接合用成型体及其制造方法与流程

文档序号:19061921发布日期:2019-11-06 01:51阅读:225来源:国知局
接合用成型体及其制造方法与流程

本发明涉及一种介于作为被接合部件的半导体芯片元件、led芯片元件等的电子组件与基板之间且适合使用于将作为被接合部件的电子组件安装于基板时的接合用成型体及其制造方法。另外,本国际申请主张基于在2017年3月31日申请的日本专利申请第71964号(日本专利申请2017-71964)的优先权,并且将日本专利申请2017-71964的全部内容援用于本国际申请。



背景技术:

近年来,在超过200℃的高温下也可工作的如sic的宽带隙半导体受到关注。作为在高温下工作的半导体芯片元件的接合方法,被称为过渡液相烧结法(transientliquidphasesintering:tlp法)的接合方法受到关注,该过渡液相烧结法使包含cu和sn的接合材料介于半导体芯片元件与基板之间,以高于sn的熔点的温度加热,并将所述接合材料设为由cu6sn5和cu3sn构成的组成的金属间化合物(inter-metalliccompound:imc)。公开了一种基于该接合方法的适用于高温用途的cu芯sn壳粉末成型体(例如,参考非专利文献1)。

关于非专利文献1的cu芯sn壳粉末成型体,将粒径30μm的cu粒子滴入到无电解sn镀液并由约2~3μm厚的sn层包覆之后,将这些粒子冲压而制成适用于以下用途的成型体。成型体中的各cu粒子被sn层包覆而形成cu芯sn壳粉末结构。若将成型体加热至232℃,则外壳的sn层熔融并与附近粒子的熔融sn一体化,存在于粒子间的间隙中的空隙被排出至接合层外而致密化。在该方法中cu粒子均匀地分布于接合面。若延长回流时间,则因cu芯和sn壳的相互扩散而形成cu6sn5及cu3sn化合物。最终外壳的sn完全被消耗而成为金属间化合物(imc)。cu粒子被cu-sn金属间化合物(cu6sn5和cu3sn)包围,由于cu6sn5及cu3sn的熔点分别为415℃及676℃,因此,至少能够承受至415℃的高温。

非专利文献1:tianqihuetal.,“cu@sncore-shellstructurepowderpreformforhigh-temperatureapplicationsbasedontransientliquidphasebonding”,ieeetransactionsonpowerelectronics,february2016

然而,关于记载于非专利文献1的cu芯sn壳粉末成型体,当在成型前的cu芯sn壳粉末的表面形成有自然氧化膜时,即使将该成型体配置于作为被接合部件的半导体芯片元件与基板之间并进行回流,外壳的sn也难以浸润至cu粒子表面,难以以高强度将半导体芯片元件接合于基板。



技术实现要素:

本发明的目的在于提供一种接合用成型体及其制造方法,该接合用成型体及其制造方法解决上述课题,实现初始接合强度高且在冷热循环试验后也维持高接合强度的接合。

本发明的第1观点是接合用成型体,其是由经压缩的cu芯sn壳的粉末的聚集体构成的接合用成型体,其特征在于,在所述接合用成型体的表面部及内部的开孔中存在活性剂含有物,所述活性剂含有物用于去除所述粉末的表面的氧化物,所述接合用成型体以55~95质量%的比例含有cu且以45~5质量%的比例含有sn,所述接合用成型体具有20~400μm的厚度。在本说明书中,所谓「开孔」是指存在于接合用成型体内部的空孔中的、连通到接合用成型体的外表面的空孔(openpore),所谓「闭孔」是指上述空孔中的、未连通到接合用成型体的外表面的空孔(closedpore)。

