轴承钢复杂异形截面环形件的辗轧成形方法

文档序号:3022469阅读:276来源:国知局
专利名称:轴承钢复杂异形截面环形件的辗轧成形方法
技术领域
本发明涉及一种环形件的轧制成形方法,特别是涉及了轴承钢复杂异形截面环形件的辗轧成形方法。
背景技术
随着航空、航天、船舶、核能、燃气轮机、风力发电等行业的讯速发展,对环形件的成形尺寸精度、组织及性能也提出了较高的要求,环形件轧制技术也随之朝着近净成形方向发展,轧制成形的环形件其截面形状越来越复杂,轧制成形难度越来越大,而如何获得沿零件外形分布的环形件是实现精密轧制成形的前提。2008年10月8日公开的中国发明专利说明书CN 101279343A公开了一种不锈钢异形环锻件的辗轧成形方法,该方法把按规格下料的不锈钢棒料经镦粗、冲孔、轧环制取矩形异轧坯,再把矩形异轧坯装进轧环机辗轧模具内辗轧成形为异形环锻件,通过在各工艺步骤中控制准确的变形量,轧制出了组织和性能良好的异形环锻件。该方法由于采用矩形预轧坯直接辗轧成异形环形件,一般情况下只能辗轧成形简单形状的异形截面环形件;若采用该方法辗轧复杂形状的异形截面环形件例如截面上既有凹槽面也有凸台面的复杂异形截面轴承钢环形件时,由于辗轧过程中矩形预轧坯在轧制孔型中的金属流动复杂,矩形预轧坯与轧制孔型之间的作用界面情况复杂,辗轧过程具有明显的非线性、时变、非稳态特性,造成辗轧成形的异形截面环形件容易产生截面轮廓充不满、外表面有折叠、端面有鱼鳞状等缺陷,从而影响终轧环形件的尺寸精度和组织性能,严重时还可导致环形件报废,不利于实现异形截面环形件的精密辗轧成形。

发明内容
本发明要解决的技术问题是提供一种按预定体积流量反向变形的异形预轧坯来实现轴承钢复杂异形截面环形件的辗轧成形方法,采用该方法能够轧制出外形完整、尺寸精度高、组织和性能优良并沿零件外形分布的轴承钢复杂异形截面环形件。为解决上述技术问题,本发明所述轴承钢复杂异形截面环形件的辗轧成形方法,其工艺步骤如下:把按规格下料的轴承钢棒料加热到750°C 1140°C的变形温度后经镦粗、冲孔和环轧成矩形预轧坯:加热所述矩形预轧坯到上述变形温度后装进轧环机使其纵向截面处于辗轧模具的预轧异形孔型内,所述预轧异形孔型由具有凹槽面的预轧内型模块、具有上凹槽面和下凹槽面的预轧外型模块及上端盖和下端盖围成;启动轧环机使芯辊和主辊以865KN 1865KN的轧制力在预轧异形孔型内辗轧矩形预轧还,矩形预轧还以9mm/s 15mm/s的速度沿径向展宽,并在预轧内型模块和预轧外型模块的辗轧下沿与终轧异形截面环形件结构形状相反的方向按预定的体积流量变形成异形预轧坯;所述异形预轧坯由第一预轧矩形环、第二预轧异形环、第三预轧矩形环、第四预轧异形环及第五预轧矩形环依次叠加组成;在异形预轧坯的内环面上具有预轧内凸台面,在其外环面上具有预轧上凸台面和预轧下凸台面,所述预轧上凸台面处于第二预轧异形环的外周面,所述预轧下凸台面处于第四预轧异形环的外周面;在第二预轧异形环和第四预轧异形环之间具有预轧凹槽面,并且所述第一预轧矩形环与第五预轧矩形环形状和尺寸完全相同、所述第二预轧异形环与第四预轧异形环形状和尺寸完全相同;把轧环机芯辊模的预轧内型模块更换为终轧内型模块,所述终轧内型模块的外周面具有外凸台面;把主辊模的预轧外型模块更换为终轧外型模块,所述终轧外型模块的外周面上具有上凸台面和下凸台面;所述终轧内型模块、终轧外型模块的外周面与所述上端盖、下端盖围成终轧异形孔型;把异形预轧坯在锻造加热炉内加热到750°C 1140°c的变形温度后装进轧环机使其纵向截面处于终轧异形孔型内,使终轧内型模块的外凸台面与异形预轧坯的预轧内凸台面相对应,终轧外型模块的上凸台面与异形预轧坯的预轧上凸台面相对应,终轧外型模块的下凸台面与异形预轧坯的预轧下凸台面相对应;启动轧环机以580KN 