现为显著的不均匀。虽然这些问题可通过在激励装置时校正每个装置的工作条件而一定程度上得到解决,但是这种校正措施将需要大量的记忆装置,以为每个装置存储校正信息,结果,包括大量电子发射装置的成像设备就不可避免地变得很大并且很昂贵。
另外,激活薄膜沉积层会形成在电子发射装置不需要的区域上并在激活过程中电连接正、负极。这样就会有一股不利于电子发射的电流(漏泄电流)在电极之间流动从而降低了电子发射的效率并加大了装置的功率消耗率。于是,电子发射装置就可能在电子源内部产生热,而不得不为电子源设置一散热装置,以排放内部聚集的热量,因而又需要有一功率消耗驱动电路。总之,上述这些以及其它消极因素会严重地限制成像设备的设计。尽管这些因素可通过在漏泄电流通路显著增大之前完成激活过程,以及执行一额外的稳定操作以消除可能的漏泄电流通路而避免其出现,但是必须在处理电子发射装置而使得存在一足够大的电子发射电流Ie之前中止激活过程。
鉴于上述的技术问题,本发明的一个目的是提供一种制造电子源的设备,所说电子源能以较低的耗电率一致地工作以发射电子,同时提供一种具有这种电子源的成像设备。
根据本发明的一个方面,提供了制造一种电子发射装置的方法,所说的电子发射装置具有一对装置电极和包括有一电子发射区的导电薄膜,该薄膜布置在上述电极之间,上述方法的特征在于它包括一个增大相应装置的发射电流的激活过程,所说的激活过程包括步骤a)在初始条件下向具有一间隙段的导电薄膜施加一电压(Vact),b)探测所说导电薄膜的电性能和c)如果需要的话,改变所说的初始条件,该条件为所探测的导电薄膜的电性能的函数。
根据本发明的另一个方面,提供了在一电子发射装置上执行一激活过程的一种设备,所说的电子发射装置具有一对装置电极和一个包括有电子发射区域的导电薄膜,该导电薄膜布置于上述电极之间以增大装置的发射电流,上述设备的特征在于它包括a)用于在初始条件下向具有一间隙段的导电薄膜施加一电压(Vact)的装置,b)用于探测所说导电薄膜的电性能的装置和c)用于在需要的情况下改变所说的初始条件的装置,该条件为所探测的导电薄膜的电性能的函数。
图1A为根据本发明的制造设备的一个框图,它表示出上述设备的一种可能有的构形。
图1B为根据本发明的制造设备的一个框图,它表示出上述设备的另一种可能有的构形。
图2为一流程图,它说明了根据本发明的一种制造方法。
图3A与3B是可应用本发明的一种表面传导电子发射装置的示意图。
图4是可应用本发明的另一种表面传导电子发射装置的示意图。
图5A到5C是可应用本发明的再一种表面传导电子发射装置的示意图,它们说明了制造上述装置的不同步骤。
图6A与6B是曲线圈,它们表示出可用于制造一表面传导电子发射装置的激励成形过程中脉冲电压的波形。
图7A与7B是曲线图,它们表示出可用于制造一表面传导电子发射装置的激活过程中脉冲电压的波形。
图8为一测量装置的框图,该测量装置用于测定一表面传导电子发射装置或一电子源的电子发射性能。
图9为一曲线图,它表示出一表面传导电子发射装置或一电子源的装置中,电压与装置电流之间的关系以及装置电压与发射电流之间的关系。
图10为一矩阵结构的电子源的示意性局部平面图。
图11为一示意性透视图,它表示出经切除一部分后的包括一矩阵结构的电子源的成像设备。
图12A与12B为示意图,它们表示出可用于本发明目的的发光薄膜的两种可能的构形。
图13为一可应用本发明的一成像设备的驱动电路的框图。
图14为一梯形结构的电子源的示意性平面图。
图15为一示意性透视图,它表示出经切除一部分后的包括一阶梯形结构的电子源的成像设备。
图16A为一根据本发明的制造设备的框图,它表示出上述设备又一种可能的构形。
图16B为一根据本发明的制造设备的框图,它表示出上述设备的又另一种可能的构形。
图17为一示意性平面图,它表示出可应用本发明的若干串联排列的表面传导电子发射装置。
图18A与18B为曲线图,它们表示出一脉冲电压的波形,该脉冲电压可用于根据本发明的一种制造设备激活过程中与一种制造方法上。
图19A至19H为一电子源的局部示意图,它们表示出可应用本发明的电子源的一种制造方法。
图20为一矩阵结构电子源的示意性平面图,它表示出传导一激励成形过程的线路布置。
图21为一装置的示意性框图,此装置用于在实例13中施加一激活脉冲电压。
图22为一示意图,用于说明实例13中的行选择器的操作。
图23为一时间图,用于说明脉冲产生与实例13中行选择器操作之间的关系。
图24为一时间图,用于说明在不同方向上作用到线路上的脉冲电压之间的关系。
图25为一可应用本发明的成像设备的框图。
图26为一示意性平面图,它表示出由Hartwell等人提出的一种传统的表面传导电子发射装置。
图27A至27C为一梯形结构的电子源的示意性的局部图,它们说明了上述电子源的一些制造步骤。
在本发明的用于制造表面传导电子发射装置、制造包括一批这种表面传导电子发射装置的电子源、和制造设有这种电子源的成像设备的设备中,为激活上述的表面传导电子发射装置,此设备包括(a)用于探测电子发射装置的导电性能,同时在装置中执行激活过程的装置;(b)用于确立激活过程条件的装置;(c)用于确定激活过程的连续性,且在按需要时改变激活过程的条件或中止激活过程的装置,上述激活过程为由所说装置(a)探测到的导电薄膜的导电性能的一个函数。
装置(a)一般探测至少两股电床间的关系,一股是在发射装置电极之间流动的电流(发射装置电流)If,另一股是从此发射装置发射到真空中而到达一阳极上的电子和加到发射装置电极上的电压(发射装置电压)Vf所形成的电流(发射电流)Ie。
在其它装置中,装置(b)一般是用来确立加在设备上用于激活的脉冲电压的波形以及激活气氛的参数。脉冲电压一般以脉冲宽度、脉冲间隔和波形表达,所说波形可为三角形,矩形或梯形。激活气氛则用其中所含的有机物质、用于激活过程的每种激活气体的分压以及氢气一类暂时导入激活系统的腐蚀气体来表示。
图1的框图说明了以上所列装置之间的关系。
在本发明的用于制造一种表面传导电子发射装置、制造包括许多这种表面传导电子发射装置的一种电子源、和制造设有这种电子源的一种成像设备的方法中,所说方法包括下述步骤(A)确立初始条件并启动一激活过程,这称为一启动程序;(B)依照一预定的操作常规程序,执行一激活过程;(C)根据需要中断或是与所说常规程序协调一致,以探测电子发射装置或电子源的性能;(D)根据以上步骤(C)所获得的信息,选择继续,或修改常规程序的条件,或中止激活过程。
(E)如果在以上的步骤(D)中选择了修改,则修改所说常规程序的条件;或(F)如果在步骤(D)中选择了中止,则执行用于中止激活过程的一个操作程序,这叫做关闭程序。
图2表示出以上步骤之间的关系。
以上列出的步骤(A)特别包括下列操作初始化用于产生激活过程的脉冲电压的一个振荡器;如果有一脉冲电压加在每个电子发射装置上或每组电子发射装置上,初始化用于配电装置的一个程序;初始化一程序,该程序用于导入或确定将一种有机气体导入设备的时间,将设备抽空,如果需要的话,再将设备烘干。
步骤(B)的常规程度包括的操作有在一预定的气氛中持续地施加一稳定的脉冲电压,或是改变作为一个程序的函数的脉冲的高度和宽度同时周期性地改变气氛的脉冲的高度和宽度。
步骤(C)是探测Ie和Vf之间的关系和/或每个电子发射装置或每组电子发射装置的If和Vf之间的关系,它包括的操作是将一测量脉冲周围性地插入常规程序的激活脉冲中,以探测上述的关系,并使用与所说常规程序一致的三角形,梯形或台阶形(见图7B)的脉冲。
If与Vf之间的关系和/或Ie与Vf之间的关系可以相对于If,Ie和Vf的全量程来表示,或依据它们使用的脉冲,相对于一特定的Vf值,由IF和Ie各自的值来表示。
步骤D包括的操作是为发射装置电压(Vf2)的一特定值确定发射装置电流IF(Vf2)的值,该发射装置电压(Vf2)低于激活脉冲的波高Vact;确定Ie和If的阈电压;确定阈电压,Ie(Vact)的值和从步骤(C)中测定的关系中得到的其它值之间的差异;和根据另外产生的条件来选择继续常规程序,或是中止特定操作或整个激活过程。
步骤(E)是根据以上步骤(D)的结果来改变激活脉冲的波形和/或用于常规程序的气氛,或者是临时执行一些其它的操作,这些操作不同于常规程序的相应操作。注意,一旦步骤(E)的操作完成,它将返回到常规程度。
步骤(F)是为中止激活过程而停止激活脉冲、有机物质的导入、设备的抽空以及其它的操作。
以上步骤对于每一激活步骤,可能必须作出更精确地规定。
例如,当由上述的设备和方法来制造一批电子发射装置时,如果执行激活过程,这些发射装置会表现出相同且相等的发射电流,同时将检测Ie(Vact),直至Ie(Vact)到达一预定电平,这时激活过程即中止。在制造包括一批电子发射装置的一种电子源而所说的装置排列并布线为呈阶梯形或矩阵形结构时,以及制造设有上述电子源的一种成像设备时,情况均相同。
在电子发射装置的导电性能随激活过程的进展而变化时,应注意Ie一般会增大直至它在激活过程中的某处表现出一最大值,之后,Ie将随时间而下降。如果是这种情况,通过监测发射装置电流I,计算dIe/dt,并且在dIt/dt=0时,使激活过程中止,就可制造出具有一最大可能Ie的一种发射装置,使用这一技术,能利用Ie,使发射装置最优化。
可用类似的方式获得如η=Ie/If等的其它参数。
可以用下述方式制造一种仅会出现极低漏泄电流的电子发射装置执行一激活过程,同时在Vmid=Vact/2时,监测If(Vmid)的值,并且只要装置的漏泄电流过量时,例如超过If(Vact)/200时,临时施加一较高的脉冲电压即可。如果有一电子源用在一成像设备中,该电子源具有一种可由一种简单的矩阵驱动方法驱动而操作的矩阵线路结构时,选用来发射电子的装置的所用相同行或列的装置都会受到一电压(半选择电压)的作用,该电压为加在所选装置上的电压(驱动电压)的一半。然后,如果If(Vmid)的值较大,就会有一股无效的电流流经那些发射装置以增大的比率来消耗电功率,这样,电子源的驱动电路将不得不受到一过大负载的影响,并在其持续驱动时产生热量。反应认识到上述的本发明的方法及设备能够有效地消除这些问题。
现在,将详细描述制造一表面传导电子发射装置的过程。
图3A与3B为示意性平面图和侧视剖面图,它们表示出应用了本发明的一种表面传导电子发射装置的基本构形。
参看图3A与3B,上述装置包括一衬底1,一对装置电极2和3,一导电薄膜4和一电子发射区域5。
可用于衬底1的材料包括石英玻璃、所含杂质例如钠所降到某一浓度水平的玻璃、钢钙玻璃、用溅射方式在钠钙玻璃上形成一层氧化硅而制成的玻璃衬底,氧化铝和硅等的陶瓷物质。
虽然相对排列的装置电极2和3可由任何高导电材料制成,但是其最佳的候选材料则包括如镍、铬、金、钼、钨、铂、钛、铝、铜和钯等的金属及其合金,由从钯、银,二氧化钌,钯—银和玻璃中选出的一种金属或金属氧化物制成的可印刷的导电材料,以及如三氧化二铟—二氧化锡的透明导电材料和例如多晶硅等半导体材料。
在设计本发明的表面传导电子发射装置时,使发射装置电极分隔的距离L、发射装置电极的宽度W、导电薄膜4的外形和其它因素,都可依据这种装置的应用情形来决定。
分隔发射装置电极2和3的距离L,根据加在设备电极上的电压和供电子发射用的场强的不同,最好在几百纳米和几百微米之间,在几百微米与几十微米之间则更好。
发射装置电极2和3的宽度W根据电极电阻和发射装置的电子发射特性的不同,最好在几微米与几百微米之间。发射装置电极2和3的薄膜厚度d在几十纳米与几微米之间。
根据本发明的一种表面传导电子发射装置,它可具有不同于图3A与3B中所表示出的构形,它可以通过将一包括有一电子发射区域的薄膜4铺在一衬底1上,然后在薄膜上放置一对相对设置的装置电极2和3而制成。
为提供优良的电子发射性能,导电薄膜4最好是细颗粒薄膜。导电薄膜4的厚度是作为以下因素的函数来确定,这些因素包括电极2和3上的导电薄膜的台阶形涂层、装置电极2和3之间的电阻和将在以后描述的成形操作的参数以及其它因素。导电薄膜的厚度最好在十分之一纳米与几百纳米之间,若在一纳米与五十纳米之间则更好。导电薄膜4表现出的单位表面积的电阻Rs在102*与107Ω/cm2之间。注意,Rs是由R=Rs(l/w)定义的电阻,其中,t,w和1分别是薄膜的厚度、宽度和长度。还应注意,虽然为了本发明的目的,上述成形过程是以一种激励成形过程的方式描述的,但是它并不限于此,还可包括有一间隙在薄膜上形成以便在薄膜上产生一高电阻区域的一种过程。