本发明的第2观点是接合用成型体的制造方法,其特征在于,包括如下工序:在非活性气体气氛下,将平均粒径为0.5~50μm的cu芯sn壳的粉末以10~1000mpa的压力进行冲压成型或辊轧成型,从而得到厚度20~400μm的颗粒状或薄片状的成型体前体;在非活性气体气氛下,将液态的活性剂含有物储存于容器中并在所述活性剂含有物中浸渍所述成型体前体,所述活性剂含有物用于去除所述粉末表面的氧化物;在非活性气体气氛下,将经浸渍的所述成型体前体与所述容器一同进行减压,从所述成型体前体的内部的开孔对所述开孔中存在的气体进行脱气;在非活性气体气氛下,将从所述开孔对气体进行脱气后的所述成型体前体复压至常压,对所述开孔填充活性剂含有物;及在对所述开孔填充活性剂含有物之后,去除附着于成型体前体的表面上的剩余的活性剂含有物而得到接合用成型体,所述cu芯sn壳的粉末以55~95质量%的比例含有cu且以45~5质量%的比例含有sn。

本发明的第1观点的接合用成型体在由经压缩的cu芯sn壳的粉末的聚集体构成的接合用成型体的表面部及内部的开孔中存在用于去除所述粉末的表面的氧化物的活性剂含有物。通过该结构特征,保存接合用成型体时,能够防止面对接合用成型体的表面部和上述开孔的外壳的sn的氧化。并且,即使在接合用成型体的表面部及外壳的sn层的表面形成有自然氧化膜,只要在如电子组件与基板那样的被接合部件的接合面配置该接合用成型体并实施用于接合的加热(以下,称为接合加热),则活性剂含有物中的活性剂能够去除上述表面部及外壳的sn层的氧化物,由此,sn在短时间内熔融并浸润于cu芯粒子表面,液相烧结快速地进行,同时,sn与相邻的cu芯sn壳粉末的外壳的sn连接而能够成为一体化的接合层。如继续进行接合加热,则产生芯的cu和壳的sn的相互扩散并形成cu芯粒子被cu6sn5及cu3sn化合物包围而成的具有高温耐性的致密的接合层,能够实现初期接合强度高且在冷热循环试验后也维持高接合强度的接合。并且,由于在接合用成型体内部残留有cu,因此使用该接合用成型体来形成接合层时,接合层能够得到高导热性和导电性。

在本发明的第2观点的接合用成型体的制造方法中,通过冲压成型或辊轧成型,能够从接合加热前的阶段起设为在内部空隙少的成型体,其结果,在接合加热时容易使接合层致密化。并且,不仅如非专利文献1那样,仅将cu芯sn壳粉末冲压而制作成型体,而且将cu芯sn壳粉末进行冲压成型或辊轧成型而制作成型体前体之后,使活性剂含有物附着于成型体前体中的开孔的内壁及成型体前体的表面部,因此,在非专利文献1的方法中,在cu芯sn壳粉末间仍形成间隙即闭孔及开孔这两者,但是通过该方法,接合用成型体的表面部及上述开孔的内壁被活性剂含有物覆盖。其结果,能够制作粉末相互间的接点多且活性剂含有物存在于上述表面部和上述开孔的接合用成型体。尤其是上述表面部及上述开孔不与大气接触,防止保存接合用成型体时的氧化,并且在接合加热时活性剂去除上述表面部及上述开孔表面的氧化物,液相烧结迅速地进行。