880KN的轧制力对异形预轧坯进行轧制,所述异形预轧坯在终轧异形孔型内,其内环面上的预轧内凸台面及其外环面上的预轧上凸台面、预轧下凸台面首先受到来自终轧内型模块的外凸台面及终轧外型模块的上凸台面、下凸台面的轧制,异形预轧坯在异形孔型内以3mm/s 9mm/s的速度沿径向展宽,其内金属流动从第二预轧异形环向第一预轧矩形环和第三预轧矩形环流动,同时从第四预轧异形环向第三预轧矩形环和第五预轧矩形环方向流动;当第二预轧异形环内的金属流到第一预轧矩形环和第三预轧矩形环内的金属体积分别为预定的流量体积Vtl,并且当第四预轧异形环内的金属流到第三预轧矩形环和第五预轧矩形环内的金属体积分别为预定的流量体积Vtl时,异形预轧坯在终轧异形孔型内被辗轧成复杂的异形截面环形件;所述异形截面环形件由第一终轧异形环、第二终轧矩形环、第三终轧异形环、第四终轧矩形环及第五终轧异形环依次叠加组成,所述第三终轧异形环的外环面具有终轧外凸台面,在所述第一终轧异形环与第三终轧异形环之间具有终轧上凹槽面,在所述第三终轧异形环与第五终轧异形环之间具有终轧下凹槽面,在所述异形截面环形件的内环面上具有终轧内凹槽面,并且所述第一终轧异形环与第五终轧异形环的形状和尺寸完全相同、所述第二终轧矩形环与第四终轧矩形环的形状和尺寸完全相同。所述轴承钢的材料牌号是331IMPP。所述异形预轧坯与所述异形截面环形件之间的体积关系按下列公式计算:V01=V1 — V0 ; V02=V2 + 2V0 ; V03=V3 — 2V0 ; V04=V4 + 2V0 ; V05=V5 — V0 ;式中:V01—第一预轧矩形环对应的环形体积;V02—第二预轧异形环对应的环形体积;V03—第三预轧矩形环对应的环形体积;V04—第四预轧异形环对应的环形体积;V05—第五预轧矩形环对应的环形体积;V1—第一终轧异形环对应的环形体积;V2—第二终轧矩形环对应的环形体积;
V3—第三终轧异形环对应的环形体积;V4—第四终轧矩形环对应的环形体积;V5—第五终轧异形环对应的环形体积;V0—从第二预轧异形环内流到第一预轧矩形环内的预定金属流量体积;等于从第二预轧异形环内流到第三预轧矩形环内的预定金属流量体积;等于从第四预轧异形环内流到第三预轧矩形环内的预定金属流量体积;等于从第四预轧异形环内流到第五预轧矩形环内的预定金属流量体积。与现有技术相比,本发明的有益效果如下:本发明先把制取的轴承钢矩形预轧坯在预轧异形孔型内由预轧内型模块和预轧外型模块辗轧成与终轧异形截面环形件结构形状相反的异形预轧坯,再把异形预轧坯在终轧异形孔型内由终轧内型模块和终轧外型模块辗轧成异形截面环形件;辗轧时,所述异形预轧坯在终轧异形孔型内,其内环面上的预轧内凸台面及其外环面上的预轧上、下凸台面首先受到来自终轧内型模块的外凸台面及终轧外型模块的上、下凸台面的轧制,异形预轧坯沿径向展宽其内部金属从较多的地方向较少的地方流动,通过设计计算和轧环机的精确控制,使异形预轧坯第二预轧异形环内的金属流到第一预轧矩形环和第三预轧矩形环内的金属体积分别为预定的流量体积,第四预轧异形环内的金属流到第三预轧矩形环和第五预轧矩形环内的金属体积分别为预定的流量体积;由于异形预轧坯在异形孔型内辗轧成异形截面环形件时其体积是不变的,通过引导金属流向简化了异形预轧坯与轧制孔型之间的作用界面关系,增加了辗轧过程的稳定性,获得了沿零件外形呈完整流线分布的复杂异形截面环形件,克服辗轧过程中易出现截面轮廓充不满、外表面有折叠、端面有鱼鳞状等缺陷,实现了轴承钢复杂异形截面环形件的精密辗轧成形。