导电薄膜4可由某种材料的细颗粒制成,所说的材料可由下列材料中选择如钯、钌、银、金、钛、铟、铜、铬、铁、锌、锡、钽、钨和铅的金属中,如氧化钯、二氧化锡、三氧化二铟、氧化铅和三氧化二铋的氧化物中,如二硼化铪、二硼化锆、六硼化镧、六硼化铈、四硼化钇和四硼化钆的硼化物中,如碳化钛、碳化锆、碳化铪、碳化钽、碳化硅和碳化钨的碳化物中,如氮化钛、氮化锆和氮化铪的氮化物中和如硅、锗和碳的半导体。
在此使用的名词“细颗粒薄膜”指由大量的细颗粒构成的一种薄膜,这些颗粒可以松散地散布着,或是紧密地排列着,或是相互随便地交叠着(在一定条件下形成一种岛状结构)。
用于本发明的细颗粒的直径在十分之一纳米与几百纳米之间,且最好在一纳米与二十纳米之间。
由于在此经常用到“细颗粒”一词,以下将更深入地对其加以描述。
一个小颗粒称为一“细颗粒”,而比一细颗粒还小的颗粒则称为“超细颗粒”。比一“超细颗粒”还小并且是由几百个原子组成的一个颗粒称为一“原子团”。
但是,这些定义并不严格,并且每个名词的范围可根据所对待的颗粒的特定方面的不同而变化。如在本专利应用的情况中一个“超细颗粒”可简单地称为一“细颗粒”。
“实验物理进程第14期表面/细颗粒”(koreo kinoshita编辑;ky-oritu出版,1986.9.1)是这样描述的。
“在此所用的一种细颗粒是指具有在2至3μm和10nm之间的直径的一种颗粒,在此所用的超细颗粒是指具有在10nm与2至3nm之间的直径的颗粒。但是,这些定义决不是严格的,也可以将一超细颗粒简单地称为一细颗粒。因此,这些定义无论如何都是凭经验给定的。由两个至几百个原子组成的颗粒叫做原子团。”(同上,P195,11.22—26)。
另外,新技术发展公司的“Hayashi超细颗粒项目”对于颗粒的尺寸运用了更小更低的限度,并将“超细微粒”定义如下“在‘创造性科技促进计划’中的,‘超细颗粒项目’(1981—1986)将超细颗粒定义为具有在1至100nm之间的直径的颗粒。这意味着一个超细颗粒是约100至108个原子的聚结体。从原子的观点看,一个超细颗粒是一个巨大的或超巨大的颗粒”。(超细颗粒—创造性科技Chikara Hayashi,Ryoji Ueda,Akira Tazaki编辑;Mita出版,1988,P.2,11.1—4)。
考虑上述的一般定义,在此使用的名词“细颗粒”指直径下限在0.1nm与1nm之间,和上限在几微米的大量的原子和/或分子的聚结体。
虽然电子发射区域5的性能依赖于导电薄膜4的厚度与材料,依赖于以后将描述的激励成形过程,但是它却是导电薄膜4的一部分,并且包括具有较高电阻的一个间隙。电子发射区域5可在内部包含导电细颗粒,这些细颗粒具有在十分之一纳米的几倍到几十纳米之间的直径。这种导电细颗粒的材料可以从用于制造包括电子发射区域的薄膜4的全部或部分材料中选择。电子发射区域5和环绕电子发射区域5的部分薄膜4可含碳或碳化合物。
现在将描述根据本发明的一种表面传导型电子发射装置,该装置具有可替换的外形,或是一种台阶型表面传导电子发射装置。
图4为一示意性的侧视剖面图,它表示出可应用本发明的一种台阶型表面传导电子发射装置。
在图4中,与图3A和3B相同或相似的部件分别以相同的参考符号表示。参考符号21表示出一台阶形成段。所说发射装置包括一衬底1,一对装置电极2和3,和包括一电子发射区域5的导电薄膜4,该薄膜由与上述的扁线型表面传导电子发射装置相同的材料制成,所说装置还包括一台阶形成段21,该台阶形成段21由例如二氧化硅的一种绝缘材料制成,它通过真空沉积,印制或溅射而制造出来,它的薄膜厚度与以上所述的扁线型表面传导电子发射装置的分隔装置电极的距离L相当,即在几百纳米与几十纳米之间。台阶形成段21的厚度最好是在几十与几个纳米之间,尽管这种厚度是作为这里用来生产此台阶形成段的方法、加在发射装置电极上的电压和供电子发射用的场强的函数而选定的。
由于包括电子发射区域的导电薄膜4是在装置电极2和3以及台阶形成段21之后形成的,故最好是将此薄膜放在装置电极2和3之上。虽然电子发射区域5是在图2中的台阶形成段21上形成的,但是其位置及外形则依赖于它的制造条件,激励成形条件和其它有关条件,而不限于所示出的那些条件。
虽然可设想出各种各样的制造表面传导电子发射装置的方法,但图5A至5C则表示出这样一种典型的制造方法。
现在,参看图3A,3B和5A至5C,描述制造根据本发明的一种扁线型表面传导电子发射装置的方法。
1)用洗涤剂和纯净的水将一衬底1彻底清洁之后,由真空沉积,溅射或一些其它适宜的技术将一种材料沉积在衬底1上,供一对发射装置电极2和3所用,这对发射装置电极随即通过光刻法而制造出来(图5A)。
2)将一种有机金属溶液涂布到上面带有一对装置电极2与3的衬底1上并使涂布的溶液停留给定的一段时间,从而在衬底1上形成一有机金属薄膜。上述的有机金属溶液可含有以上列出的用于导电薄膜4的任何一种金属,以作为一种主要成份。之后,使用如剥下或腐蚀等适当的技术,将有机金属薄膜加热,烘干并随后经受图案成形的操作以制造一种导电薄膜4(图5B)。虽然在上述的描述中是使用一种有机金属溶液来制造薄膜,但导电薄膜4也可以通过真空沉积,溅射,化学汽相沉积,分散涂布,浸渍,旋转涂布或一些其它的技术而制成。
3)之后,使发射装置电极2和3经受一称为“成形”的过程的作用。在此,选择一种激励成形的过程来描述这种“成形”。具体地说,是用一种电源装置(未示出)电激励发射装置电极2和3,直至在导电薄膜4的一给定区域内产生一电子发射区域5,从而表现出与导电薄膜4不同的一种已改变的结构。换句话说,作为激励成形过程的结果,导电薄膜4在局部结构上受到损坏,发生了形变或变形,从而产生了一电子发射区域5。图6A和6B表示出可用于激励成形的两种不同的脉冲电压。
用于激励成形的电压最好具有一脉冲波形。可持续应用如图6A所示的具有一稳定高度或一稳定峰值电压的脉冲电压,或是如图6B所示的具有一不断增加的高度或是一不断增加的峰值电压的脉冲电压。
在图6B中,脉冲电压具有一脉冲宽度T1和一脉冲周期T2,它们一般分别在1μsec和10msec之间和在10μsec与100msec之间。三角形波的高度(激励成形过程的峰值电压)可依据表面传导电子发射装置外形的不同而适当地选择。电压一般作用几十分钟。但是注意,脉冲波形并不限于三角形,矩形或一些其它的波形也可以替代使用。
图6B表示出一种脉冲高度随时间增加的脉冲电压。在图6B中,脉冲电压具有与图6A中的脉冲电压大致相似的宽度T1和脉冲周期T2。三角形波的高度(激励成形过程的峰值电压)按照例如0.1V/步的速率增加。
通过测量流经装置电极之间的电流可将激励成形过程中止,此时,有一电压在脉冲电压周期T2中加在上述发射装置上,该电压足够低且不会局部损坏导电薄膜4或使它变形。通常,在将一约0.1V的电压加在发射装置电极上时当观察到流经导电薄膜4的电流有一大于1M欧姆的电阻时,就将激励成形过程中止。
4)在激励成形过程之后,发射装置经受激活过程的作用。激活过程是一个使发射装置电流If和发射电流Ie显著变化的过程。
在一激活过程中,可象在激励成形过程中一样,将一脉冲电压在一种有机物质的气体的气氛中反复加到上述装置上。上述气氛可在用油扩散泵或是旋转泵将小室抽空之后,利用真空室中残留的气体产生,或者用离子泵的方式将真空室充分抽空,之后将一种有机物质的气体导入而产生出来。该有机物质的气压是作为一要处理的电子发射装置的外形、真空室的外形、有机物质的类形和其它因子的函数来确定。适用于此激活过程目的的有机物质包括如烷烃、烯烃和炔的链烃、芳香烃、醇、醛、酮、胺,如苯酚、碳酸、硫酸等的有机酸。具体的实例包括以普通分子式CnH2n+2表示的如甲烷、乙烷和丙烷的饱合碳氢化合物,以普通分子式CnH2n表示的如乙烯和丙烯、苯、甲苯、甲醇、乙醇、甲烷、乙烷、丙酮、甲基乙基酮、甲胺、乙胺、苯酚、甲酸、乙酸、丙酸的不饱合碳氢化合物。激活过程的结果是有碳或碳化物从存在于所说气氛中的有机物质中沉积在此装置上,以显著地改变装置电流Ie和发射电流Ie。
除了以上列举的有机物质外,如一氧化碳(CO)的无机物也可用于激活过程。
为达到本发明的目的,所说的碳和一种碳化物指石墨和非晶体碳(不定形碳,不定形碳与细石墨晶体的混和物),并且这种碳或碳化物的沉积层的厚度最好小于50nm并最好不大于30nm。
一个激活过程一般是以以下所述的方式进行的。
图1A为一种设备的框图,该设备是用来在一表面传导电子发射装置中或是包括一批表面传导电子发射装置的电子源中执行一激活过程。参看图1A,其中示明了一个真空室11,该真空室中放有将经受激活过程作用的一表面传导电子发射装置或一电子源。有一真空泵15和用于本过程的其它若干仪器连接在真空室上。参考数号12表示用于测试电子发射装置或电子源的导电性能的测试仪器。此仪器包括许多部件,如安培计,高压电源和各种分析仪等。测试导电性能时可利用If与Vf之间的关系和Ie与Vf之间的关系、对应于一特定Vf值的If或Ie的值,比率Ie/If,以及它们在电子发射装置或电子源上的对时间的微分,只要合适即可。电子源的所有电子发射装置的平均值如果需要也可以测定。
参考数号13表示条件确立装置,它连同其它装置,设定出待施加到发射装置上的电压。所说确立装置包括一脉冲发生器它用于产生一脉冲电压;一转换装置,它用于选择电压所要施加的装置;控制装置,它用于使脉冲发生器与转换装置的操作同步,激活电压施加装置,该装置由一电流放大器与其它需要的部件组成;气氛传感装置,如一压力表或一质谱仪等;将气体导入真空室的装置,它包括一质量流量控制器和一螺线控制阀,和驱动装置,它用于通过调节质量流量控制器和螺线控制阀确立一种需要的气氛,以及其它需要的装置。
图1B为一种设备的框图,该设备设计用来在一成像设备上执行一激活过程,上述成像设备包括一真空容器,一电子源和如一荧光体的成像件。有一成像设备17用一排气管连接到真空室11上。此设备内的气氛可通过检测真空室中的气氛和调节导入气体的装置,条件确立装置13的一个部件以及用于抽空的门阀16来控制。
参考数号14表示控制装置。If确定了激活过程的条件和过程中止的时间,这是在一给定的程度和由测试设备12得到的数据的基础上进行的。If还驱动条件确立装置13进行操作。
参考图2的流程图,以下将描述激活过程是如何受到控制的。
启动程序是一系列的操作,它们用于确立启动一激活过程所需要的初始条件。例如,在此步骤中,将真空室的内部抽空至一低于预定水平的压力,之后,将激活过程需要的物质,如甲烷,丙酮和/或其它有机物导入激活过程中。如果需要,在此程度完成之前可将设备的电子源折叠器加热。
之后,上述过程进行到一调节程序。这是一系列的操作,其中,气氛及脉冲电压可保持各自的稳定的水平,同时脉冲波的高度和脉冲宽度可作为依据给定程序的时间的函数而变化,或者通过逐渐改变有机物的分压使气氛变化,也可以通过以一预定的周期周期性地导入氢气一类的腐蚀气体用于腐蚀碳而使气氛变化。
在一检测步骤中,电子发射装置的导电性能在许多方面得到测试以便更好地控制上述过程。此步骤可通过周期性地中止常规程序并插入为测量而特别设计的一脉冲电压或取同样用于此步骤的常规程序的脉冲电压而进行。
如果有一矩形脉冲用于激活过程的常规程序中,则可将一三角形脉冲电压周期性地附加在测量目标上,并可监测目标的If和/或Ie,以观察其性能。脉冲电压的波形不限于三角形,也可以替代使用其波高与常规程序的脉冲电压不同的矩形波形的脉冲电压。
另一方面,如果有一三角形,梯形或阶形脉冲用在激活过程的常规程度中,就可以同时执行检测步骤。
当一批电子发射装置同时受到激活处理,或是包括一批排列在多行中的电子发射装置的一电子源在一行接一行的基础上经受激活过程作用时,则可在每个装置上或每行装置上执行所说的检测步骤。或可以选择多于一个或是多于一行的装置作为观察的试样。
在判定步骤中,将对照给定的数据检查在探测步骤中获得的数据,以决定如何控制条件确立装置。具体地说,在此决定(1)继续常规程序,(2)转移至一调整程序或(3)转移到一关闭程序。
调整程序是改变常规程序的操作程序。此程序的结果是进行常规程序的一些或全部条件都得到改变,或是在预定操作之后继续常规程序。
关闭步骤是中止一激活过程的一系列操作。例如,在此程序中,脉冲电压的施加,有机物和腐蚀气体的供应都已停止,并且将真空容器的内部进一步抽空,以确保内部压力下降到一给定水平之下。