附图说明

图1是示意地表示通过冲压成型而制造本发明的第1实施方式的接合用成形体的工序的图。

图2是示意地表示通过辊轧成型而制造本发明的第2实施方式的接合用成形体的工序的图。

具体实施方式

接着,根据附图,对用于实施本发明的方式进行说明。

<第1实施方式>

如图1所示,关于本发明的第1实施方式的接合用成型体1,将cu芯sn壳粉末2进行冲压成型而制作为厚度20~400μm的颗粒状或薄片状。

〔cu芯sn壳粉末〕

如图1的(a)的放大图所示,作为接合用成型体的原料的cu芯sn壳粉末2由芯2a和壳2b构成,其中,该芯2a由cu构成,该壳2b包覆该芯2a且由sn构成。该cu芯sn壳粉末2的平均粒径为0.5~50μm,优选为1.0~20μm。已知在平均粒径小于作为下限值的0.5μm的情况下,进行冲压成型或后述的辊轧成型时,不仅难以制作均匀密度的成型体前体,而且在25℃等的通常的操作材料的温度下在双层结构粒子的cu与sn界面经数小时进行cu的扩散,在进行接合加热时且在生成sn液相之前的升温中途,导致外壳的sn大致总量成为cu6sn5,存在接合性能恶化的不良状况。另一方面,若平均粒径超过上限值50μm,则在接合加热时sn熔融而容易一体化,但是cu与sn相互扩散而形成金属间化合物时需要许多时间,存在无法实现作为本发明的效果之一的短时间接合的不良状况。并且,在得到比在双层结构的粉末的中心所配置的cu的粒径更薄的成型体前体时,不仅需要使外壳的sn变形,而且也需要使cu变形,但是由于cu比sn硬而不易变形,因此,若平均粒径超过上限值50μm,则cu暴露于最表面,cu氧化而浸润性变差,并且由于表面部的sn的存在比例减少,因此,参与接合的液相的sn难以暴露于接合面,存在使接合性恶化的不良状况。在此,粉末的平均粒径(体积基准)是通过激光衍射散射法(horiba,ltd.制,la960)而测定的值。

并且,在将cu芯sn壳粉末2设为100质量%时,cu芯sn壳粉末2以55~95质量%的比例含有cu,以45~5质量%的比例含有sn。优选的含量是cu为60~85质量%,sn为40~15质量%。在cu的含量超过95质量%而sn的含量小于5质量%的情况下,存在接合加热时的烧结性低、接合层未一体化而接合强度低且热阻抗变大的不良状况。并且,若cu的含量小于55质量%且sn的含量超过45质量%,则存在接合层的最终组合物的高温耐热性低且无法得到所期待的性能的不良状况。

作为制造cu芯sn壳粉末2的方法,可举出将芯和壳这两者以湿式法来制造的方法和对芯使用cu微细粉末并仅将壳以湿式法来制造的方法。在前者的制造方法中,首先,将还原剂投入于cu离子及sn离子共存的水溶液中,使氧化还原电位高的cu还原析出,接着,以覆盖该cu的方式使氧化还原电位低的sn还原析出而制造cu芯sn壳结构的粉末前体。关于还原剂,阶段性地投入仅还原cu的弱还原剂和还还原sn的强还原剂,从而可以设为分离出cu的还原析出反应和sn的还原析出反应的操作。并且,在后者的制造方法中,也可事先准备cu微细粉末,使其高度分散于含有sn离子的水溶液中,并且在其中投入还原剂而在分散cu微细粉末表面使sn还原析出。并且,也可以以防止经合成的cu芯sn壳结构的粉末前体的凝聚为目的,在制备水溶液时将羟丙基甲基纤维素或聚乙烯吡咯烷酮等的分散剂投入于水溶液中。清洗经合成的cu芯sn壳结构的粉末前体之后,进行回收及干燥,由此可得到cu芯sn壳结构的微细的粉末。

〔成型体前体的制造〕

如图1的(b)及(c)所示,在如氮或氩那样的非活性气体气氛下,利用单轴冲压机10将cu芯sn壳粉末2进行冲压成型而制作成型体前体3。单轴冲压机10具有成为模具的冲模10a、上冲头10b及下冲头10c。在通过该单轴冲压机10制造成型体前体3时,首先在对冲模10a组合下冲头10c的状态下,称量规定量的cu芯sn壳粉末2,并且从冲模10a的上冲头插入孔投入至下冲头10c上(图1的(b))。虽然未图示,但是使用夹具将cu芯sn壳粉末2从上方进行拍打而设为大致均等的厚度。接着将上冲头10b插入到冲模10a并使其下降(图1的(c))。通过该上冲头10b的加压力,cu芯sn壳粉末2发生变形,产生粉末间的缠绕或粘接而成为独立的成型体前体3。如此,用单轴冲压机10将cu芯sn壳粉末2进行单轴冲压而成型为20~400μm的规定厚度。成型压力由于根据cu芯sn壳粉末2的粒径或组成而变化,因此,为了设为与各自的微细粉末的粒径、组成及形状所对应的压力,虽然无法个别地限定该成型压力,但是在10~1000mpa的范围内进行冲压成型。此时,以观察成型体前体3的截面时由cu和sn的金属成分以外的部分所构成的空隙部的面积成为5%~0.1%的方式,确定投入粉末量,以成为上述规定的厚度的方式调整压力。虽然未图示,但是上述空隙部由闭孔及开孔构成。作为经压缩的聚集体的成型体前体中,以符号2a表示芯的cu(图1的(c))。