本发明在制异形预轧坯时采用较大的轧制力和较高的展宽速度,有利于矩形预轧坯快速成形为异形预轧坯,提高生产效率,而不会对终轧异形截面环形件的尺寸精度和组织性能产生任何影响;在辗轧成形异形截面环形件时采用较小的轧制力和较低的展宽速度,有利于控制异形预轧坯内的金属流动速度和流动方向,使异形截面环形件的轮廓能够充满、避免产生折叠、鱼鳞状等缺陷,并获得均匀、致密的内部组织。经检测该轴承钢异形截面环形件的尺寸精度,达到了相应尺寸的3%。(千分之三)。经检测该轴承钢异形截面环形件的室温拉伸性能,其抗拉强度为1210MPa(大于使用要求的1175MPa),其伸长率为0.2%时的屈服强度为IlOOMPa(大于使用要求的1080MPa),断后伸长率为15% (大于使用要求的10%),断面收缩率为48% (大于使用要求的45%),冲击功为65J (大于使用要求的62J)。经检测该轴承钢异形截面环形件的金相组织,未见非回火态马氏体,表面脱碳层深度为0.6mm,满足了使用要求。


下面结合附图和具体实施方式
对本发明作进一步详细说明。图1是轴承钢矩形预轧坯的制坯工艺流程图。图2是轴承钢矩形预轧坯装进辗轧模具的结构图。图3是图2所示的矩形预轧坯辗轧工艺过程的俯视方向示意图。
图4是辗轧成形的轴承钢异形预轧坯沿其中心线的纵剖面图。图5是辗轧成形的轴承钢复杂异形截面环形件沿其中心线的纵剖面图。图6是图4所示的异形预轧坯与图5所示的复杂异形截面环形件沿其中心线的纵剖面对比图。图7是轴承钢异形预轧坯的纵向截面装进终轧异形孔型内的结构图。图8是轴承钢异形预轧坯的纵向截面在终轧异形孔型内被辗轧时的金属流动方向示意图。
具体实施例方式实施本发明所述的轴承钢复杂异形截面环形件的辗轧成形方法需要提供锻造加热炉、压力机、轧环机、机械手等设备。下面以美国材料牌号为3311MPP的轴承钢为例来详细说明该方法的具体实施方式
:该轴承钢的主要化学兀素含量(重量百分比)为:含C量0.1% 0.16%、含Si量0.15% 0.35%、含 Mn 量 0.30% 0.50%、含 P 量< 0.020%、含 S 量 0.005% 0.015%、含 Ni 量3.25% 3.75%、含 Cr 量 1.3% 1.6%、含 Mo 量彡 0.15%、含 Cu 量彡 0.3%、含 Ti 量彡 0.005%、含 Al 量 0.012% 0.055%、含 Sn 量< 0.002%、含 As 量< 0.002%、含 O 量< 0.0014%,余量
为Fe。该轴承钢从棒料到生产出合格的复杂异形截面环形件的工艺步骤如下:步骤1:矩形预轧坯的制坯。现有技术中给出的矩形预 轧坯的制坯如图1所示,把按规格下料的3311MPP轴承钢棒料I在锻造加热炉内加热到750V 1140°C的变形温度,经镦粗、冲孔和环轧成矩形预轧还10。步骤2:异形预轧坯的制坯。现有技术中给出的带有主辊模和芯辊模的轧环机如图2所示,所述芯辊模由预轧内型模块16、芯套21、压环22通过螺母23和芯辊键24固定在芯辊12上;所述主辊模由下端盖19、预轧外型模块17、上端盖18通过主辊套20和主辊键25固定在主辊13上,所述预轧内型模块16和预轧外型模块17的外周面与所述上、下端盖18和19围成预轧异形孔型