5)已在一激励成形过程和一激活过程中处理过的一电子发射装置最好接着经受一稳定过程的作用。这是一个将任何残留在真空室中的有机物除去的过程。用于这一过程的抽空与排出设备最好不包括去使用油,使得不会产生任何挥发的油,在上述过程中,所说的挥发的油对已处理过的设备的性能有不利影响。因此,使用一吸附泵或一离子泵可能是比较好的选择。
如果在激活过程中使用了一油扩散泵或一旋转泵,并且还利用了由油产生的有机气体,就一定要将上述有机气体的分压减至最小。如果没有碳或碳化物额外沉积,真空室中的有机气体的分压最好低于1×10-6Pa,低于1×10-8Pa则更好。
在将整个真空室加热后,最好将真空室抽室,使得由真空室的内壁和真空室中的电子发射装置所吸收的有机分子能够很容易地除去。虽然在多数情况下最好是将真空室加热到80至250℃并超过5个小时,但是也可以根据真空室的尺寸与外形和真空室中的电子发射装置的构形的不同,以及其它的考虑,而另选择其它的加热条件。
真空室中的压力需要尽可能地低,且最好低于1至4×10-5Pa,低于1×10-6Pa则更好。
在稳定过程之后,用于驱动电子发射装置或电子源的气氛最好与稳定过程完成时的相同,尽管如果真空室中的有机物已充分除去,可替代使用一较低的压力而不会破坏电子发射装置或电子源的稳定操作。
通过使用上述这种气氛,可有效地抑制任何额外的碳或碳化物的沉积层的形成,从而使装置电流If和发射电流Ie稳定。
下面参看图8和9,描述可应用本发明通过上述过程来制造的电子发射装置的性能。
图8为一结构的示意性框图,该结构包括能够用于上述过程的一真空室。它还可用做一测量装置以测定所考虑类型的电子发射装置的性能。参看图8,上述测量装置包括一真空室31和一真空泵32。有一电子发射装置放在一真空室31中。所说装置包括一衬底1,一对装置电极2和3,一薄膜4和一电子发射区域5。另外,所说测量装置具有一电源33,它用于将一装置电压加在设备上;一安培计,它用于测量装置电极2和3之间的流经薄膜4的装置电流If;一阳极35,它用于捕捉由电极产生的从装置的电子发射区域发射出的发射电流;一高压电源36,它用于将一电压加在测量装置的阳极35上;和另一安培计37,它用于测量由装置的电子发射区域5发射出的电子产生的发射电流Ie。
为测定电子发射装置的性能,可将一个在1和10KV之间的电压加在上述阳极上,该阳极离开电子发射装置有一距离H,此距离在2和8mm之间。
将包括一真空计和其它测量装置所需要的部件在内的仪器放置在真空室31中,使得电子发射装置或电子源的性能能得到合适的测试。真空泵32可配备一个普通高真空装置,该装置包括一涡轮泵或一旋转泵,或设一无油高真空系统,该系统包括如磁悬浮涡轮泵或一干燥泵等的一无油泵,和一超高真空系统,该超高真空系统包括一离子泵。可用一加热器(未示出)将其中装有一电子源的真空室加热至250℃。
图9为一曲线图,它示意性地表示出通常由图8的测量装置观察到的装置电压Vf和发射电流Ie以及装置电流If的关系。注意,考虑到Ie的大小远小于If,在图9中特为Ie和If任意选取了不同的单位。注意,曲线图的纵轴与横轴代表一线性标度。
如图9中所看到的,根据本发明的一种电子发射装置,用发射电流Ie来表征时,具有三个显著的特点。现描述如下。
(i)首先,根据本发明的一种电子发射装置当加在其上的电压超过一定水平(下文称为阈电压,在图9中用Vth表示)时在发射电流Ie上表现出突然的急剧的增长,同时,当发现施加的电压低于此阈值Vth时,发射电流实际探测不到。换言之,根据本发明的一种电子发射装置为一非线性装置,它对于发射电流Ie具有一明显的阈电压Vth。
(ii)第二,由于发射电流Ie高度地依赖于发射装置电压Vf,所以可通过后者有效地控制前者。
(iii)第三,由阳极35捕捉的发射电荷是施加发射装置电压Vf的持续时间的函数。换句话说,由阳极35捕捉的电荷量可通过施加装置电压Vf的时间来有效地控制。
由于有以上的显著特点,应该认识到包括一批根据本发明的电子发射装置的一种电子源的电子发射行为,以及包含这样一种电子源的成像设备的电子发射行为都能够对应于输入信号而简单地控制。因此,这样一种电子源和成像设备可得到各种应用。
另一方面,发射装置电流If或者相对于发射装置电压Vf单调增长(如图9中的一实线所示,在下文称为“MI特性”的一种特性),或者变化而表现为一条,具有压控负阻特性(一种特性,下文称为“VCNR特性”)的曲线。发射装置电流的这些特性依赖于许多因素,包括制造方法,测量的条件和操作这种装置的环境)。
虽然对If来说,如同在Ie的情形,存在一阈电压,但是如图9中的间断线示意性表示出的如果漏泄电流不能忽略,If会滞留在一段较长的低Vf范围内,从而使得阈电压不可避免地非常低。
现在将描述应用本发明的电子发射装置的一些使用实例。根据本发明,电子源和成像设备可通过在一衬底上排列一批电子发射装置而得到。
电子发射装置可按许多不同的形成排列在一衬底上。
例如,可将许多电子发射装置沿某一方向(下文称为行方向)在平行的行中排列,将每个装置在其相对端部用线路连接,并用一控制电极(下文称作栅极)沿一垂直于行方向的方向(下文称为列方向)驱动其工作而形成一阶梯结构,上述控制电极在电子发射装置之上的一空间内排列。或者,将一批电子发射装置排列在沿x方向的行中和沿y方向的列中而形成一矩阵,上述x和y方向彼此垂直,且将同一行中的电子发射装置用每个装置的一个电极连接到一共同的x方向的线路上,同时将同一列中的电子发射装置用每个装置的另一个电极连接到一共同的y方向的线路上。这后一种结构称为简单矩阵结构。现在,将详细描述上述简单矩阵结构。
鉴于上述的可应用本发明的一种表面传导电子发射装置的三个基本特点(i)到(iii),通过将施加到相对的装置电极之上的脉冲电压的波高与波宽控制到阈电压电平之上,便可以控制电子发射。另一方面,上述发射装置在阈电压电平之下实际上不发射任何电子。因此,不论在一设备中排列的电子发射装置数目的多少,均可通过将一脉冲电压加在每个所选的装置上,而选择所需要的表面传导电子发射装置,并对应于一输入信号控制电子发射。
图8为一电子源衬底的示意性平面图,该电子源是通过排列一批电子发射装置来利用以上的特点而形成的,本发明可应用于此电子源上。在图8中,所说电子源包括一衬底71,x方向的线路72,y方向的线路73,表面传导电子发射装置74和连接线路75。上述表面传导电子发射装置可以是已描述过的扁线型或台阶形装置。
总共设有m个x方向的线路72,它们由Dx1,Dx2,……表示,且由通过真空沉积,印制或溅射生产出的导电金属制成。这些线路在材料、厚度和宽度上设计成,在需要情况下可将一大致相等的电压加在表面传导电子发射装置上的形式。总共排列有几个y方向上的线路,并由Dy1,Dy2,……表示,它们在材料,厚度和宽度上与x方向的线路相似。有一层间绝缘层(未示出)放在m个x方向的线路与几个y方向的线路之间以便它们彼此电绝缘。(m与n均为整数)。
层间绝缘层(未示出)一般由二氧化硅制成,并通过真空沉积、印制或溅射在绝缘衬底71的整个表面或部分表面上形成,以表现出所希望的轮廓。选择层间绝缘层的厚度,材料和制造方法,使它能够承受任意x方向的线路72与任意y方向的线路73之间的潜在差异,这些差异在其相交处可观察到。将每个x方向的线路72和y方向的线路73拉出以形成一外部电极。
每个表面传导电子发射装置74的相对排列的电极(未示出)都由各自的连接线路连接到相关的m个x方向的线路72之一上和相关的几个y方向的线路73之一上,上述的连接线路由一种导电金属制成。
装置电极的导电金属材料与从m个x方向的线路72和几个y方向的线路73处延伸出的连接线路75的导电金属材料可以相同或含有作为一种成分的共同元素。或者,它们也可以彼此不相同。这些材料一般可以从以上列出的装置电极的候选材料中适当地选择。如果装置电极与连接线路由相同的材料制成,可将它们统称为装置电极而不用区别出连接线路。
x方向的线路72电连接到一扫描信号施加装置(未示出)上,用于将一扫描信号加在一行选出的表面传导电子发射装置74上。另一方面,y方向的线路73电连接到一调制信号发生装置上(未示出),用于将一调制信号加在选出的一列表面传导电子发射装置74上,并根据一输入信号调制所选定的一列。注意,加在每个表面传导电子发射装置上的驱动信号表示为加在装置上的扫描信号与调制信号的电压差。
有了以上的结构,就可以通过一个简单矩阵线路结构选择每个装置并驱动其独立操作。
现在,参看图11,12A,12B和13来描述包括一电子源在内的成像设备,所说的电子源具有如上所述的一种简单矩阵结构。图11为经部分切除后的成像设备的示意性透视图,图12A与12B为示意图,它们说明了可用于图11的成像设备中一荧光膜的两种可能构形。图13是图11的用于操作NYSC(美国国家电视系统委员会)电视信号的成像设备的驱动电路的框图。
首先参看图11,该图表示出成像设备显示板的基本构形,该显示板包括有上述类型的电子源衬底71,该衬底上带有一批电子发射装置;一背板81,该背板牢固地固定着电子源衬底71;一面板86,该面板通过将一荧光膜84和一金属背衬85放在一玻璃衬底83和一支承架82的内表面上而制成,上述的玻璃衬底和支承架上用玻璃料熔接着背板81和面板86。参考数号87表示一外壳,将该外壳在大气或氮气中于400到500℃下烘干十多分钟,然后作牢靠地气密封接。
在图11中,参考数号74表示图3所示各个电子发射装置的电子发射区域,参考数号72和73分别表示x方向的线路和y方向上的线路,上述线路连接到每个电子发射装置各个装置电极上。
虽然在上述的实施例中,外壳87是由面板86,支承架82和背板81形成的,但是如果衬底71自身足够牢固的话,则可将背板81省去,这是因为设置背板81主要是为了加强衬底71的缘故。如果是这种情况,就不需要一独立的背板81了,并且可将衬底71直接焊接到支承架82上,而使外壳87由一面板86,一支承架82和一衬底71构成。通过在面板86与背板81之间布置许多称为垫片(未示出)的支承件,可以增加外壳87的整体强度。
图12A和12B示意性地表示出荧光膜的两种可能的结构。当荧光膜84是用于显示黑白图片时它仅包括单一的荧光体,但要显示彩色图片时,荧光膜84就需要包括黑色导电件91和荧光体92,其中,依据发光体的结构不同将前者称为黑色矩阵的黑条或黑件。将用于一彩色显示板的一黑色矩阵的黑条或黑件排列成某种形式,使得三种不同原色的发光体变得不易分辨,并且可通过加深周围区域而减弱使外部光线显示出的图象对比度降低的负作用。虽然通常是使用石墨作为黑条的主要成分,但是也能使用其它具有较低透光性和反光性的导电材料。
可采用一种适宜的沉积或印制技术,将一种荧光材料加在一玻璃衬底上而不必考虑是黑白或者彩色显示。将一普通的金属衬垫85放置在荧光膜84的内表面上。设置该金属衬垫85是为了提高显示板的亮度,这是通过使从荧光体发出的并指向外壳内部的光线回转向面板86来实现的,设置金属衬垫也是为将其用作一电极,该电极用于将一持续升高的电压加在电子束上,以及保护荧光体不受破坏,所说的破坏在外壳内部产生的阴离子与发光体相碰撞时可能引起。上述金属衬垫是通过使荧光膜75的内表面平均化,并在构成荧光膜84之后用真空沉积的方法在荧光薄膜75的内表面上形成一层铝膜而制成的。
可在面板86上,面对荧光膜84的外表面制成一透明电极(未示出),以提高荧光膜84的导电性。
如果涉及到彩色显示,则在将以上列举的外壳的部件焊合之前,应仔细地将每套彩色发光体和一电子发射装置准确地对齐。
以下文将描述的方式,对于表面传导电子发射装置,进行一成形过程的处理。
然后如下所述进行一激活过程。图1B表示出适用于此过程的一种结构。
用一排气泵将以上所述的已牢牢地气密封接的成像设备连接到一真空室上。将该真空室用一真空泵抽空直至真空室的内部压力达到一预定水平时为止。
上述结构包括测试设备、条件确立装置和控制装置,它们与已描述过的用于激活一表面传导电子发射装置或包括一批这种装置的电子源的结构相似。但是,由于在激活过程中很难直接监测成像设备的外壳内部的气氛,所以通常是监测和控制真空室内部的气氛,以控制成像设备的气氛。
为控制真空室内部的气氛,需要采用图2中的流程图所表示的步骤,这与激活一表面传导电子发射装置或是包括一批这种装置的电子源的情况相同。
