一种与TiAlN和CaH<sub>3</sub>粉末共溶的铝合金及熔炼方法

文档序号:3317311阅读:208来源:国知局
专利名称:一种与TiAlN和CaH<sub>3</sub>粉末共溶的铝合金及熔炼方法
技术领域
本发明涉及一种以铸代轧高强度铝合金,还涉及其熔炼方法。
背景技术
深加工用的铝合金往往需要首先铸造成大型的锭坯,如扁锭、圆棒等,再通过轧制、挤压、锻造等手段,加工成各种成品,这些过程基本上都要和热处理相结合,如果到可以直接使用的最终产品,则还要经过分割、表面加工、钝化处理等作业。这些加工手段,需要铝合金材料本身具备良好的深加工性能,包括铸造性能、压力加工变形性能、热处理强化性能、抗腐蚀性能、抗疲劳破坏性能、表面加工和涂覆性能等。其中,熔铸性能是铝合金深加工性能的基础。大型锭坯,尤其是厚度500mm以上的扁锭、厚板和直径500mm以上的圆棒,是大型高效深加工的代表性基材,而能否预制成大型锭坯,也是考验铝合金材料本身是否适合进行深加工的第一道技术关口。当Al-Si-Cu系铝合金中由于成分和浇注工艺不当,容易形成高硬度化合物。尤其对于含硅量小于12% (质量分数),Mn+Fe的含量高于0.8% (质量分数)时,非常容易生成Al=Si (FeMn)2化合物。由于该铝合金成形后的硬度较高,机械加工时刀具磨损严重,力口工后的表面肉眼可见鼓起的白亮色硬质点,显微观察硬质点呈骨骼状或不规则颗粒状。经能谱成分测定这种硬质点的成分组成为Al-Si-Mn-Fe,其形态极易与合金中初晶硅相混淆。 当具有这种硬质点化合物的铝合金成形后的零件,不仅加工性差,而且严重影响加工表面的粗糙度和阳极化膜的质量。由于合金成分或化合物中密度大的成分会沉淀于铸件下部,密度小的成分上浮于上部。例如为了细化晶粒而添加Ti这种难熔金属与Al形成高熔点的片状化合物Al3Ti会较早的从合金液中结晶出来,当长成较大时就容易下沉产生局部规程的密度偏析,偏析较严重时可在铸件断口上看到表面平整的白亮灰的化合物,过共晶的Al-Si铝合金中粗大的初生硅由于密度较小也容易形成偏析。另外当这种合金液在浇注前由于搅拌不均勻而引起共晶偏析,在共晶硅集中处, 硬度高脆性大,加工刀具磨损大;共晶硅少的部位形成α (Al)固溶体软点,强度低,加工时不仅粘刀,恶化加工性能,在切削力的作用下会使α (Al)固溶体变形导致加工面出现白斑。当ZL108(ZAlSil2Cu2Mgl)铝合金中含镁量小于0. 6% (质量分数)时,加工表面也容易出现白斑。同时,在采用这种铝合金进行铸造时,铸造完成的铸件中常出现各种夹杂,主要有氧化物夹杂、造型材料和熔剂夹渣等。其中,以铝氧化物夹杂最为普遍。尤其在含Mg的铝合金中,多数夹杂为氧化铝和氧化镁的混合物,所以在铝合金熔炼过程中,氧化物夹杂的含量是反映铝液冶金质量的重要标质之一。由此可见目前的铝合金材料除了熔铸大型锭坯时的成形性能较差外,大型锭坯在热处理过程的淬透性不高、耐回火性较差和不能满足更高的力学性能要求或某些特殊性能(如耐热、耐蚀)等,也是重大缺陷。这些缺陷使其在工程技术领域替代钢制品等重强材料和结构的进程中形成了难以跨越的技术断点。

发明内容