11。本发明中所述预轧内型模块16的外周面具有凹槽面1 ,所述预轧外型模块17的外周面具有上凹槽面H1和下凹槽面172。制坯时,先把矩形预轧坯10在锻造加热炉内加热到750V 1140°C的变形温度后装进由主辊模和芯辊模组成的辗轧模具,如图2所示,把该矩形预轧坯10用机械手套装进芯辊模使其围住预轧内型模块16并平放在轧环机的底盘上(图中未示出);启动轧环机使其主辊13按图2所示方向旋转,然后使芯辊12向主辊13方向平移靠近主辊13后芯辊模与主辊模合模,矩形预轧坯10的纵向截面处于预轧异形孔型11内;同时由轧环机驱动上、下锥辊14和15按图2所示方向转动并准备夹持住矩形预轧坯10的上、下端面,使轧环机的两个抱辊26 (如图3所示)扶持住矩形预轧坯10的外环周面;主辊13驱动矩形预轧坯10、芯辊12和两个抱辊26按图2和图3所示的方向转动,这时转动的上、下锥辊14和15夹持住转动的矩形预轧坯10的上、下端面与其一起转动;芯辊12沿径向朝主辊13方向作进给运动使芯辊12和主辊13以865KN 1865KN的轧制力在其预轧异形孔型11内辗轧矩形预轧还10,矩形预轧还10以9mm/s 15mm/s的速度沿径向展宽,并在具有凹槽面Wtl的预轧内型模块16和具有上凹槽面H1、下凹槽面172的预轧外型模块17的辗轧下沿与终轧异形截面环形件结构形状相反的方向变形。其壁厚逐渐减小,上、下锥辊14和15以及两个抱辊26随着矩形预轧坯10的径向展宽而外移;矩形预轧坯10在预轧异形孔型11内被辗轧产生连续局部塑性变形,最后矩形预轧坯10在预轧异形孔型11内按预定的体积流量变形后成为与终轧异形截面环形件40(如图5所示)结构形状完全相反的异形预轧坯30,所有转动部件停止后移开主辊13、锥辊14和15、两个抱辊26以及压在芯辊12顶部的轧环机悬臂,从芯辊顶部取出异形预轧坯30。轧制成形的异形预轧坯30的纵截面形状如图4所示,所述异形预轧坯30由第一预轧矩形环Stll、第二预轧异形环Stl2、第三预轧矩形环Stl3、第四预轧异形环Stl4及第五预轧矩形环S05依次叠加组成;在异形预轧坯30的内环面上具有预轧内凸台面30°,在其外环面上具有预轧上凸台面301和预轧下凸台面302,所述预轧上凸台面301处于第二预轧异形环Stl2的外周面,所述预轧下凸台面302处于第四预轧异形环Stl4的外周面;在第二预轧异形环Stl2和第四预轧异形环Stl4之间具有预轧凹槽面303,并且所述第一预轧矩形环Stll与第五预轧矩形环Stl5形状和尺寸完全相同、所述第二预轧异形环Stl2与第四预轧异形环Stl4形状和尺寸完全相同,为清楚起见,上述环S01、S02, S03> Stl4及Stl5之间用双点划线101、102、103及104进行了分隔。图5示出了最终需要辗轧成形的异形截面环形件40的纵截面剖面结构,所述异形截面环形件40由第一终轧异形环S1、第二终轧矩形环S2、第三终轧异形环S3、第四终轧矩形环S4及第五终轧异形环S5依次叠加组成,所述第三终轧异形环S3的外环面具有终轧外凸台面403,在所述第一终轧异形环S1与第三终轧异形环S3之间具有终轧上凹槽面401,在所述第三终轧异形环S3与第五终轧异形环S5之间具有终轧下凹槽面402,在异形截面环形件40的内环面上具有终轧内凹槽面40°,并且所述第一终轧异形环S1与第五终轧异形环S5的形状和尺寸完全相同、所述第二终轧矩形环S2与第四终轧矩形环S4的形状和尺寸完全相同。为清楚起见,上述环S1、S2、S3、S4&S5之间也用双点划线101、102、103及104进行了分隔。图6示出了异形预轧坯30与异形截面环形件40的纵截面对比图,从图6中可以看出,上述异形预轧坯30的环SQ1、S02, S03> S04, S05及异形截面环形件40的环Sp S2, S3、S4、S5是能够同时用双点划线101、102、103、104分隔的。异形预轧坯30与异形截面环形件40的各环之间的体积关系按下列公式计算:V01=V1 — V0 -,V02=V2 + 2V0 -,V03=V3 — 2V0 -,V04=V4 + 2V0 -,V05=V5 — V0。式中:V01—第一预轧矩形环Stll对应的环形体积;V02—第二预轧异形环Stl2对应的环形体积;V03—第三预轧矩形环Stl3对应的环形体积;V04—第四预轧异形环Stl4对应的环形体积;V05—第五预轧矩形环Stl5对应的环形体积;V1—第一终轧异形环S1对应的环形体积;V2—第二终轧矩形环S2对应的环形体积;V3—第三终轧异形环S3对应的环形体积;