用一种适宜的如一离子泵或一吸附泵之类的不涉及用油的真空泵将外壳87抽空,同时与稳定过程的情形相似,将外壳87加热,直至其内部含有有机物的气氛降低至一足够低的10-5Pa的真空度为止,然后将外壳牢牢地气密密封。在外壳87密封之后,为保持其内部已得到的真空度可进行一除气过程。在除气过程中,将放置在外壳87中一预定位置的一除气剂用一电阻丝加热器或一高频加热器加热,以便在外壳87密封之前或之后用汽相沉积的方法立刻形成一薄膜。除气剂一般包含有作为主要组成部分的Ba(钡)并能够通过汽相沉积膜的吸附作用保持在1×10-4和1×10-5Pa之间的一个真空度。
现在参看图13,来描述用于驱动一显示板的驱动电路,所说显示板包括带有一简单矩阵结构的电子源,该显示板用于根据NTSC电视信号显示电视图像。在图13中,参考数号101表示一显示板。另外,上述电路包括一扫描电路102,一控制电路103,一移位寄存器104,一行式存储器105,一同步信号分离电路106和一调制信号发生器107。图13中的Vx和Va表示直流电压源。
显示板101通过接头Dox1到Doxm,Doy1到Doyn和高压接头Hv连接到外部电路上,其中,接头Dox1到Doxm设计来接收扫描信号,用于随后一个接一个地驱动设备中的一电子源的(有N个装置)的发射装置行,上述设备包括许多表面传导型电子发射装置,这些装置以具有M个行和N个列的矩阵的形式排列。
另一方面,接头Doy1到Doyn是设计成来接收一调制信号,该调制信号用于控制每个表面传导型电子发射装置的输出电子束,所说的电子发射装置是用一扫描信号选择的一行装置。高压接头Hv由一直流电源Va用一电平通常在10Kv左右的直流电压输电,上述电压已高到足以激励所选的表面传导型电子发射装置的荧光体。
扫描电路102以下列方式工作。该电路包括M个转换装置(其中只有装置S1和Sm在图13中具体表示出来),每个这种装置接受直流电源的输出电压或者是0[V](地电位水平),并与显示板1 01的接头Dox1到Doxm之一连接。S1到Sm的每个转换装置根据控制信号Tscan而工作,并能够通过联合FETS之类的晶体管而制成,上述的控制信号Tscan是从控制电路103输入的。
此电路的直流电压源Vx设计成输出一恒定电压,使得加在没有受到扫描的装置上的电压减小到低于初始电压,上述的装置是由于平面传导电子发射装置的性能(或是电子发射的初始电压)的缘故而没有受到扫描。
控制电路103协调相关部件的工作,使得图像可以根据外部输入的图像符号适当地显示出来。该电路对应于由同步信号分离电路106输入的同步信号Tsync产生控制信号Tscan,Tsft,上述同步信号分离电路106将在以下描述。
同步信号分离电路106将同步信号分量分离,而亮度信号分量会形成一外部输入的NTSC电视信号,使用一种周知的频率分离(过滤器)电路可以很容易地将其实现。虽然通过同步信号分离电路106从一电视信号中提取的一个同步信号众所周知是由一垂直同步信号与一水平同步信号组成的,在此为了方便则不考虑其分量信号,而简单地将其表示为Tsync信号。另一方面,从一电视信号提取的一亮度信号则以DATA信号表示,该信号则输入到移位寄存器104中。
移位寄存器104对于每一行在DATA信号上,进行一次串/并变换,而这些DATA信号是根据从控制电路103输入的信号Tsft按时间次序连续输入的。(换句话说,一个控制信号Tsft是作为移位寄存器104的移位同步信号而工作的)。对于一行经过一次串/并变换的一组数据(对应于N个电子发射装置的一组驱动数据),它们是作为几个Id1到Idn的并行信号从移位寄存器104中送出。
行式存储器105是用于为一行在需要的一段时间内存储一组数据的一个存储器,上述数据为信号Id1到Idn,上述时间则根据来自控制电路103的控制信号Tmry而定。存储的数据作为信号I’d1到I’d1传送出去并输入调制信号发生器107中。
所说调制信号发生器107实际上是一信号源,它适当地驱动和调制每个平面传导型电子发射装置的操作,而这一装置的输出信号则通过接头Doy1到Doyn输入显示板101中的平面传导型电子发射装置中。
如上所述,可应用本发明的一种电子发射装置可具有通过发射电流Ie所表征的下列特点。首先,有一明显的阈电压Vth存在,并且只有当超过Vth的一个电压加在所说装置上时,此装置才发射电子。第二,发射电流Ie的电平会变化,上述电平是所施加的高于阈电压Vth的电压的变化的一个函数,不过Vth的值和所施加电压与发射电流的关系可能会依据电子发射装置的材料、构形和制造方法面变化。更具体地说,当根据本发明将一脉冲形电压加在一电子发射装置上时,只要所施加的电压保持在阈值电平之下,就不会产生任何发射电流,同时,一旦所施加电压升高到阀值电平之上,就会有一电子束发射出来。在此应注意,输出电子束的密度可通过改变脉冲形电压的峰值电平而加以控制。另外,通过变化脉冲宽度Pw可以控制一电子束的电荷总量。
这样,调制方法或脉冲宽度的调制都可用来响应于一输入信号而调制一电子发射装置。使用电压调制,要把一电压调制型电路用于调制信号发生器107上,使得能够对应于输入数据调制脉冲形电压的峰值水平,同时保持脉冲宽度恒定。
使用脉冲宽度调制,则是在另一方面将一脉冲宽度调制形电路用于调制信号发生器107之上,使得能够根据输入的数据调制所施加电压的脉冲宽度,同时保持所施加电压的峰值水平恒定。
虽然以上没有特别提出,移位寄存器104和行式存贮器105可以是数字型或逻辑信号型的,只要能以一给定的速率进行图像信号的串/并变换和贮存就行。
如果使用数字信号型装置,就需要将同步信号分离电路106的输出信号DATA数字化。不过这种变换通过在同步信号分离电路106的输出端设置一交流/直流整流器就可以简单地进行了。如果存贮器105的输出信号是数字信号或逻辑信号,则应依据这些信号对于调制信号发生器107要使用不同的电路,这一点是无须再说明。如果使用数字信号,可将已知类型的一直流/交流整流器电路用在调制信号发生器107上,并且如果需要,也可以额外使用一放大器电路。对于脉冲宽度调制,调制信号发生器107可通过使用一种电路而实现,该电路联合了一高速振荡器,一计数器,它用于为所说振荡器产生的波计数,和一比较器,它用于计数器与存贮器输出结果的比较。如果需要,可添加一放大器以将比较器的输出信号的电压放大到根据本发明的表面传导型电子发射装置的驱动电压的电平,上述的比较器具有一个已调制过的脉冲宽度。
另一方面,如果在电压调制中使用了逻辑信号,在需要的情况下,可将一放大器电路适当地用于调制信号发生器107中,并将一电平移动电路加在上面,所说放大器电路包括一已知的运算放大器。对于脉冲宽度调制,如果需要,可将一已知的电压控制型振荡电路(VCO)与一额外的放大器一同使用,上述放大器用于将电压放大到表面传导型电子发射装置的驱动电压的电平。
使用可应用本发明的并具有上述构形的成像设备,当通过外部接头Dox1到Doxm和Doy1到Doyn将一电压加在所说的电子发射装置上时,这些发射装置将发射电子。然后,通过将一高压加在金属衬垫85上,或是用高压电极Hv将其加在一透明电极上(未示出),可使产生的电子束加速。加速的电子最终与发光薄膜84相碰撞,该发光薄膜84随后发光而产生图像。
上述成像设备的构形仅仅是应用本发明的一个例子,对于它还可以做各种变化。与这样一种设备一起使用的电视信号制式并不限于特定的某一种,如NTSC、PAL或SECAM的任何制式都可与之一起使用。所说设备特别适合涉及大量扫描行的电视信号(一般是象M USE系统一类的高分辨率电视系统),这是因为该设备是用于包括大量象素的大型显示板的缘故。
现在参看图14和15,将描述一电子源,以及包含这样一种电子源的成像设备,上述电子源包括在衬底上以阶梯方式排列的一批表面传导电子发射装置。
首先参看图14,参考数号10表示一电子源衬底,参考数号111表示放置在衬底上的一表面传导电子发射装置,同时参考数号112表示用于连接表面传导电子发射装置的Dx1到Dx10的共同线路。电子发射装置111成行排列(下文称为装置行),以形成包括一批发射装置行的一电子源,上述每行中具有一批发射装置。每个发射装置行中的表面传导电子发射装置由一对共同的线路彼此平行地电连接,使得能够通过向共同线路对上施加一适当的驱动电压而将它们独立驱动。具体地说,是将超过电子发射阈电压电平的一个电压加在要使之驱动而发射电子的发射装置行上,同时将一低于电子发射阈电压电平的电压加在剩余的发射装置行上。换句话说,布置在两相邻发射装置行之间的任意两个外部接头能够共享一单个的共同的线路。这样,在共同的线路Dx2到Dx9中,Dx2和Dx3能够共享替代两个电路的一单个共同电路。
图15为一成像设备的显示板的示意性透视图,该成像设备包括一电子源,该电子源具有电子发射装置组成的一种阶梯结构。在图1 5中,显示板包括栅极120,每个栅极设有许多孔以使电子能从中通过,以及一组外部接头Dox1,Dox2……,Doxm和另一组外部接头G1,G2,……,Gn,上述两组接头分别连接到栅极120和一电子源衬底71上。此成像设备与图11中具有一简单矩阵结构的成像设备主要不同之处在于图15中的设备具有栅极120,该栅极120布置在电子源衬底71和面板86之间。
在图15中,条形栅极120垂直于阶形发射装置行而布置在衬底71与面板86之间,用于调制由表面传导电子发射装置发射出的电子束,每个栅极对应于各自的电子发射装置设有贯穿孔121,使得电子束能从中通过。但是注意,虽然在图15中示出了条形栅极,但是电极的外形与位置并不限于此。例如,它们可以替代地设置筛形开口并布置在表面传导电子发射装置的周围或近处。
外部接头D1到Dm和栅极的外部接头G1到Gn电连接到一控制电路上(未示出)。
具有上述构形的成像设备可用于电子束照射,这是通过向一图像的单独一行的栅极行同时施加调制信号而进行的,且它与一行接一行驱动(扫描)一行电子发射装置的驱动操作同步,从而使得能够一行接一行地将图像显示出来。
因此,根据本发明的且具有上述外形的显示设备具有广泛的工业与商业应用,这是因为此种显示设备可作为电视广播的显示设备、图像电信会议的终端设备、静止图片与动画的编辑设备,计算机系统的终端设备,包括感光鼓的光学印刷机而操作,并在许多其它方面应用的缘故。
现在将通过实例描述本发明。图3A和3B示意性地表示出在此实例中制造的电子发射装置。虽然为了简单的目的只表示出单独一个发射装置,但是在本例中有五个所述发射装置平行布置于一电子源的衬底上。参看图5A到5C,将描述制造此电子源所采取的过程。
步骤a在彻底清洁一钠钙玻璃板之后、通过溅射在玻璃板上制成一0.5μm厚的氧化硅薄膜而制成一衬底1,在该衬底上与一对带孔电极的图案相对应,有一光刻胶(RD2000N—41可由Hitachi有限化学公司获得)的图案形成。然后,通过真空沉积顺次构成厚度分别为5nm和100nm的Ti膜和Ni膜。之后,用有机溶剂将上述光刻胶溶解,并将Ni/Ti膜卸下以制成一对发射装置电极2和3。发射装置电极由3μm长的距离L分隔,且具有300μm的宽度W。(图5A)步骤b通过真空沉积在发射装置上形成一层100nm厚的Cr膜,然后通过影印形成与导电薄膜相对应的一个孔。之后,为构制一导电薄膜而构制一Cr掩模。
然后,用一旋涂器将Pd—amine化合物(ccp4230可由Okuno药物公司获得)的溶液加在Cr膜上,并在300℃时烘干十分钟而制成一种细颗粒薄膜,该薄膜含有为其主要成份的PdO。该薄膜的厚度为10nm。
步骤c用湿腐蚀法将上述Cr掩模除去,并把PdO细颗粒薄膜剥去而获得一导电薄膜4,该导电薄膜4具有所希望的外形。导电薄膜4表现出RS=2×104Ω/□的电阻,且其厚度为10nm。(图5B)。
步骤d如图16A所示,将电子源43放在一测量系统的真空室41的样品架42中,用真空泵组件44将真空室41抽空到压力为1.3×10-3Pa。真空泵组件44是包括一涡轮泵和一旋转泵的一种高真空泵组件。真空泵组件44另外包括有一离子泵,用于产生一种超高真空条件,并且上述这些泵可有选择地使用。真空泵组件还包括一驱动器45,用于变换所用的泵,打开真空表阀门和打开及关闭泵。随后,用一驱动电路46把一脉冲电压加在每个发射装置上,以执行一电成形过程并产生一电子发射区域。如图6B所示,上述脉冲电压为一三角形脉冲电压,其峰值随时间逐渐增加。所使用的脉冲宽度为T1=1msec,脉冲周期为T2=10msec。在电成形过程中,将一附加的0.1V的脉冲电压插入成形脉冲电压的间隔中,以测定电子发射区域的电阻,并且当电阻超过1MΩ时,将上述电成形过程中止。