为了克服现有技术的不足,本发明提供一种与TiAlN和CaH3粉末共溶的铝合金及其熔炼方法,能够克服现有铝合金性能的不足,提高其强韧性、成形性和淬透性,为高效深加工提供高端基材。一种与TiAlN和CaH3粉末共溶的铝合金,其特征在于以质量百分比计,包括1.0 1. 7%的Si,小于等于0. 5%的Fe,0. 15 0. 4%的Cu,0. 4 1. 0%的Mn,小于等于0. 1% 的 Cr,0.5 1. 2% 的 Mg,小于等于 0. 25% 的 Zn,0.6 1.5%的11,0. 18 0. 44% 的 N 和 0. 88 2. 19%的Ca,余量为Al和不可避免的杂质,单一杂质的含量不超过总质量百分比的 0. 05%,杂质总量不超过总质量百分比的0. 15%。一种与TiAlN和CaH3粉末共溶的铝合金的熔炼方法,其特征在于步骤如下步骤1 将铝锭加入熔炼炉中加热使之完全熔化,然后按配方加入总产品质量百分比占总产品质量百分比1.0 1.7%的31,小于等于0.5%的?6,0. 15 0.4%的Cu, 0.4 1. 0%的Mn,小于等于0. 的Cr,0. 5 1. 2%的Mg和小于等于0. 25%的Zn,使其完全溶解和熔化;所述熔化过程在封闭环境内完成;步骤2 在700 1000°C下保温,得到合金熔体;步骤3 采用混合气体对铝合金熔体进行除气净化作业,并将占总产品质量百分比1. 12 2. 78%的TiAlN和0. 92 2. 28%的CaH3粉末以流态化方式随上述气体加入到铝合金熔体中进行混合,使TiAlN和CaH3在铝合金熔体中分布均勻,并持续通气直至反应完毕;所述混合气体为氮气或惰性气体或氮气与惰性气体按照任意比例混合得到;步骤4 反应结束后调温至680 730°C,得到熔炼完成的铝合金熔体。步骤1中的铝锭以熔融铝液替换。一种将所述的与TiAlN和CaH3粉末共溶的铝合金进行铸造的方法,其特征在于 将权利要求2所熔炼的铝合金熔体沿流槽倾倒出炉,至立式水冷铸造机系统,铸造加工用锭坯,特别是铸造厚度500mm以上的大型扁锭和直径500mm以上的圆棒。一种将所述的与TiAlN和CaH3粉末共溶的铝合金进行铸造的方法,其特征在于 将权利要求2所熔炼的铝合金熔体转注入铸件的铸模中,使用金属型、砂型或混合型铸方式,采用重力铸造、压力铸造或差压铸造工艺,铸造铝合金铸件,特别是铸造大型、薄壁或复杂结构的铝合金铸件。本发明提供的能够与TiAlN和CaH3粉末共溶的铝合金及其熔炼方法,在变形铝合金中以粉末状加入1. 12 2. 78%的TiAlN和0. 92 2. 28%的CaH3,以流态化形式随保护性气体加入铝合金熔体过程中,具有比一般块状物质大得多的比表面积,能够实现快速的分散并与熔体充分接触,显著缩短了分散和均勻的时间。同时采用本发明的高强度铝合金在铸造过程中,可以在合金凝固过程中有效增加异质形核核心,从而达到晶粒细化的效果, 增强合金强度;并且加入的元素可以促进形成间隙原子和间隙相,高温时在α (Al)固溶体中溶解度大,而在室温时很小,从而使合金具有较高的可热处理性质,热处理后,其强度和硬度都有很大程度的提高。具体分析如下
在本合金未经加入上述元素之前,熔体中除形成各种元素的共溶体之外,还含有下列一些金属间形成的化合物相θ 相(CuAl2)、Mg2Si 相、N 相(Al7Cu2Fe)、α 相(Al12Fe3Si)、S 相(Al2CuMg);这些金属化合物在熔体冷却时,由于体系最低自由能原理,在形成的晶粒中不能稳定存在,将在晶格畸变能差的驱动下向晶界移动和集中,同时,由于合金元素在铝基体中的饱和溶解度随着温度下降 而显著降低,所以随着熔体的冷却,过饱和的熔体不断地析出富含合金元素的金属间化合物,这些化合物在晶间富集,彼此间不易融合,在微观结构中成为粗大的晶间化合物群,对合金产生脆硬化影响,恶化合金铸造成形性能,降低其均勻性、 韧性、耐蚀性和淬透性能。所以,当合金凝固成为过饱和固溶体基体+晶间金属化合物的基本结构时,通常称为纯铸态组织,具有这种组织的合金必须经过“固溶+时效”的热处理之后才能具有满足需要的力学性能和其它技术指标。虽然,经过配方优化处理和提高合金性能的热处理能够得到改善,但是合金本身仍然还是存在很多缺陷强度不够高,不能铸造大规格型锭等。