V4—第四终轧矩形环S4对应的环形体积;V5—第五终轧异形环S5对应的环形体积;V0—从第二预轧异形环Stl2内流到第一预轧矩形环Stll内的预定金属流量体积;等于从第二预轧异形环Stl2内流到第三预轧矩形环Stl3内的预定金属流量体积;等于从第四预轧异形环Stl4内流到第三预轧矩形环Stl3内的预定金属流量体积;等于从第四预轧异形环S04内流到第五预轧矩形环S05内的预定金属流量体积。并且,从上述第一预轧矩形环Stll与第五预轧矩形环Stl5形状和尺寸完全相同,第二预轧异形环Stl2与第四预轧异形环Stl4形状和尺寸完全相同,可知=Vtll= V05, V02=V04 ;从上述第一终轧异形环S1与第五终轧异形环S5的形状和尺寸完全相同,第二终轧矩形环S2与第四终轧矩形环S4的形状和尺寸完全相同,可知=V1= v5、v2=v4。步骤3:异形截面环形件的辗轧成形。如图7所示,把轧环机芯辊模的预轧内型模块16更换为终轧内型模块16',所述终轧内型模块16'的外周面具有外凸台面16° ;把主辊模的预轧外型模块17更换为终轧外型模块17',所述终轧外型模块17'的外周面上具有上凸台面171和下凸台面172;所述终轧内型模块16'、终轧外型模块17'的外周面与所述上端盖18、下端盖19围成终轧异形孔型 11'。把异形预轧坯30在锻造加热炉内加热到750°C 1140°C的变形温度后按步骤2所述的方法装进轧环机使其纵向截面处于终轧异形孔型IP内,使终轧内型模块16'的外凸台面16°与异形预轧坯30的预轧内凸台面30°相对应,终轧外型模块17'的上凸台面171与异形预轧坯30的预轧上凸台面301相对应,终轧外型模块17'的下凸台面172与异形预轧坯30的预轧下凸台面302相对应。按步骤2所述的方法启动轧环机以580KN 880KN的轧制力对异形预轧坯30进行轧制,如图8所示,所述异形预轧坯30在终轧异形孔型11'内,其内环面上的预轧内凸台面30°及其外环面上的预轧上凸台面301、预轧下凸台面302首先受到来自终轧内型模块16'的外凸台面16°及终轧外型模块17'的上凸台面171、下凸台面172的轧制(图8中F表示轧制力),异形预轧还30在异形孔型11'内以3mm/s 9mm/s的速度沿径向展宽,并从金属较多的地方向较少的地方流动,即异形预轧坯30内的金属从第二预轧异形环Stl2向第一预轧矩形环Stll和第三预轧矩形环Stl3流动,同时从第四预轧异形环Stl4向第三预轧矩形环S03和第五预轧矩形环S05方向流动;轧制过程中,通过设计计算和轧环机的精确控制,当第二预轧异形环Stl2内的金属流到第一预轧矩形环Stll和第三预轧矩形环Stl3内的金属体积分别为预定的流量体积Vtl,并且当第四预轧异形环Stl4内的金属流到第三预轧矩形环Stl3和第五预轧矩形环Sci5内的金属体积分别为预定的流量体积Vci时,即:当V1= V01 + V0^V2= V02 —2V0,V3= V03 + 2Vq、V4= V04 - 2Vq、V5= V05 + V0时,异形预轧坯30在终轧异形孔型11'内被辗轧成复杂的异形截面环形件40。在上述步骤I 3中 ,该轴承钢的终锻或终轧温度不小于750°C。经检测,采用上述方法辗轧成形的3311MPP轴承钢异形截面环形件40,其形状沿零件外形分布,并具有较高的尺寸精度和优良的内部组织及性能,完全满足了该轴承钢环形件的使用要求。