当中止成形过程时,脉冲电压的峰值是5.0到5.1V。
步骤e随后,使上述电子源经受一激活过程的作用,同时将真空室的内部压力保持在1.3×10Pa附近。
用驱动电路46将一14V高的矩形脉冲电压加在每个电子发射装置上。虽然图6B中的系统包括一安培计47,但是在此过程中并未用到它。上述系统还包括一阳极48,用于捕捉从电子源43中发射出的电子,有来自一高压电源49的电压加在上述阳极48上,该电压比加在电子源43上的电压高1KV。电子发射设备与所说阳极由一段H=4mm的距离分隔。每个发射装置的发射电流Ie由另一个安培计50探测。
将由安培计50探测到的Ie输入一控制组件55中。
在此实例中,控制组件55设计成一旦每个发射装置的发射电流达到0.9μA,该控制组件55就能使加在发射装置上的脉冲电压中断的形式。
步骤f之后,进行一稳定过程。在此步骤中,要使用真空泵组件44中的超高真空离子泵,并且用装在样品罐42中的一加热器(未示出)将电子源加热到120℃,要加热10小时。由气氛检测器件53(在此例中包括一电离真空计和一Q质谱仪)探测知真空室41的内部压力约6.3×10-5Pa(有机物的分压,小于6.3×10-6PA,所说有机物源自步骤d和e中所用高真空泵的油)。参考数号54表示上述气氛检测器件的驱动电路。
在上述条件下,将14V的一脉冲电压(其脉冲宽度为100μsec)加在电子源上一段时间,直到Ie已达到一饱和状态时为止。
通过施加14V的一三角形脉冲电压(其脉冲宽度为100μsec)来测试上述电子源的性能。从MI来看,所有的电子发射装置的运行都相似。
本例也采用了例1中的步骤a到d,然后在步骤e时开始一激活过程。电子发射装置#5的Ie比电子发射装置#1到#4的升高得略慢。控制组件55连续计算由安培计50所探测的Ie的增长速率,并确定增长速率在给定的一段时间内的平值均。如果在任意一个发射装置上,在一所选定时刻的上述速率的变化超出一给定的限度,加在发射装置上的脉冲电压的脉冲高度作为上述变化的一个函数就会得到改变。结果,在激活过程的进程中,只有发射装置#5的脉冲高度升到了15V。中止上述过程所给定的要求是Ie≥0.9μA。因此,只要发射装置的Ie到达0.9μA,对每个发射装置施加的脉冲电压就会中止。
结果,象例1中的步骤f的情况一样,执行了一激活过程,然后探测了每个发射装置的性能。
从MI来看,所有的发射装置的运行都相似。本例中的所有发射装置都采用了例1中的步骤a到d,然后与在步骤e的情况一样,开始一激活过程。发射装置#5的Ie比发射装置#1到#4的Ie升高得略慢。已程序化的标准过程设计为为激活过程施加一脉冲高度为14V矩形脉中宽度为30msec的脉冲电压在一定时间的激活过程之后,脉冲宽度在中止激活过程之前变为20msec。控制组件55连续计算由安培计50探测的Ie的增长速度,并确定增长速率在给定的一段时间内的平均值。如果在一所选定时刻的上述速率的变化超出一给定的限度,加在发射装置上的脉冲电压的脉冲宽度,在此脉冲宽改变后,作为它们的差的函数要得到修正。为发射装置#1到#4执行一标准过程,并且将脉冲宽度改变为20msec。另一方面,对于发射装置5,有一脉冲宽度为30msec的脉冲电压一直加在其上直到激活过程结束。只要发射装置的Ie到达0.9μA,就中止加在每个发射装置上的脉冲电压。
结果,象例1中的步骤f的情况一样,执行了一激活过程,然后探测了每个发射装置的性能。从MI来看,所有的发射的运行都相似。通过施加14V的一矩形脉冲电压,本例中所有的发射装置都采用了例1中的步骤a到d,并进行了一激活过程。之后,与例1的情况一样,采用了步骤f,并且施加了14V的一矩形脉冲电压,以探测每个发射装置的性能。虽然从MI看来,所有发射装置的运行都相似,但是,当与上述的例1到例3相比较时,发射装置#1到#4在运行上表现出细微的偏差。发射装置#5的1f和Ie分别约是其它发射装置的2/3和1/2。
例1到3和比较例1的发射装置是通过以下步骤a到d制造的,且发射装置#5在每种情形中都显示出运行不良的倾向。虽然假设这一事实应归因于步骤a到d的一些情况是合理的,但是却没有发现确切的原因。不过,业已发现通过用根据本发明的一种设备执行一激活过程,就能解决这个问题。
虽然发射装置#1到#4在运行中的偏差都很小并可归因于偶然事故,但是采用根据本发明的一种方法是可以除去这种偏差的。在这些例子和比较例中所用的发射装置具有图3中所示的外形,并且如图17中示意性地示出的,共有48个发射装置排列在每个例子中衬底的单独一行上。
与例1的情形一样,业已采用了步骤a到c,并且有一层细PdO颗粒的导电薄膜形成。之后,采用例1的步骤d进行了一成形过程。真空室的内部压力是2.7×10-4Pa。
步骤e接着,执行一激活过程。
用控制组件55如此操作真空室在用一离子泵将真空室抽空到约10-6Pa之后,通过调节一气体供应组件51和一螺线管阀52,将丙酮导入真空室中,直到真空室中的压力升到2.7×10-1Pa为止。同时,还用控制组件55操作真空泵组件的驱动电路,以用一闸阀调节抽空的速率。
将发射装置从No.1到No.48顺序编号,将具有偶数号的发射装置以下列方式处理。
加在发射装置上的脉冲电压具有一矩形脉冲波,如图18B所示,该脉冲波的极性交替倒相。其两种极性的脉冲宽度等于T1=1msec,脉冲间隔等于T2=10msec。换而言之,该脉冲具有20msec的周期和50Hz的频率。
上述脉冲的高度最初为10V,并且以0.2V/min的速率增大,直到它达到18V为止。
在一常规程序中使用上述脉冲电压,并且每30秒钟额外施加一三角形脉冲电压,以探测If与Vf之间的关系,所说额外施加的电压具有与上述的脉冲电压相同的脉冲高度。
在这些例子中,控制If,使它不超过Vf2的一预定电平,该电平低于Vact。具体地说,是使用了关系Vf2=0.8×Vact,并且只要满足要求If(Vf2)<0.05mA,就继续常规程序。
相反,如果没有达到上述要求,或观测到If(VF2)≥0.05mA,就将Vact增加0.2V,并继续常规程序。
在此条件下,If—Vf的关系是如图9中的间断线所示意性表示的,If滞留在一较长的较低的Vf范围内,以增加If(Vf2)的值。本发明的发明者假定这是由漏泄电流的一小段通路引起的,所说漏泄电流是由导电薄膜上的碳或一种碳化物在阳极与阴极之间形成的,上述阳极与阴极相对设置,且其间布置有一电子发射区域。If—Vf关系上的这种滞留现象通过升高Vact可能能够消失,这是由于形成漏泄电流通路的碳或碳化物会由焦尔热而升华的缘故。
如果If(Vf2)在返回常规程序之后再次升高,就重复以上的操作,以获取表现出所希望的性能的一种电子发射装置。
当Vact到达18V时,如果观测到If≥2,上述操作就进入一关闭程序,以使激活过程中止。如果没有满足以上要求,Vact=10V就会恢复且常规程序就会重复。
为了比较的目的,将一矩形脉冲电压加在奇数号的发射装置上,并且将Vact以0.2V/min的速率从Vact=10V升高到Vact=18V,使得程序在40分钟内得以中止,所说脉冲电压的极性与以上常规程序的情形相同是交替倒相的。这些发射装置指的是比较例2中所述的发射装置。
之后,将真空室和其中的电子发射装置加热到180℃并加热两时,然后在发射装置上进行一稳定过程,同时用一离子泵将真空室抽空。一发射装置的If在一激活过程结束之后和在一稳定过程结束之后,值通常是不一致的。
然后,将16V的一三角形脉冲电压加在发射装置上以观察上述装置的性能。将真空室的内部压力维持在1.3×10-7pa,并且以4mm的距离将阳极与电子发射装置彼此分隔,同时将电位差维持在1KV。
If的值在V=8V时用Ifmid表示。这个值与所谓的“半选择电流”相对应,在这时要驱动一电子源操作,并且所说电子源最好尽可能地小,所说电子源包括一批电子发射装置,这些发射装置以简单矩阵线路结构布置。下表表示出例4与比较例2的24个发射装置的Ie的平均值和偏差。
If(mA)Ie(μA)0(%) Ifmid(mA) ΔIe(%)例41.1 1.10.100.005 ±7比较例 2 1.0 0.60.060.01 ±12[例5,比较例3]以与例4相同的情形制造发射装置,并在这些发射装置上进行一成形过程。之后,在步骤e中用一离子泵将真空室抽空,并且通过控制气体供应组件51与螺线管阀52将正己烷导入真空室中,使得真空室的内部压力保持2.7×10-3Pa。
将如图7A所示的脉冲高度为16V的一梯形脉冲电压加在发射装置上。该脉冲的上升也是倾斜的,且将此倾斜角用于确定If—Vf和Ie—Vf的关系。另一方面,上述脉冲由T2=10msec.,T3=10μsec定义,并且一常规程序的脉冲宽度T1以在5分钟内变为两倍大的速率从10μsec开始逐渐增大。所说阳极与发射装置以4mm的距离彼此分隔,且其电位差是1KV。
根据所观测到的性能,阈电压Vtf与Vte分别定义为在Vact=16V时的If与Ie值的1/100的电压值。与例4的情形相同,只要符合Vte—Vtf<1V的要求,常规程序就在偶数号中的发射设备上继续,同时,一发现不符合上述要求,T2当时就翻倍,接着将重新开始常规程序。当观测到T1≥1msec时,如果Ie≥2μA,上述操作就行至一关闭程序。否则,如果已确立T1=10μsec,则将重新开始常规程序。
如果将正己烷用为所需的有机物,则当分压低于丙酮的分压时,也可以进行一激活程序。如果与例4中一样,丙酮表现出一10-1Pa的分压,则当有一高压加在上述阳极上以观测Ie时,会发生放电,从而毁坏正经受激活过程处理的电子发射装置。相反,如果在这些例子中使用了具有较低分压的正己烷,就能因此顺利地进行激活过程,同时不带任何危险地观测Ie。
为比较的目的,将一相似的脉冲电压加在奇数号的发射装置上30分钟而到一激活过程,在此过程中,T1由10μsec升高到1msec。这些发射装置指的是比较例3的发射装置。
之后,与例4的情形相同,进行一稳定过程。结果在下表中表示出来。注意,一发射装置的If和Ie在一激活过程结束之后与在一稳定过程结束之后,值通常是不一致的。
If(mA) Ie(μA)0(%) Ifmid(mA) ΔIe(%)例5 1.01.10.110.007 ±10比较例3 0.90.90.100.010 ±12以与例4相同的情形制造发射装置,并在这些发射装置上进行一成形过程。之后,在步骤e中用一离子泵将真空室抽空,并用通过控制真空泵驱动电路45,气体供应组件51和螺线管阀52将十二烷导入真空室中,使得真空室中的内部压力保持2.7×10-3Pa。采用如图7B中所示的一阶形脉冲电压,该脉冲电压具有一脉冲T1=1msec,一脉冲宽度T2=10msec.,一脉冲高度16V,一降低的脉冲高度12V。降低了高度的部分的宽度等于T3=100μsec。
上述脉冲电压会在一常规程序中继续。
与例4和5的情形相似,偶数号的发射装置受到下列方式的处理。
当监测If和Ie时,当观测到If(Vf=12V)≥0.05mA结果时,脉冲高度升高到18V仅需5秒钟,然后重新开始常规程序。
当观测到Ie(Vf=16V)≥2μA时,上述激活过程中止,且一关闭程序开始。
将以上16V的脉冲电压加在奇数号的发射装置上30分钟以中止一激活过程。这些发射装置指比较例4中的那些发射装置。
之后,与例4和例5中的情形相同,进行一稳定过程。其结果在下表中表示出来。
If(mA)Ie(μA)0(%)Ifmid(mA) ΔIe(%)例6 1.0 1.20.12 0.006 ±9比较例4 1.5 0.90.06 0.011 ±14用与例6中相同的一个常规程序将发射装置激活。当观测到If(Vf=12V)≥0.05mA时,将高压电源切断,该高压电源用于向阳极施加一高压以监测Ie,然后,通过控制气体供应组件51与螺线管阀52将氢气导入真空室中。调节气体流动速率,使得氢气的分压在20秒内达到约0.13Pa,之后,关闭螺线管阀以停止气体供应,并用接通高压电源以重新开始常规程序。
激活过程的中止与例6中的情形一样。
之后,进行一稳定过程。其结果在下表中表示出来。
If(mA) Ie(μA) 0(%) Ifmid(mA) ΔIe(%)例70.8 1.2 0.130.005 ±9[例8,比较例5]以与例4相同的情形制造发射装置,并在这些发射装置上进行一成形过程。之后,在步骤e中用一离子泵将真空室抽空,然后通过控制真空泵驱动电路45,气体供应组件51和螺线管阀52将十二烷导入真空室中,使得真空室中的内部压力为初始化而保持2.7×10-1Pa。