在单轴冲压成型之后,将上冲头10b脱模,如图1的(d)中所示,取出成型体前体3。通过模具的形状,可得到颗粒状或薄片状的成型体前体。该成型体前体的形状及尺寸根据作为被接合部件的电子组件的接合面的形状及尺寸而确定。通过单轴冲压成型所得到的成型体前体由经压缩的cu芯sn壳粉末的聚集体构成。成型体前体中以55~95质量%的比例包含cu,以45~5质量%的比例包含sn。

〔成型体前体向活性剂含有物中的浸渍〕

如图1的(e)所示,将用以去除成型体前体内部的粉末表面的氧化物的液态的活性剂含有物4储存于容器5。另外,液态的活性剂含有物的粘度调整为10-2~10pa·s。在如氮或氩那样的非活性气体气氛下,在储存的活性剂含有物4中浸渍上述所得到的成型体前体3。活性剂含有物4为含有活性剂成分的助焊剂或含有活性剂成分的溶剂。作为活性剂优选氢卤酸胺盐,具体而言,可举出三乙醇胺、二苯胍、乙醇胺、丁胺、氨基丙醇、聚氧乙烯油胺、聚氧乙烯月桂胺、聚氧乙烯硬脂胺、二乙胺、三乙胺、甲氧基丙胺、二甲基氨基丙胺、二丁基氨基丙胺、乙基己胺、乙氧基丙胺、乙基己氧基丙胺、双丙胺、异丙胺、二异丙胺、哌啶、2,6-二甲基哌啶、苯胺、甲胺、乙胺、丁胺、3-氨基-1-丙烯、异丙胺、二甲基己胺、环己胺等的胺的氢氯酸盐或氢溴酸盐。其中,优选环己胺氢溴酸盐。

作为上述溶剂,可举出二乙二醇单己醚、二乙二醇单丁醚、二乙二醇单丁醚乙酸酯、四乙二醇、2-乙基-1,3-己二醇、α-松油醇等的沸点为180℃以上的有机溶剂。其中,优选α-松油醇。关于由含有活性剂成分的溶剂所构成的活性剂含有物,例如可举出在将癸二酸以5质量%的浓度溶解于α松油醇的溶剂中含有活性剂成分的活性剂含有物。

并且,在助焊剂中除了活性剂以外也可包含上述溶剂、松香或触变剂。关于由含有活性剂成分的助焊剂所构成的活性剂含有物,例如可举出无铅焊料用的通用助焊剂(92ms,arakawachemicalindustries,ltd.制)。助焊剂或溶剂中所包含的活性剂的含有比例在助焊剂或溶剂中为0.01~2质量%,优选为0.5~1质量%。

〔向成型体前体内部的开孔填充活性剂含有物〕

在如氮或氩那样的非活性气体气氛下,将浸渍于上述活性剂含有物中的成型体前体3与容器5一同进行减压。关于减压(真空度),根据活性剂含有物的粘度或被使用于活性剂含有物的溶剂的蒸气压而变化,但是该减压(真空度)为被使用于活性剂含有物的溶剂的25℃下的蒸气压的最高值的2倍以上的真空度,设定在0.1~5kpa的范围内,保持不会在该减压下从成型体前体确认到气体产生的时间,即30~600秒钟。由此,使存在于成型体前体3内部的开孔中的气体膨胀,从开孔进行脱气。在真空度及减压时间未达到上述范围的下限值时无法充分地进行上述脱气。在真空度及减压时间超过上述范围的上限值的情况时,蒸气压高的溶剂挥发而使填充于开孔内的活性剂含有物的组成大幅偏离而存在无法发挥所期待的防氧化或去除表面氧化膜的功能的不良状况。在进行上述减压之后,仍在上述非活性气体气氛下,花费300~1200秒钟而将与容器5一同浸渍于活性剂含有物中的成型体前体3复压至常压。由此,活性剂含有物4被填充于成型体前体3内部的开孔。复压并在开孔中填充活性剂含有物之后,将成型体前体从容器取出,在非活性气体气氛下,擦拭去除附着于成型体前体表面的活性剂含有物,根据需要而进行干燥,由此得到图1的(f)所示的接合用成型体1。