权利要求
1.一种轴承钢复杂异形截面环形件的辗轧成形方法,包括把按规格下料的轴承钢棒料(I)加热到750V 1140°c的变形温度后经镦粗、冲孔和环轧成矩形预轧坯(10)的步骤,其特征在于,该方法还包括以下步骤:加热所述矩形预轧坯(10)到上述变形温度后装进轧环机使其纵向截面处于辗轧模具的预轧异形孔型(11)内,所述预轧异形孔型(11)由具有凹槽面(Ietl)的预轧内型模块(16)、具有上凹槽面(H1)和下凹槽面(172)的预轧外型模块(17)及上端盖(18)和下端盖(19)围成; 启动轧环机使芯辊(12)和主辊(13)以865KN 1865KN的轧制力在预轧异形孔型(11)内辗轧矩形预轧还(10),矩形预轧还(10)以9mm/s 15mm/s的速度沿径向展宽,并在预轧内型模块(16)和预轧外型模块(17)的辗轧下沿与终轧异形截面环形件(40)结构形状相反的方向按预定的体积流量变形成异形预轧坯(30);所述异形预轧坯(30)由第一预轧矩形环(Stll)、第二预轧异形环(S。、第三预轧矩形环(\3)、第四预轧异形环(Stl4)及第五预轧矩形环(Stl5)依次叠加组成;在异形预轧坯(30)的内环面上具有预轧内凸台面(30°),在其外环面上具有预轧上凸台面(301)和预轧下凸台面(302),所述预轧上凸台面(301)处于第二预轧异形环(Stl2)的外周面,所述预轧下凸台面(302)处于第四预轧异形环(Stl4)的外周面;在第二预轧异形环(Stl2)和第四预轧异形环(Stl4)之间具有预轧凹槽面(303),并且所述第一预轧矩形环(Stll)与第五预轧矩形环(Stl5)形状和尺寸完全相同、所述第二预轧异形环(Stl2)与第四预轧异形环(Stl4)形状和尺寸完全相同; 把轧环机芯辊模的预轧内型模块 (16)更换为终轧内型模块(16'),所述终轧内型模块(16,)的外周面具有外凸台面(16°);把主辊模的预轧外型模块(17)更换为终轧外型模块(17'),所述终轧外型模块(17')的外周面上具有上凸台面(171)和下凸台面(172);所述终轧内型模块(16')、终轧外型模块(17')的外周面与所述上端盖(18)、下端盖(19)围成终轧异形孔型(1P ); 把异形预轧坯(30)在锻造加热炉内加热到750°C 1140°C的变形温度后装进轧环机使其纵向截面处于终轧异形孔型(1P )内,使终轧内型模块(16')的外凸台面(16°)与异形预轧坯(30)的预轧内凸台面(30°)相对应,终轧外型模块(17')的上凸台面(171)与异形预轧坯(30)的预轧上凸台面(301)相对应,终轧外型模块(17')的下凸台面(172)与异形预轧坯(30)的预轧下凸台面(302)相对应;启动轧环机以580KN 880KN的轧制力对异形预轧坯(30)进行轧制,所述异形预轧坯(30)在终轧异形孔型(11')内,其内环面上的预轧内凸台面(30°)及其外环面上的预轧上凸台面(301)、预轧下凸台面(302)首先受到来自终轧内型模块(16')的外凸台面(16°)及终轧外型模块(17')的上凸台面(171)、下凸台面(172)的轧制,异形预轧坯(30)在异形孔型(11')内以3mm/s 