采用与例4中相似的一脉冲电压,尽管其脉冲高度恒定在16V。
如例4到6的情形一样,使偶数号的发射装置经受下述的一激活过程的作用。
当观测到If>1.5mA时,减少一定量的导入丙酮,直到其分压变为1/10时为止。重复上述操作,直到丙酮的分压变得低于2.7×10-5Pa时为止。然后,将激活过程中止以开始一关闭程序。
在一气氛中,将与以上相同的一脉冲电压加在奇数号的发射装置上30分钟,上述气氛具有等于2.7×10-2Pa的丙酮的一分压。上述发射装置指比较例5中的那些发射装置。
之后,与例4到7的情形一样,进行一稳定过程。其结果在下表中表示出来。
If(mA) Ie(μA) 0(%) Ifmid(mA) ΔIe(%)例8 1.21.5 0.130.011 ±7比较例5 1.00.9 0.090.010 ±13[例9,比较例6]在例4中,发射装置在一衬底上制造出来。
此例也采用了例1的步骤a到d,之后,在步骤e中进行一激活过程。真空室的内部压力为2.7×10-3Pa。在此所用的真空泵为一高真空型泵。
将如图18A中所示的一矩形脉冲电压加在发射装置上。该脉冲电压具有14V的脉冲高度,100μmsec的脉冲宽度和一10msec的脉冲间隔。
进行上述激活过程,同时监测发射装置电流If和发射电流Ie。所说电子发射装置以4mm长的距离与阳极分隔,所说阳极具有1KV的电势。
此例所用的控制组件判读Ie探测安培表的数据,并计算Ie随时间的增长速率,或是dIe/dt,以判定一Ie的最大值,或是dIt/dt=0。在实践中,由于所观测的Ie值可能含有时间常数噪声,所以要将上述值与一一秒的时间常数相结合,以找出当dIe/dt在一分钟内几乎保持等于0的一个时刻,并在该时刻中止上述激活过程。
上述激活过程实际上是在四个发射装置中的二个上进行的。要将这两个发射装置的该过程在约60分钟内中止。
为了比较,使用相同的脉冲电压,对于剩余的两个发射装置也进行了40分钟的激活过程。
之后,将真空泵转换为一离子泵,以在例1中步骤f的条件下进行一稳定过程。虽然在此过程中,Ie和If都暂时下降,但它们最终都收敛于各自的恒定值。上述结果在下表中表示出来。
If(mA) Ie(μA) 0(%)例9 1.5 1.5 0.1比较例6 1.2 1.2 0.1[例10]在本例中的真空泵组件采用了一干式泵(蜗室泵)和一磁悬浮型涡轮泵。采用这种结构,能够有效地抑制涉及的有机物扩散到真空室中从而为以后的过程建立一种良好的真空条件。
本例中也采用了与例9中情形相同的步骤a到d,之后,在步骤e中通过控制气体供应组件51和螺线管阀52将丙酮导入真空室中。将丙酮的分压调节到2.7×10-3Pa。在此所用的真空泵为一高真空型泵。
采用与例9相似的一矩形脉冲电压。进行一激活过程达50分钟,同时监测发射装置电流If和发射电流Ie。
然后,中断丙酮的供应,并使真空室中的内部压力再减小到约1.3×10-5Pa。之后,与例1的情形相同,进行一稳定过程。
If(mA)Ie(μA)0(%)例101.3 1.30.1[例11]本例与例9的情形一样,也采用了步骤a到d,之后,在步骤e中用一高真空泵组件将真空室的内部压力减小到2.0×10-3Pa,所说的高真空泵组件包括一涡轮泵和一旋转泵。
象例9一样,进行一激活过程,同时监测发射装置电流If和发射电流Ie。控制组件由所监测的If和Ie的值计算0=Ie/If,然后再计算d0/dt。当得到一最大的θ值或d0/dt=0时,中止激活过程。
激活过程会持续约2分钟。
然后,将真空泵转换到一离子泵,以进一步抽空真空室,并且与例1的情形相似,执行一稳定过程。
上述结果在下表中表示出来。
If(mA)Ie(μA)0(%)例110.17 0.50 0.3[例12]在本例中,将本发明应用于一电子源上,该电子源通过在一衬底上布置一批表面传导电子发射装置,并将这些发射装置用导线连接以构成一矩阵而制成。该电子源在x和y方向上都具有100个发射装置。
步骤A在彻底清洁一钢钙玻璃板之后,通过溅射在玻璃板上制成一0.5μm厚的氧化硅薄膜而制成一衬底1,在该衬底上顺次铺上分别是5nm和600nm厚的Cr和Au,接着用一旋涂器在薄膜上面制成一种光刻胶(AZ1370可从Hoechst公司获得),同时旋转薄膜并烘干。之后,将一光掩模图像用光照射并显影,而为一下部线路72制造一抗蚀图案,然后,将沉积的Au/Cr薄膜湿腐蚀而制造出一下部线路72。
步骤B用RF溅射制成1.0μm厚的一氧化硅薄膜,作为层间绝缘层61(图19B)。
步骤C为在步骤B中沉积出的氧化硅薄膜上制造一接触孔62,制一光模刻剂图案,然后,通过腐蚀层间绝缘层61,同时将光刻剂图案用于掩模而实际构制一接触孔62(图19C)。为进行腐蚀操作,运用了使用CF4和H2气体的RIE(活性离子腐蚀)技术。
步骤D之后,为一对发射装置电极2和3和分隔上述电极的一间隙G构制一光刻剂(RD—2000N—41可由Hitachi有限化学公司获取)图案,然后通过真空沉积在上述图案上,依次分别沉积出5nm厚的Ti和100nm厚的Ni。用一种有机溶剂将上述光刻剂图案溶解,并使用一种剥离技术处理Ni/Ti沉积膜而制造一对发射装置电极2和3,所说电极宽300μm,并由3μm的一段距离彼此分隔(图19D)。
步骤E为一上部线路73在发射装置电极2,3上构制出一光刻剂图案之后,通过真空沉积顺次沉积出分别为5nm厚的Ti和500nm厚的Au,然后,用一种剥离技术除去不需要的区域而制造出一上部线路73,该线路具有所需要的外形(图19E)。
步骤F接着通过真空沉积构制30nm厚的一C薄膜63,然后使该薄膜63经受图案化操作的处理,而使它表现出一导电薄膜4的图案,所说导电薄膜4具有一开口。之后,用一旋涂器将一种有机Pd化合物(CCP 4230可由Okuno有限药物公司获取)加在Cr膜上,同时旋转薄膜,并在300℃时将其烘干120分钟。已制成的导电薄膜64由细颗粒构成,且厚度为70nm,所说细颗粒含有为主要成分的PdO。
步骤G使用一种腐蚀剂对Cr膜63加以湿腐蚀,并将其与任何不需要的导电薄膜4的区域除去,以制出一种需要的图案(图19G)。每单位面积的电阻是4×104Ω/□。
步骤H接着,制出一种图案,该图案用于将光刻剂加在除接触孔62之外的整个表面区域上,并且通过真空沉积顺次沉积出分别是5nm和500nm厚的Ti和Au。用一种剥离技术把任何不需要的区域除去以便随后填覆接触孔(图19H)。
使用以上述方式制造的一种电子源来制造一种成像设备。参看图10和11,将对其加以描述。
步骤I在将一电子源衬底71固定到一背板81上之后,将一面板86(该面板在一玻璃衬底83的内表面上带有一荧光膜84和一金属衬垫85)布置在衬底71之上5mm处,有一支承架82放在它们之间,随后,将玻璃熟料加在面板86的接触区域上,将支承架82与背板81在400到500℃时在大气中或氮气中烘焙10分钟以上,以便将容器气密密接。衬底71也是用玻璃熟料固定到背板81上的。在图10和11中,参考数号74表示一电子发射装置,参考数号72和73分别表示用于上述发射装置的x和y方向上的线路。
虽然如果上述设备是用于黑白成像,所说荧光膜84就仅由一荧光体组成,但是本例中的荧光膜84却是通过成形出黑条并用红色、绿色及蓝色条形荧光件填充间隙而制成的。上述黑条由一种普通材料制成,该材料含有石墨,且石墨是其主要成份。将荧光材料涂布到玻璃衬底83上时,使用了淤浆技术。
有一金属衬垫85放置在荧光膜84的内表面上。在制成荧光膜之后,通过在荧光膜的内表面上进行一种平滑化操作(一般称为“成膜”),并随后通过真空沉积在荧光膜上形成一铝层,即可制成一金属衬垫。
虽然为了提高荧光膜84的导电性可以在其外表面布置一透明电极(未示出),但是本实例却没有用此方法,这是因为仅用一金属衬垫荧光膜就已表现出足够程度的导电性了。
为进行以上的焊接操作,要将背板15,面板17和隔片20仔细地对齐,以确保在荧光件与电子发射装置之间有一准确的位置对应性。
步骤J用一排气泵和一真空泵将已制成的玻璃容器的内部抽空为10-4的真空度。之后,如图20所示,将y方向上的线路共同连接起来,并逐行地进行一成形过程。在图20中,参考数号131表示共同连接着y方向上线路73的一共电极,数号132表示一电源,数号133和134分别表示用于测量电流的一电阻丝和用于监测电流的一示波器。
步骤K随后,进行一激活过程。图16B表示出用来形成本实例所用气氛的器件。用一排气管18将成象设备(显示板)17连接到一真空室11上。用真空泵组件15通过一闸阀16将真空室11抽空,并用压力计58和Q质谱仪57监测真空室内的气氛。真空室11还设有两个气体供应系统,其中之一用于将一种活化剂导入真空室中,另一种设计来为腐蚀活化剂(腐蚀气体)而输入一种材料,在本例中没有使用上述的腐蚀气体输入系统。上述的部件通过一驱动器56而控制其操作。
上述活化剂供应系统连接到一活化剂源60上。在本例中,它是装有丙酮的一个小玻璃瓶。注意,如果上述活化剂在大气压、室温下是一种气体,就要使用一高压气筒。
气体供应系统59是如此控制的,即导入显示板的丙酮表现出1.3×10-1Pa的分压,并且施加18V的一矩形脉冲电压。上述脉冲电压的脉冲宽度是100μsec,脉冲间隔是20msec。
激活过程是逐行进行的。将一脉冲高度Vact=18V的矩形脉冲电压仅加到x方向的线路上,该线路连接到一行发射装置上,同时,y方向上的线路则与以上步骤J的情形相同,它们是共同连接到一共同电极上的。上述脉冲每分钟转换为一三角形脉冲,以利用If—Vf的关系测定发射装置的性能。如果对于Vf2=Vact/2=9V,If的值是If(Vf2)≥(Vact)/220,就把矩形脉冲电压的高度升到19V 30分钟,然后返回到18V以继续激活过程。
当一行发射装置中的每一个装置的发射装置电流变为等于If(1 8V)≥2mA时,就中止该行发射装置的激活操作,并对下一行进行相似的操作。
步骤L当所有发射装置行的激活过程都中止时,将关闭气体供应系统的阀门,以切断丙酮的供应,并将整个玻璃板运行5小时的抽空,同时还将它加热到200℃。在5小时结束后,通过驱动简单矩阵线路和使荧光膜发光,而使上述设备操作,以发射电子。在确信玻璃板进行正常后,加热排气管并将其密接。之后,通过高频加热,而对放置在显示板中的除气剂加热,直到它蒸发时为止。先采用例12中的步骤A到J,之后,将一脉冲高度Vact=18V的矩形脉冲电压逐行地施加在每行显示板上30分钟,这一操作是在与上例的步骤K中相同的气氛中进行的。
接着,本例也进行了上例步骤L的操作。
将一16V的矩形脉冲电压加在例12和比较例7的成像设备上以测定它们的Ie和If。在激活过程中也一行接一行地进行了上述的测量操作,以总体地测定每行100个发射装置的If和Ie。也测定了所施加的8V的矩形脉冲电压的If(mid)。上述金属衬垫和电子源之间的电势差是1KV。
If和Ie的平均值以及平均偏差(每行100个发射装置的ΔIe(%))在以下列出。
If(mA) Ie(μA) Ifmid(mA) ΔIe(%)例12 125 145 0.65.0比较例7115 92 5.89.0[例5,比较例3]由下述的例12中的步骤A—J制备好一块玻璃板。然后在步骤K中与例12中的情形相同,通过控制一气源系统直至其显示出一1.3×10-1Pa的分压而将丙酮引入此板中,同时将一达到Vact=18V的矩形脉冲电压通过一与i相连的x方向线路,按逐行方式施加到各行上。图21示意地说明了本例中所用的与电子源相连的脉冲电压施加系统。参看图21,上述系统包括一脉冲电压发生器161和一行选择器162。此脉冲电压发生器161的操作和行选择器162的操作,借助一激活驱动器163,分别对于脉冲电压发生与行选择作协调地转换。
由上述脉冲电压发生器产生的脉冲电压施加到此行选择器的输出端Sxl至Sxm中的一个之上。此输出端Sxl至Sxm则分别连接到相应的x方向行DZl至DZm上,同时y方向的行Dyl至Dym则共同连接到地电位电平上。
图21中的参考数号165指一将高压加到金属衬垫或背衬上的高压源,而参考数号166指一用来测量Ie的电流表,但是考虑到丙酮在激活过程中有很高的分压,为避免在上述板内可能发生放电而损伤有关装置,电流表并未使用。