本发明通过比较选择,开发了过渡族元素的氮化物处理熔体的方式,通过加入 0.6 1.5%的11,0.6 1.5%的10.6 1.5%的Ca元素,分解后的氮化物产生的原子态M金属,没有了单质状态下金属原子间以d/f/s电子紧密结合产生的强大金属键能和同类原子间紧密堆积产生的晶格能形成的势垒,以“裸态”与周围大量的基体原子融合,形成共溶体和金属化合物,并成为结晶时的领先相和细晶化相,同时也是高温强化相。因此,氮化物以流态化加入熔体中产生高温下的分解和形成的弥散状态,解决了高熔点金属在铝液中溶解难、均勻分布难的问题,实现了晶格畸变能的微观均勻化分布和晶粒的细化。另外在熔炼过程中充入的氮气,有利于铝在800 1000°C的氮气氛中合成A1N。由于N与Al反应生成的AlN是原子晶体,属类金刚石氮化物,最高可稳定到2200°C ;室温强度高,且强度随温度的升高下降较慢,能够有效提高合金的高温强度和抗腐蚀能力;导热性好,热膨胀系数小,可提高基体材料耐热冲击性能。因此,当N2充入高温铝合金熔体时,本身就具有了与多种金属金发生反应的活性。所以适当调节熔体净化作业时的温度和保护性氮气的浓度,可调节熔体中AlN的含量,这进一步为调节熔体中过渡金属元素的含量提供了方法。另外加入到熔体中的氮化物分解的程度,随着氮化物本身的稳定性和熔体温度的不同而变化,即反应具有一定的可逆性,是一种动态的平衡。大多数过渡元素在铝熔体中的饱和溶解度较小,而且,除铬、钛、钒、锆的最大固溶度发生在包晶温度外,其他元素的最大固溶度均发生在共晶温度;在室温下的溶解度,均小于0. wt。可见由于在本发明中使用流态化氮化物处理的手段,把强化基体和细化晶粒的多种效果集成在一起,取代中间合金,使铝合金制造企业不再受制于中间合金生产商,有利于创建“近成型、短流程、集约化”的绿色生产线,节能降耗,降低综合成本;同时,在热处理过程中,由于形成了优异的材料微观结构,锭坯的残余应力较小,因此可以显著提高热处理效能,提高锭坯的淬透性,在与同类合金比较时,能够以“铸造+热处理方式”生产更厚的坯料(厚度500mm以上的板材和直径500mm以上的棒材),在系列规格(厚度15 200mm)的中厚板制造技术上实现“以铸代轧”。总而言之,本发明的有益效果是
在铝熔体中造成了多种晶粒细化元素、质点,对防止基体和强化相的粗大化有良好效果。在冷却后的铝基体中造成了稳定性极高的间隙原子和间隙相,成为新的高效强化相,使材料的强度和硬度得到提高。下面结合实施例对本发明进一步说明。
具体实施例方式实施例1 一种与TiAlN和0^3粉末共溶的铝合金,以质量百分比计,包括1.0%的Si,0.5% 的 Fe,0. 15 % 的 Cu, 0. 4 % 的 Mn, 0. 1 % 的 Cr, 0. 5 % 的 Mg, 0. 25 % 的 Zn, 0. 6 % 的 Ti,0. 6 % 的N、0. 6%的Ca,余量为Al和不可避免的杂质,每种杂质的含量不超过总质量百分比的 0. 05%,所有杂质的含量不超过总质量百分比的0. 15%。本发明还提供所述与TiAlN和CaH3粉末共溶的铝合金的制备方法,以复合处理方式加入TiAlN和CaH3,包括以下步骤步骤一按照所述高强度铝合金的组分备料,包括占总产品质量百分比1.0%的 Si,0. 5% 的 Fe,0. 15%的 Cu,0. 4%的 Μη,0. 的 Cr,0. 5%的 Mg,0. 25%的 Zn ;步骤二 先往熔炼炉中加入铝锭或熔融铝液,加热使之完全熔化,按配方比例先加入步骤一的备料,使之完全溶解和熔化,精炼后在700 1000°C下保温,得到合金熔体;熔化过程在封闭环境内完成;步骤三使用氮气或惰性气体或氮气与惰性气体任意比例的混合气体对合金熔体进行除气净化作业,并持续通气直至反应完毕;同时将占总产品质量百分比0.6%的 TiAlN、0. 