9mm/s的速度沿径向展宽,其内金属流动从第二预轧异形环(Stl2)向第一预轧矩形环(S01)和第三预轧矩形环(S03)流动,同时从第四预轧异形环(S04)向第三预轧矩形环(Stl3)和第五预轧矩形环(Stl5)方向流动;当第二预轧异形环(Stl2)内的金属流到第一预轧矩形环(Stll)和第三预轧矩形环(Stl3)内的金属体积分别为预定的流量体积Vtl,并且当第四预轧异形环(Stl4)内的金属流到第三预轧矩形环(Stl3)和第五预轧矩形环(Stl5)内的金属体积分别为预定的流量体积Vtl时,异形预轧坯(30)在终轧异形孔型(11')内被辗轧成复杂的异形截面环形件(40);所述异形截面环形件(40)由第一终轧异形环(S1X第二终轧矩形环(S2)、第三终轧异形环(S3)、第四终轧矩形环(S4)及第五终轧异形环(S5)依次叠加组成,所述第三终轧异形环(S3)的外环面具有终轧外凸台面(403),在所述第一终轧异形环(S1)与第三终轧异形环(S3)之间具有终轧上凹槽面(401),在所述第三终轧异形环(S3)与第五终轧异形环(S5)之间具有终轧下凹槽面(402),在所述异形截面环形件(40)的内环面上具有终轧内凹槽面(40°),并且所述第一终轧异形环(S1)与第五终轧异形环(S5)的形状和尺寸完全相同、所述第二终轧矩形环(S2)与第四终轧矩形环(S4)的形状和尺寸完全相同。
2.根据权利要求1所述轴承钢复杂异形截面环形件的辗轧成形方法,其特征在于:所述轴承钢的材料牌号是3311MPP。
3.根据权利要求1或2所述轴承钢复杂异形截面环形件的辗轧成形方法,其特征在于:所述异形预轧坯(30)与所述异形截面环形件(40)之间的体积关系按下列公式计算: V01=V1 - V0 ;V02=V2 + 2V0 ;V03=V3 - 2V0 ;V04=V4 + 2V0 ;V05=V5 — V0 ; 式中: V01—第一预轧矩形环(Stll)对应的环形体积; V02—第二预轧异形环(Stl2)对应的环形体积; V03—第三预轧矩形环(Stl3)对应的环形体积; V04—第四预轧异形环(Stl4)对应的环形体积; V05—第五预轧矩形环(Stl5)对应的环形体积; V1—第一终轧异形环(S1)对应的环形体积; V2—第二终轧矩形环(S2)对应的环形体积; V3—第三终轧异形环(S3)对应的环形体积; V4—第四终轧矩形环(S4)对应的环形体积; V5—第五终轧异形环(S5)对应的环形体积; V0—从第二预轧异形环(Stl2)内流到第一预轧矩形环(Stll)内的预定金属流量体积;等于从第二预轧异形环(Stl2)内流到第三预轧矩形环(Stl3)内的预定金属流量体积;等于从第四预轧异形环(Stl4)内流到第三预轧矩形环(Stl3)内的预定金属流量体积;等于从第四预轧异形环(Stl4)内流到第五预轧矩形环( Stl5)内的预定金属流量体积。
全文摘要
本发明公开了一种轴承钢复杂异形截面环形件的辗轧成形方法,为轧制出外形完整、尺寸精度高、组织和性能优良并沿零件外形分布的复杂异形截面环形件,其技术方案为把按规格下料的轴承钢棒料加热后经镦粗、冲孔和环轧成矩形预轧坯;把矩形预轧坯加热后在预轧异形孔型内由预轧内型模块和预轧外型模块辗轧成与终轧异形截面环形件结构形状相反的异形预轧坯;把异形预轧坯加热后在终轧异形孔型内由终轧内型模块和终轧外型模块辗轧成异形截面环形件,辗轧时,所述异形预轧坯在终轧异形孔型内沿径向展宽其内部金属按预定的体积流量从较多的地方向较少的地方流动。该环形件主要用于风力发电的轴承环等筒形回转体零部件。
文档编号B21H1/06GK103143658SQ20131010327
公开日2013年6月12日 申请日期2013年3月27日 优先权日2012年12月12日
发明者宋捷, 卢漫宇, 刘星星, 何涛, 杨良会, 叶小军, 张胜利 申请人:贵州航宇科技发展股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1