参考数号164指用来测量If的电流表。Ie与If的读数(本例中只是If的读数)存储于控制装置168中,此控制装置到以下述方式根据这些读数控制激活驱动器163的操作。
图22是一阐明行选择器162操作的示意性电路图。输出端Sx1至Sxm分别连接到相应的开关Swl至Swm上,而每一个开关又连接到通向前述脉冲电压发生器的输入行或地电位电平上,并受到所说激活驱动器的控制。
图23是脉冲电压发生器所产生的脉冲电压与行选择器开关操作的时间图。当开关Sw1至Swm中的任何一个连接到输入侧时,它由ON(接通)表示,而在它连接到地电位电平时,则由GND(接地)表示。这批开关是这样地被驱动,即一次只有一个开关连接到输入侧,而对输入侧的连接则依一个脉冲间隔周期地变换到下一个开关上。
这样,脉冲是逐行地加到x方向的行上,而一次是将一个脉冲加到一行之上,为图24所示。
由脉冲电压发生器所产生的脉冲电压有100μsec的脉冲宽度和200 μsec的脉冲间隔,而由行选择器所进行的两个相续的开关操作的间隔则等于200μsec的脉冲间隔,因而将一个脉冲加到所有的100行上,需要20msec。加到各行上的这种脉冲与例12中的情形相同,具有100μsec的脉冲宽度和200μsec的脉冲间隔。
与例12中的情形相同,然后每1分钟施加一个三角形脉冲电压以对各行求出If与Vf间的关系,而当在任何时候探测到If(Vf2)≥If(Vact)/220时,所施加的矩形脉冲电压高度经30秒便升至19V。然后,电压降至18V,继续激活过程的规则顺序。另外,已对控制装置的操作编定程序,以驱动激活驱动器,而使19V的脉冲电压只加到需要这一电压的行上,相反将18V加到所有其余的行上,同时,脉冲电压发生器的操作则同行选择器的转换操作同步。当一行中各个装置的装置电流变成等于If(18V)≥2mA时,对于这一行的激活操作便结束,而对下一行进行相似的操作。对于所有的行,电压的施加是以约30分钟结束。在这种驱动操作方式下,激活过程所需的全部时间与逐行进行的激活过程相比显著地减少了,这是因为可把电压加到其它一些行上,而与此同时,相应的脉冲则未加到选择的行上。
然后,执行一稳定化过程,同时与例12中的情形相同,在除气器发出火花之前,将排气管加热密封。
本例中获得的成像设备用例12中相同的方法进行了试验并取得了相同的结果。
上述成像设备可通过下述方式用来显示图像,即由外部接头Dxl至Dxm和Dyl至Dyn中相关的一对将一扫描信号与调制信号加到各个电子发射装置上使它们发射电子,然后通过高压接头Hv将5.0Kv的高压加到含属背衬85上来加速电子束,直至这些电子束碰撞荧光膜84使之激励并发光。
图25是一显示设备的框图,此设备包括排列一批表面传导电子发射装置所构成的电子源和一块显示板,设计用来根据来自不同信号源的输入信号显示电视传送的各种视频数据与画面。参看图25,它包括显示板141、显示板驱动电路142、显示控制器143、多路调制器144、解码器145、输入/输出接口电路146、CPU 147、图象发生电路148、图像存储接口电路149、150与151、图象输入接口电路152、TV信号接收电路153与154以及一输入段155。(要是此显示设备是用来接收由视频信号与声频信号组成的电视信号时,则需要有沿着附图所示电路来接收、分离、重放和存储声频信号的电路、扬声器及其它装置。但考虑到本发明的范围,这类电路与装置均已略去。)下面根据图像信号的流程来描述此设备的各个部件。
首先,TV信号接收电路154是一种用来接收通过采用电磁波和/或空间光通信网络的无线传输系统所传送的TV图像信号。所用的TV信号系统不限于某个特定的系统,而可以很方便地使用例如NTSC、PAL或SECAM之类的任何系统。上述电路特别适用于涉及到大量扫描行的TV信号(典型的是MUSE系统一类的高清晰度TV系统),这是因为它能用于包括有大量象素的大型显示板上。由TV信号接收电路155所接收的TV信号则转送给解码器145。
其次,TV信号接收电路153是一种用来接收通过采用同轴电缆和/或光纤的有线传输系统传送的TV图像信号。与TV信号接收电路154相同,所用的TV信号系统也不限于特定的某个系统,而由此电路接收到的TV信号则转送给解码器145。
图像输入接口电路152用来接收从摄像机或摄像扫描器一类图像输入装置转送来的图像信号。此电路亦将接收到的图像信号转送给解码器145。
图像存储接口电路152用来检索录像机(VTR)中存储的图像信号,并把检索出的图像信号同样转送给解码器145。
图像存储接口电路151用来检索存储于影碟中的图像信号,同样将检索出的图像信号转送给解码器145。
输入/输出接口电路149用来连接此显示设备与一外部输出信号源如计算机、计算机网络或打印机。此电路对图像数据、字符与图形数据执行输入/输出操作,并在需要时用来控制此显示设备的CPU 147与外部输入信号源之间的信号与数字数据。
图像产生电路148根据通过输入/输出接口电路146而从外部输出信号源输入的,或者是从CPU147输入的图像数据以及字符与图形数据,而将产生的图像数据显示到显示屏上。此电路包括有所写存储器,用来存储图像数据和字符与图形数据;只读存储器,用来存储对应于已给字符码的电荷像;处理机,用来处理图像数据;以及其它为生成屏像所需的电路元件。
为图像生成电路507产生出的用于显示的图像数据输送给解码器145,需要时,也可通过输入/输出接口电路146输送给计算机网络或打印机一类的外部电路。
CPU 147控制此显示设备并执行待于显示屏上显示的图像的产生、选择与编辑操作。与此同时,它产生出用于显示板控制器143的控制信号,并通过图像显示频率、扫描方法(例如隔行扫描或非隔行扫描)、每帧的扫描行数,等等来控制显示设备的操作。
CPU 147还把图像数据以及字符与图形数据直接输送给图像产生电路148,并通过输入/输出接口电路146对外部计算机与存储器进行存取,以获得外部图像数据以及字符与图形数据。CPU 147另外也可设计成能参与此显示设备的其它作业,包括类似于个人用计算机或字处理机中的CPU的产生和处理数据的操作。此CPU 147也可通过输入/输出接口电路146连接外部计算机网络,与它们共同执行计算和其它操作。
输入段155用来将操作者给予它的指令、程序与数据发送给CPU 147。事实上,它可以选自广大一类输入装置,例如键盘、鼠标、操纵杆、条码读出器和声音识别装置以及它们的任何组合形式。
解码器是一种电路,用来通过前述电路148至154将各种图像信号变换为三原色信号、亮度信号以及1与Q信号。解码器145最好包括有图25中虚线所示的图像存储器,以处理例如MUSE系统中需要图像存储器用于信号转换的电视信号。设置图像存储器还有助于显示静止图像,并在必要时通过解码器145与图像产生电路148和CPU 147配合工作,来进行下述种种操作,例如淡化、内插、放大、缩小、合成与编辑画面。
多路调制器144是用来根据CPU给出的控制信号来恰当地选择待显示在显示屏上的图像。换言之,多路调制器144选择来自解码器145的某些已转换的信号并把它们输送给驱动电路142。它也可以在显示单一画面的时间内通过从一组图像信号转换为不同组的图像信号,而将显示屏分成多个画面来同时显示不同的图像。
显示板控制器143是一种用来根据CPU传送来的控制信号来控制驱动电路142操作的电路。
控制器143连同其它有关装置将信号传送给控制电路142用来控制驱动显示板的电源(未示明)的操作序列,以确定此显示板的基本操作。它还用来将信号传送给驱动电路142,以控制图像的显示频率和扫描方法(例如隔行扫描和非隔行扫描)而确定出驱动显示板的方式。
在合适的时候,它也可将信号传送给驱动电路142,用来控制由亮度、对比度、色调与清晰度所表示的将显示到显示屏上的图像的质量。
驱动电路142是用来产生一将加到显示板上的驱动信号。它根据来自多路调制器144的图像信号操作,同时控制来自显示板控制器143的控制信号。
根据本发明的且具有上述构型并如图25所示的显示设备,能够在显示板上显示出由各种图像数据源所给定的种种图像。具体地说,电视图像信号之类的图像信号通过解码器转换后,在送到驱动电路142之前,要由多路调制器选择。另一方面,显示控制器143根据将显示在显示板上的图像的图像信号,产生出用于控制驱动电路142操作的控制信号。然后,驱动电路142根据上述图像信号与控制信号将驱动信号施加到显示板上。这样,图像就显示在显示板上。所有上述操作都由CPU 147以协调方式控制。
上述显示设备不仅能从输送给它的众多图像中选择和显示特定的图像,而且还能进行各种图像处理作业,包括放大、缩小、旋转、加重边缘、淡化、内插、改变颜色与修正宽高比,同时还能在解码器145中设有图像存储器时从事这样一些图像编辑工作,包括综合、抹像、连接、置换与插入,同时,图像产生电路148与CPU 147亦参与这类操作。尽管在上述实施例中没有涉及到,但是,对于声频信号的处理与编辑操作是能够另外设置专用电路的。
这样,根据本发明的且具有上述构型的显示设备就能够在工商业中获得广泛的应用,这是因为它能作为显示设备用于电视广播,作为终端设备用于视频电信会议,作为编辑设备用于静止和活动图像,作为终端设备用于计算机系统,作为字处理机一类的OA(办公室自动化)设备,作为游戏机以及作为许许多多其它用途的设备。
不用说,图25以仅仅只是示明了这样一种显示设备可能构型的例子,这种显示设备包括一显示板,而此显示板则配备有由一批表面传导电子发射装置排列构置成的电子源,而本发明是并不局限于这一例子的。例如,取决于应用目的,图25中的某些电路元件可以略去,也可以另加上某些电路元件。比方说,当把本发明的显示设备用于电视电话时,就可以适当地增设摄像机、扩音器、照明设备以及包括调制解调器在内的传送/接收电路。(阶梯状电子源,图像显示设备)本例中,按下述方式制备了具有阶梯状线路结构的电子源以及具有此种电子源的一种图像设备。
步骤A(图27A)在将一块钠钙玻璃板彻底清洗后,由溅射方法在其上形成一层0.5μm厚的二氧化硅膜而制造出一衬底71,在此衬底上则形成有与具有孔口的一对电极图案相对应的光刻胶(RD—2000N—41;可从日立化学公司购得)图案。然后由真空沉积法相续形成厚度分别为5nm和100nm的Ti膜与Ni膜。最后用一种有机溶剂溶解此光刻胶,剥离下Ni/Ti膜,产生出同时起到装置电极作用的线路171。这对装置电极分开的距离L为3μm。
步骤B(图27B)用真空沉积法在相应装置上形成一层厚300nm的Cr,然后用光刻法形成一个与此导电薄膜图案相对应的孔173。再形成一个用来形成导电薄摸的Cr掩模173。
随后,将Pd—胺—络化物溶液(CCP 4230可购自Okuno药剂公司)通过旋转涂布器涂布到Cr膜上,于300℃烘焙12分钟,制成一种含有Pd为其主要成份的细粒膜。这种膜的厚度为7nm。步骤C(图27C)通过湿浸蚀法除去Cr掩模,剥离下PdO细粒膜,制得了具有所需轮廓的导电薄膜4。此导电薄膜显示出一电阻Rs=2×104Ω/□。
步骤D按照例12情形制备出一显示板,但本例中的显示板与例12中的稍有不同即其中设有栅极。如图15所示,电源衬底71、后板81、面板86与栅极120是布放在一起的,同时设置了外部接头122与外部栅极接头123。
按例12中的情形在成像设备进行了成像处理,将各排中阳极侧的线路与阴极侧的线路连到电源。
然后进行激活过程。电连接方式与例13中的类似,使各行中的阴极侧线路接地,同时使各行中的阳极侧线路通过行选择器的Sx100而连到输出端Sxl。
当If超过2mA时施加一矩形脉冲电压,同时如在例18中的情形在激活过程中观察1f,直至停止施加电压。
此激活过程的气氛使得丙酮的分压为1.3×10-1Pa。
各行的激活过程是在约30分钟内完成。然后作为一稳定化过程对显示板内进行抽空,在此稳定化过程后将排气管密封,再进行一除气过程。
与例12中的情形相同,对各个行进行了性能测试。在测试过程中使栅极接地。结果将于后面说明。在例12的步骤A至K之后进行了激活过程。把正己烷作为激活剂引入,直至分压送到2.7×10-3Pa。与例13中的情形相同,在此激活过程中施加一18V的矩形脉冲电压,同时在施加1KV下观察If。一旦Ie对每个装置超过1μA,便中止施加脉冲电压。此激活过程在30分钟内结束。
然后进行一稳定化过程,并在执行除气过程之前密封排气管。