6 1. 5%的CaH3粉末以流态化方式随上述气体加入到合金熔体中;进行搅拌,使 TiAlN和CaH3在合金熔体中分布均勻,并与合金熔体充分反应;静置、调温至680 730°C, 得到熔炼完成的铝合金熔体。实施例2 一种与TiAlN和0^3粉末共溶的铝合金,以质量百分比计,包括1.3%的Si,0.4% 的 Fe,0. 28 % 的 Cu,0. 7 % 的 Mn,0. 08 % 的 Cr,0. 8 % 的 Mg,0. 2 % 的 Zn,1. 1 % 的 Ti,1. 1 % 的N、l. 的Ca,余量为Al和不可避免的杂质,每种杂质的含量不超过总质量百分比的 0. 05%,所有杂质的含量不超过总质量百分比的0. 15%。本发明还提供所述与TiAlN和CaH3粉末共溶的铝合金的制备方法,以复合处理方式加入TiAlN和CaH3,包括以下步骤步骤一按照所述高强度铝合金的组分备料,包括占总产品质量百分比1. 3%的 Si,0. 4%的 Fe,0. 28%的 Cu,0. 7%的 Μη,0. 08%的 Cr,0. 8%的 Mg,0. 2%的 Zn ;步骤二 先往熔炼炉中加入铝锭或熔融铝液,加热使之完全熔化,按配方比例先加入步骤一的备料,使之完全溶解和熔化,精炼后在700 1000°C下保温,得到合金熔体;熔化过程在封闭环境内完成;步骤三使用氮气或惰性气体或氮气与惰性气体任意比例的混合气体对合金熔体进行除气净化作业,并持续通气直至反应完毕;同时将占总产品质量百分比1.的 TiAlNU. 的CaH3粉末以流态化方式随上述气体加入到合金熔体中;进行搅拌,使TiAlN 和CaH3在合金熔体中分布均勻,并与合金熔体充分反应;静置、调温至680 730°C,得到熔炼完成的铝合金熔体。实施例3 一种 与TiAlN和CaH3粉末共溶的铝合金,以质量百分比计,包括1. 7%的Si,0. 3% 的 Fe,0. 4 % 的 Cu, 1. 0 % 的 Mn, 0. 06 % 的 Cr,1. 2 % 的 Mg, 0. 18 % 的 Zn, 1. 5 % 的 Ti,1. 5 % 的N、l. 5%的Ca,余量为Al和不可避免的杂质,每种杂质的含量不超过总质量百分比的 0. 05%,所有杂质的含量不超过总质量百分比的0. 15%。本发明还提供所述与TiAlN和CaH3粉末共溶的铝合金的制备方法,以复合处理方式加入TiAlN和CaH3,包括以下步骤步骤一按照所述高强度铝合金的组分备料,包括占总产品质量百分比1.0 1.7%的31,小于等于0.5%的?6,0. 15 0. 4%的Cu,0. 4 1. 0%的Mn,小于等于0. 1% 的Cr,0. 5 1. 2%的Mg,小于等于0. 25%的Zn ;步骤二 先往熔炼炉中加入铝锭或熔融铝液,加热使之完全熔化,按配方比例先加入步骤一的备料,使之完全溶解和熔化,精炼后在700 1000°C下保温,得到合金熔体;熔化过程在封闭环境内完成;步骤三使用氮气或惰性气体或氮气与惰性气体任意比例的混合气体对合金熔体进行除气净化作业,并持续通气直至反应完毕;同时将占总产品质量百分比1.5%的 TiAlN、0. 6 1. 5%的CaH3粉末以流态化方式随上述气体加入到合金熔体中;进行搅拌,使 TiAlN和CaH3在合金熔体中分布均勻,并与合金熔体充分反应;静置、调温至680 730°C, 得到熔炼完成的铝合金熔体。采用本发明方法熔炼的高强度铝合金液出炉后,沿以下两种流程分别进行不同制品的铸造生产。流程一沿流槽倾倒出炉,至立式水冷铸造机系统,铸造加工用锭坯,特别是铸造厚度500mm以上的大型扁锭和直径500mm以上的圆棒。流程二 转注入铸件的铸模中,使用金属型、砂型或混合型铸方式,采用重力铸造、 压力铸造或差压铸造工艺,铸造铝合金铸件,特别是铸造大型、薄壁或复杂结构的铝合金铸件。