<第2实施方式>

如图2所示,本发明的第2实施方式的接合用成型体6将与第1实施方式相同的cu芯sn壳粉末2(图2的(a))进行辊轧成型而制作成20~400μm的薄片状或颗粒状。

〔成型体前体的制造〕

如图2的(b)所示,在如氮或氩那样的非活性气体气氛下,将cu芯sn壳粉末2用粉末轧制机20进行粉末辊轧成型而制作成型体前体7。粉末轧制机20具有一对圆柱状的辊20a、20b和连接于这些辊上表面而设置的料斗20c。辊20a和辊20b向相互相反的方向旋转,在图2中,将被投入到料斗20c的cu芯sn壳粉末2向下方轧制,轧制体以被导辊20d~20g沿水平方向导引的方式构成。由于辊轧时的压力成为线压,实际上难以确认及管理施加于被轧制成型的cu芯sn壳粉末的压力,因此无法限定压力,但是与第1实施方式的单轴冲压成型同样地,以成型体前体7成为20~400μm的规定的厚度的方式调整辊间间隙,并且以观察成型体前体7的截面时空隙部成为5%~0.1%的方式,调整通过料斗20c所得的cu芯sn壳粉末2的投入量。虽然未图示,但是上述空隙部由闭孔及开孔构成。作为经压缩的聚集体的成型体前体中,以符号2a表示芯的cu(图2的(b))。

在辊轧成型之后,通过将经轧制的成型体前体切断为规定的尺寸,如图2的(c)所示,可得到薄片状或颗粒状的成型体前体7。该成型体前体7的形状及尺寸根据作为被接合部件的电子组件的接合面的形状及尺寸而确定。辊轧成型所得到的成型体前体由经压缩的cu芯sn壳粉末的聚集体构成。成型体前体中以55~95质量%的比例包含cu,以45~5质量%的比例包含sn。

〔成型体前体向活性剂含有物中的浸渍及活性剂含有物向成型体前体内部的开孔的填充〕

第2实施方式的活性剂含有物与第1实施方式的活性剂含有物相同,并且,如图2的(d)及(e)所示,辊轧成型后的成型体前体向活性剂含有物中的浸渍方法及活性剂含有物向成型体前体内部的开孔的填充方法与第1实施方式相同,因此省略重复说明。如此,可得到第2实施方式的接合用成型体6。在图2的(d)及(e)中,各要件的符号与附加在图1的(e)及(f)所示的要件的符号相同。

〔使用接合用成型体的接合方法〕

接着,对使用以上述第1及第2实施方式的方法制造的接合用成型体来将硅芯片元件接合于铜板的基板而将硅芯片元件安装于基板的一例进行说明。首先,将上述接合用成型体配置于铜板上,且在接合用成型体上搭载将背面进行au溅镀的边长2.5mm的正方形(□)的硅芯片元件。接着,使用接合炉例如malcom公司制srs-1c,在氮气气氛下,施加0.1~100mpa的荷载,同时以最高温度250~350℃条件进行1~15分钟加热保持处理。通过该接合加热而接合用成型体中的活性剂去除粉末外壳的sn层的氧化物,sn在短时间内熔融,通过cu和sn的相互扩散而以包围芯的cu的方式形成cu-sn的金属间化合物(imc),硅芯片元件与铜板以高接合强度接合。

关于该接合加热的条件,根据接合用成型体中的cu芯sn壳粉末的平均粒径,从上述范围确定上述加热温度及加热时间。cu芯sn壳粉末的平均粒径越小,在上述范围内越要确定较低的加热温度及较短的加热时间,cu芯sn壳粉末的平均粒径越大,在上述范围内越要确定较高的加热温度及较长的加热时间。在加热温度小于250℃或加热时间小于1分钟时,即使平均粒径为0.5μm,sn也难以熔融而不形成cu-sn的金属间化合物粉末,接合强度不会变高。并且,在加热温度超过350℃或加热时间超过15分钟时,存在对作为被接合部件的硅芯片元件带来热损伤的不良状况。