与例12的情形相同,对此设备的电子发射区的各行作了性能测试。试验结果将于后面给出。在例12的步骤A至J之后进行了一个激活过程,将丙酮引入,直到分压达到1.3×10-1PA。与例13中的情形相同,在此激活过程中施加了脉冲宽度与脉冲间隔同于例13中的一种三角形脉冲电压。
此脉冲高度初始时为10V,并按0.2V/min的速率依一规则序列上升。
进行了上述激活过程,并对各行观察了If。当在装置电压Vf2=Vact2时If的值达到If(Vf2)≥If(Vact)/220,即施加一在此时刻较Vact高1V的电压,并在重新开始此规则序列之前保持30秒。这项操作是在激活过程开始后的2分钟起始,并且每隔一分钟观察测量仪表一次。
当脉冲高度达到18V时,即终止此激活过程并将作业进行到稳定化阶段,经过稳定化后便密封排气管,再进行一除气过程。随后测试此设备的性能。
借助用于激活过程的技术对例14至例16的成像设备的性能进行了测试,其中是将一脉冲电压加到各行上来观察If与Ie。此脉冲电压是一个16V的矩形脉冲电压,而If的值在Vf=8V时定义为Ifmid。为测量Ie而加到金属衬垫上的电压Ie为1KV。
If(mA) Ie(μA) Ifmid(mA) ΔIe(%)例14125 90 5.69.5例15165 145 7.54.5例16115 135 0.812.0在采用规则序列对例12至1 6中的各行进行了性能测试时,可把一或多行选用作试样来经受测试。要是同于例14与15中的情形,在测量了If后立即中止激活过程,便可指望所有各行具有均一的性能,这是由于涉及到的激活剂与此设备的构型所致。于是在这种情形下可以满意地采用抽样技术。换句话说,可同时激活一批独立布线的发射装置。
正如上面所详述的,在制造表面传导电子发射装置,制造将这种装置排成一批而获得的电子源,以及制造包括有这种电子源或电子发射区的成像设备中,可以高效而有利地采用依据本发明进行激活过程的一种设备来改进上述发射装置的质量均匀性,同时减少漏泄电流并使上述装置与设备的性能达到最佳,这是因为本发明的制造设备包括了用来为上述激活过程创造条件的装置,还包括了根据此设备用电方法探测出的数据来改进正上述条件和确定中止这种激活过程的时刻的装置。
权利要求
1.一种电子发射装置的制造方法,所说电子发射装置具有一对发射装置电极和一导电薄膜,该导电薄膜包括布置于上述电极之间的一电子发射区,此方法特征在于它包括用来加大发射装置的发射电流的一激活过程,所说激活过程包括步骤a)在初始条件下将一电压(Vact)施加到具有一间隙段的导电薄膜上,b)探测所说导电薄膜的导电性能和c)需要时,修正为探测到的导电薄膜的导电性能函数的所说初始条件。
2.如权利要求1所述的一种电子发射装置的制造方法,特征在于所说探测上述导电薄膜的导电性能的步骤包括探测流经导电薄膜的电流。
3.如权利要求2所述的一种电子发射装置的制造方法,特征在于所说探测上述导电薄膜的导电性能的步骤包括探测对于低于所说Vact的一个电压(Vf2)的流经导电薄膜的电流(If2)。
4.如权利要求3所述的一种电子发射装置的制造方法,特征在于所说Vf2等于Vact/2。
5.如权利要求1所述的一种电子发射装置的制造方法,特征在于所说探测上述导电薄膜的导电性能的步骤包括探测流经导电薄膜的电流和探测由从导电薄膜发射的电子形成的电流。
6.如权利要求5所述的一种电子发射装置的制造方法,特征在于所说探测上述导电薄膜的导电性能的步骤还包括探测流经导电薄膜的电流的Ie/If(θ)和探测由导电薄膜发射的电子形成的电流。
7.如权利要求6所述的一种电子发射装置的制造方法,特征在于所说探测上述导电薄膜的导电性能的步骤还包括探测所说0随时间的变化率(dθ/dt)。
8.如权利要求5所述的一种电子发射装置的制造方法,特征在于所说探测上述导电薄膜的导电性能的步骤还包括探测流经导电薄膜的电流的阈电压和探测由导电薄膜发射的电子形成的电流的阈电压。
9.如权利要求8所述的一种电子发射装置的制造方法,特征在于所说探测上述导电薄膜的导电性能的步骤还包括探测所说Vthe与Vthe的差。
10.如权利要求1所述的一种电子发射装置的制造方法,特征在于所说探测上述导电薄膜的导电性能的步骤还包括探测由导电薄膜发射的电子形成的电流。
11.如权利要求10所述的一种电子发射装置的制造方法,特征在于所说探测上述导电薄膜的导电性能的步骤还包括探测由导电薄膜发射的电子形成的电流随时间的变化速率(DIe/dt)。
12.如权利要求1到11所述的一种电子发射装置的制造方法,特征在于所说初始条件修改步骤包括修改施加到导电薄膜上的电压(Vact)。
13.如权利要求12所述的一种电子发射装置的制造方法,特征在于所说电压(Vact)修改步骤包括修改施加到导电薄膜上的脉冲电压的脉冲高度。
14.如权利要求12所述的一种电子发射装置的制造方法,特征在于所说电压(Vact)修改步骤包括修改施加到导电薄膜上的脉冲电压的脉冲宽度。
15.如权利要求12所述的一种电子发射装置的制造方法,特征在于所说电压(Vact)修改步骤包括修改施加到导电薄膜上的脉冲电压的脉冲间隔。
16.如权利要求1到11任意一项所述的一种电子发射装置的制造方法,特征在于所说初始条件修改步骤包括改变环境气体的物质。
17.如权利要求16所述的一种电子发射装置的制造方法,特征在于所说改变环境气体的物质的步骤包括将一种腐蚀气体导入环境气体中。
18.如权利要求17所述的一种电子发射装置的制造方法,特征在于所说腐蚀气体为氢气。
19.如权利要求1到11中任何一项所述的一种电子发射装置的制造方法,特征在于所说初始条件的修改步骤包括修改环境气体的成份的分压。
20.如权利要求19所述的一种电子发射装置的制造方法,特征在于所说修改环境气体的成份的分压的步骤包括调节一种有机气体物质的分压。
21.如权利要求19所述的一种电子发射装置的制造方法,特征在于所说修改环境气体的成份的分压的步骤包括调节一种腐蚀气体的分压。
22.如权利要求1所述的一种电子发射装置的制造方法,特征在于所说电子发射装置为表面传导电子发射装置。
23.包括一批成排列且连接的电子发射装置的电子源的制造方法,特征在于所说电子发射装置由如权利要求1所述的方法制造。
24.包括一批排列且连接成一矩阵的电子发射装置的电子源的制造方法,特征在于所说电子发射装置由如权利要求1所述的方法制造。
25.一种包括电子发射装置和成像件的成像设备的制造方法,特征在于所说电子发射装置由如权利要求1所述的方法制造。
26.用于在电子发射装置上执行一激活过程以增加发射装置的发射电流的一种设备,所说电子发射装置具有一对发射装置电极和一层导电薄膜,该薄膜包括布置在上述电极之间的一电子发射区,所说设备的特征在于它包括a)在初始条件下,用于将一电压(Vact)施加到具有一间隙段的导电薄膜上的器件,b)用于探测所说导电薄膜的导电性能的器件和c)需要时用于修改为探测到的导电薄膜导电性能的函数的初始条件的器件。
27.如权利要求26所述的用于在电子发射装置上执行一激活过程的一种设备,其特征在于所说用于探测上述导电薄膜的导电性能的器件包括用于探测流经导电薄膜的电流的器件。
28.如权利要求27所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于探测上述导电薄膜的导电性能的器件包括用于探测对于低于所说Vact的一个电压(Vf2)的流经导电薄膜的电流的器件。
29.如权利要求28所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说Vf2等于Vact/2。
30.如权利要求26所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于探测上述导电薄膜的导电性能的器件包括用于探测流经导电薄膜的电流和由从导电薄膜发射出的电子所形成的电流的器件。
31.如权利要求30所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于探测上述导电薄膜的导电性能的器件还包括用于探测流经导电薄膜的电流和由从导电薄膜发射出的电子所形成的电流的Ie/If(0)的器件。
32.如权利要求30所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于探测上述导电薄膜的导电性能的器件还包括用于探测所说(随时间的变化速率(d0/dt)的器件。
33.如权利要求30所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于探测上述导电薄膜的导电性能的器件还包括用于探测流经导电薄膜的电流的阈电压和由从导电薄膜发射的电子形成的电流的阈电压的器件。
34.如权利要求33所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于探测上述导电薄膜的导电性能的器件还包括用于探测所说Vthe和Vthf的差(Vthe—Vthf)的器件。
35.如权利要求26所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于探测上述导电薄膜的导电性能的器件还包括用于探测由从导电薄膜发射的电子形成的电流的器件。
36.如权利要求35所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于探测上述导电薄膜的导电性能的器件还包括用于探测由从导电薄膜发射的电子形成的电流随时间的变化速率(dle/dt)的装置。
37.如权利要求26至36中任意一项所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于控制器件包括用于修改施加到导电薄膜上的电压(Vact)的器件。
38.如权利要求37所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于修改电压(Vact)的器件包括用于修改施加到导电薄膜上的脉冲电压的脉冲高度的器件。
39.如权利要求37所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于修改电压(Vact)的器件包括用于修改施加到导电薄膜上的脉冲电压的脉冲宽度的器件。
40.如权利要求37所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于修改电压(Vact)的器件包括用于修改施加到导电薄膜上的脉冲电压的脉冲间隔的器件。
41.如权利要求26至36任意一项所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于控制器件包括用于改变环境气体的物质的器件。
42.如权利要求41所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于改变环境气体的物质的器件包括用于将一种腐蚀气体导入环境气体中的器件。
43.如权利要求26至36中任意一项所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说控制器件包括用于修改环境气体的成份的分压的器件。
44.如权利要求43所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于修改环境气体成份的分压的器件包括用于调节一为有机物的气体的分压的器件。
45.如权利要求43所述的用于在电子发射装置上执行一激活过程的一种设备,特征在于所说用于修改环境气体的成份的分压的器件包括用于调节一种腐蚀气体的分压的器件。
全文摘要
具有一对发射装置电极和一导电薄膜的电子发射装置,所说导电薄膜包括布置在上述电极之间的一电子发射区。该发射装置通过用于加大发射装置的发射电流的一激活过程而制造出来。所说激活过程包括步骤a)在初始条件下将一电压(Vact)施加到具有一间隙段的导电薄膜上,b)探测导电薄膜的导电性能和c)在需要时修改作为探测到的导电薄膜的导电性能的函数的初始条件。
文档编号H01J1/30GK1121256SQ95109980
公开日1996年4月24日 申请日期1995年7月12日 优先权日1994年7月12日
发明者池田外充, 山野辺正人, 河出一佐哲, 大西敏一, 岩崎达哉 申请人:佳能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1