权利要求
1.一种与TiAlN和CaH3粉末共溶的铝合金,其特征在于以质量百分比计,包括1. O 1. 7%的Si,小于等于0. 5%的Fe,0. 15 0. 4%的Cu,0. 4 1. 0%的Mn,小于等于0. 1% 的 Cr,0. 5 1. 2% 的 Mg,小于等于 0. 25% 的 Ζη,Ο. 6 1. 5% 的 Ti,0. 18 0. 44% 的 N 和 0. 88 2. 19%的Ca,余量为Al和不可避免的杂质,单一杂质的含量不超过总质量百分比的0.05%,杂质总量不超过总质量百分比的0. 15%。
2.—种权利要求1所述的一种与TiAlN和CaH3粉末共溶的铝合金的熔炼方法,其特征在于步骤如下步骤1 将铝锭加入熔炼炉中加热使之完全熔化,然后按配方加入总产品质量百分比占总产品质量百分比1.0 1. 7%的Si,小于等于0.5%的Fe,0. 15 0. 4%的Cu,0. 4 1.0%的Mn,小于等于0. 的Cr,0. 5 1. 2%的Mg和小于等于0. 25%的Zn,使其完全溶解和熔化;所述熔化过程在封闭环境内完成;步骤2 在700 1000°C下保温,得到合金熔体;步骤3 采用混合气体对铝合金熔体进行除气净化作业,并将占总产品质量百分比 1. 12 2. 78%的TiAlN和0. 92 2. 28%的CaH3粉末以流态化方式随上述气体加入到铝合金熔体中进行混合,使TiAlN和CaH3在铝合金熔体中分布均勻,并持续通气直至反应完毕;所述混合气体为氮气或惰性气体或氮气与惰性气体按照任意比例混合得到; 步骤4 反应结束后调温至680 730°C,得到熔炼完成的铝合金熔体。
3.根据权利要求2所述熔炼方法,其特征在于步骤1中的铝锭以熔融铝液替换。
4.一种将权利要求1所述的与TiAlN和CaH3粉末共溶的铝合金进行铸造的方法,其特征在于将权利要求2所熔炼的铝合金熔体沿流槽倾倒出炉,至立式水冷铸造机系统,铸造加工用锭坯,特别是铸造厚度500mm以上的大型扁锭和直径500mm以上的圆棒。
5.一种将权利要求1所述的与TiAlN和CaH3粉末共溶的铝合金进行铸造的方法,其特征在于将权利要求2所熔炼的铝合金熔体转注入铸件的铸模中,使用金属型、砂型或混合型铸方式,采用重力铸造、压力铸造或差压铸造工艺,铸造铝合金铸件,特别是铸造大型、薄壁或复杂结构的铝合金铸件。
全文摘要
本发明涉及一种与TiAlN和CaH3粉末共溶的铝合金及熔炼方法,在变形铝合金中以粉末状加入0.6~1.5%的TiAlN、0.6~1.5%的CaH3元素,以流态化形式随保护性气体加入铝合金熔体过程中,具有比一般块状物质大得多的比表面积,能够实现快速的分散并与熔体充分接触,显著缩短了分散和均匀的时间。同时采用本发明的高强度铝合金在铸造过程中,可以在合金凝固过程中有效增加异质形核核心,从而达到晶粒细化的效果,增强合金强度;并且加入的元素可以促进形成间隙原子和间隙相,高温时在α(Al)固溶体中溶解度大,而在室温时很小,从而使合金具有较高的可热处理性质,热处理后,其强度和硬度都有很大程度的提高。
文档编号C22C1/02GK102433470SQ20111042107
公开日2012年5月2日 申请日期2011年12月15日 优先权日2011年12月15日
发明者张中可, 车云, 门三泉 申请人:贵州华科铝材料工程技术研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1