实施例

接着,与比较例一同对本发明的实施例进行详细的说明。

<实施例1>

准备平均粒径为0.5μm、cu比例为75质量%且sn的比例为25质量%的cu芯sn壳粉末。在此,cu芯sn壳粉末的cu和sn的组成比例通过icp发光分光法(thermofisherscientific公司制,icap-6500duo)而测定。并且,关于芯壳结构的晶体结构主要由cu及sn构成,通过粉末x射线衍射法(panalytical公司制,多目的x射线衍射装置empyrean)而确认。将上述cu芯sn壳粉末使用模具以500mpa进行300秒钟的单轴冲压,得到厚度100μm且边长3mm的正方形(□)的颗粒状的成型体前体。

另一方面,以通用助焊剂(arakawachemicalindustries,ltd.制92ms)的含量成为10质量%的方式,得到将通用助焊剂用有机溶剂的α-松油醇稀释的液态的活性剂含有物。将该活性剂含有物50ml放入100ml玻璃烧杯的容器。将上述成型体前体浸渍于储存在该容器的活性剂含有物中。将放入有浸渍成型体前体的活性剂含有物的容器放入真空干燥器,在室温下,使用附属的油旋转真空泵将真空干燥器库内进行减压,使存在于成型体前体的通到外表面的开孔中的气体膨胀而从成型体前体进行脱气。真空度设为1kpa,将该真空度保持300秒钟后,花费600秒钟导入氮气而慢慢回到常压,使活性剂含有物填充于上述成型体前体的通到外表面的开孔中。将填充了活性剂含有物的成型体前体从容器取出,擦拭去除附着于表面的剩余的活性剂含有物,得到厚度100μm且边长3mm的正方形(□)的颗粒状的接合用成型物。

<实施例2~5及比较例1、2>

在实施例2~5及比较例1、2中,如表1所示,关于用于制作接合用成型体的cu芯sn壳粉末的平均粒径,使用与实施例1不同的平均粒径的cu芯sn壳粉末,以与实施例1同样的方式得到接合用成型体。

<实施例6~9及比较例3、4>

在实施例6~9及比较例3、4中,如表1所示,关于用于制作接合用成型体的cu芯sn壳粉末的cu和sn的组成,使用与实施例1不同的cu和sn的组成的cu芯sn壳粉末,以与实施例1同样的方式得到接合用成型体。

<实施例10~13及比较例5、6>

在实施例10~13及比较例5、6中,如表1所示,关于制作接合用成型体时的单轴冲压成型时的成型荷载,使用与实施例1不同的成型荷载,以与实施例1同样的方式得到接合用成型体。施加荷载的时间为与实施例1相同的300秒钟。

[表1]

<实施例14~17以及比较例7、8>

在实施例14~17以及比较例7、8中,如表2所示,改变cu芯sn壳粉末的投入到模具的量,关于可得到的接合用成型体的厚度,设为与实施例1不同的厚度。除此之外以与实施例1同样的方式得到接合用成型体。

<实施例18~22以及比较例9、10>

在实施例18~22以及比较例9、10中,如表2所示,将成型方法变更为辊轧成型,调整粉末轧制机的辊间间隙,关于可得到的接合用成型体的厚度,设为与实施例1不同的厚度。除此之外以与实施例1同样的方式得到接合用成型体。

[表2]

<比较评价>

将实施例1~22以及比较例1~10中所得到的32种接合用成型体分别放置于铜板上,并在在该接合用成型体上搭载将背面进行au溅镀的边长2.5mm的正方形(□)的硅芯片元件。在将1mpa的荷载施加于硅芯片元件而密合于铜板的状态下,使用回流炉,在氮气氛下,以最高温度300℃保持5分钟,从而接合铜板和硅芯片元件,得到32种接合样本。关于这些接合样本,通过如下所叙述的方法,进行初始接合强度试验和冷热循环试验,并进行评价。将该评价结果示于表1及表2。

(1)初始接合强度

关于接合强度,通过芯片抗切测试机(a&d公司制,tensilon万能试验机rtf-1310),分别固定32种接合样本的铜板,从硅芯片元件侧面向与铜板平行方向施加力,并测量硅芯片元件被剥落时的力或被破坏时的力(单位为牛顿,n),将该值除以接合面积2.5mm×2.5mm=6.25mm2的值设为接合强度(单位为mpa)。

(2)冷热循环

将32种的接合样本分别放入冷热循环试验机(espec公司制,冷热冲击试验装置tsa―73es),设定为下限温度-40℃且上限温度200℃,重复1000次降温和升温,以与上述(1)的初始接合强度同样的方法测定接合强度,并将除以初始接合强度的值设为冷热循环特性。这意味着如冷热循环特性为1.00则维持了初始强度,如冷热循环特性为0.50则接合强度降低至初始强度的一半。

由表1及表2比较实施例1~22与比较例1~10,了解到了以下情况。

在比较例1中,由于使用了平均粒径为0.3μm的过度微细的cu芯sn壳粉末,因此,经冲压成型的成型体的厚度偏差大,成型体在铜板和硅芯片元件(以下,称为基板和元件)的各表面未能充分地接触而未能实现充分的接合。

在比较例2中,由于使用了平均粒径为60μm的过粗大的cu芯sn壳粉末,因此,产生了液相的sn,相应地得到基板与元件的初始接合,但是由于cu扩散至sn时需要时间,因此,在5分钟的热处理中无法充分地生成金属间化合物,并在冷热循环试验中也进行了伴随体积变化的反应而未能充分地维持接合强度。

在比较例3中,由于cu芯sn壳粉末中的cu的含量过少,为50质量%,sn的含量过多,为50质量%,因此,导致cu芯消失,无法充分地缓和在冷热循环试验中产生的应力而未能充分地维持接合强度。

在比较例4中,由于cu芯sn壳粉末中的cu的含量过多,为97质量%,sn的含量过少,为3质量%,因此,sn液相的生成量不充分,无法浸润扩散到成型体与基板或元件的界面而无法接合。因此,未能进行初始接合强度试验和冷热循环试验。

在比较例5中,由于单轴冲压成型时的成型荷载过低,为5mpa,因此,未能事先设为致密的成型体。因此,熔融的sn相互之间的接触困难而未能得到一体化的接合层,为初始接合强度低的值。

在比较例6中,由于单轴冲压成型时的成型荷载过高,为2000mpa,因此,成型体变硬而成型物难以变形,即使插入至基板与元件之间而加压加热,也无法追随基板或元件的翘曲而变形,未能充分地确保接触面,因此,熔融的sn未能充分地浸润扩散,未成为初始接合强度充分高的值。

在比较例7中,由于单轴冲压成型后的成型体的厚度过薄,为15μm,因此,从接合层生成的sn液相量不充分而未能充分地浸润扩散于基板或元件,初始接合强度的值未成为充分的值。

在比较例8中,由于单轴冲压成型后的成型体的厚度过厚,为450μm,因此,充分地生成sn液相,从而能够得到初始接合强度,但是由于热阻抗不低,因此,难以从成型体散热而未能在冷热循环试验中维持初始强度。

在比较例9中,由于辊轧成型后的成型体的厚度过薄,为15μm,因此,从接合层生成的sn液相量不充分而未能充分地浸润扩散于基板或元件,初始接合强度的值不充分。

在比较例10中,由于辊轧成型后的成型体的厚度过厚,为450μm,因此,充分地生成sn液相,从而能够得到初始接合强度,但是由于热阻抗不低,因此,难以从成型体散热而未能在冷热循环试验中维持初始强度。

相对于此,实施例1~22的接合样本为具备第1观点所规定的要件且使用以第2观点所规定的要件制造的接合用成型体而得到的样本,因此,初始接合强度高,为37~59mpa,并且,冷热循环在0.68~0.98的范围内,未见到因冷热循环试验导致的接合强度的降低。

产业上的可利用性

本发明能够适合使用于曝露在高温气氛下的电子组件的安装。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1