掉换盛钢桶时钢液污染范围的预测方法

文档序号:3254411阅读:168来源:国知局
专利名称:掉换盛钢桶时钢液污染范围的预测方法
技术领域
本发明涉及掉换盛钢桶时预测浇铸分配器内钢液污染的掉换盛钢桶时钢液污染范围的预测方法。
背景技术
通常,连续铸造器是在钢制炉生产移送到盛钢桶(Ladle)的钢液收容在浇铸分配器(Tundish)后,提供给连续铸造器的铸模生产特定大小铸片的设备。连续铸造器包含储藏钢液的盛钢桶、浇铸分配器、首次冷却从所述浇铸分配器流出的钢液形成特定形状连铸铸片的连铸用铸模、以及连接于所述铸模使在铸模形成的连铸铸片移动的多数压带轮。S卩,在所述盛钢桶和浇铸分配器流出的钢液在铸模形成具有特定宽度和厚度以及形状的连铸铸片并通过压带轮移送,通过压带轮移送的连铸铸片由切断机切断且制造成具有特定形状的板钢胚(Slab)、大钢胚(Bloom)或小钢胚(Billet)等的铸片。所述盛钢桶由复数个盛钢桶组成,第I盛钢桶的钢液向浇铸分配器全部提供后接着由第2盛钢桶向浇铸分配器再提供钢液。

发明内容
发明需要解决的技术课题本发明的目的是提供根据作业变数预测分析在第I盛钢桶的铸造末期和第2盛钢桶的铸造初期产生的污染度和其范围的掉换盛钢桶时钢液污染范围的预测方法。本发明要达成的技术课题并不受限于如上所述的技术课题,对没有提过的其它技术课题通过以下的记载可由本发明技术领域具有通常知识的技术人员明确理解。解决课题的技术方案为了实现所述课题,本发明的钢液污染度预测方法,其特征是包含:分别指定第I盛钢桶结束后的铸造量Q和第2盛钢桶开始时浇铸分配器的残余钢液量Qrm的第I步骤;利用所述Qrm和设定的I次比例系数或2次比例系数,从第I盛钢桶结束起分别计算污染浓度达到设定的第I基准值时候的铸造量Qplug和设定的第2基准值时候的铸造量Qpeak的第2步骤;在所述第I步骤和第2步骤获得的值分别代入设定的直线函数和指数函数求得关于定铸造量的污染度的第3步骤;以及相互比较由所述直线函数和指数函数求得的污染度,两者中决定较小的值作为关于特定铸造量的污染度的第4步骤。 所述第2步骤中,其特征是第I基准值是0.01,第2基准值是污染浓度最大时候的值,所述Qplug是Qrm和第I比例系数g相乘而求得,所述Qpeak是Qrm和第2比例系数h相乘而求得,所述第I比例系数g决定在O到0.3之间,所述第2比例系数h决定在0.1到
0.4之间。另一特征是分别合算适用所述I次比例系数求得的第4步骤的污染度和适用所述2次比例系数求得的第4步骤的污染度求得综合钢液污染度,还包含所述第4步骤中决定的污染度和“O”相互比较,两者中选择较大的值决定作为最终污染度的步骤。有益效果如上所述根据本发明,根据作业变数预测分析在第I盛钢桶的铸造末期和第2盛钢桶的铸造初期产生的污染度可以推定最能表示铸片不良率的钢液污染源的产生时机,并集中管理第2盛钢桶开始时的污染源,具有可将铸片的品质不良最小化或消除的优点。


图1是与本发明的实施例相关的连续铸造器的侧面图。图2是以钢液M的流动为中心说明图1连续铸造器的概念图。图3是从上面看图2的浇铸分配器的斜视图。图4是根据本发明一实施例的浇铸分配器内钢液污染的预测过程流程图。图5是第I盛钢桶的末期铸造状况图。图6是第2盛钢桶的初期铸造状况图。图7及图8分别是掉换盛钢桶时表示钢液污染度的图形。
具体实施例方式以下,结合附图对本发明的较佳实施例进行详细的说明。在附图中对同一的构成因素尽可能以同一的符号来表示。另外,对本发明的要旨会产生不必要混淆的公知功能及构成省略其详细说明。图1是与本发明的实施例相关的连续铸造器的侧面图。参考本图,连续铸造器可以包含浇铸分配器20,铸模30,2次冷却台60及65,压带轮70以及切断机90。浇铸分配器20 (Tundish)是从盛钢桶10 (Ladle)接收熔融金属向铸模30 (Mold)提供熔融金属的容器。盛钢桶10具备一对第I盛钢桶11和第2盛钢桶12,交替接收钢液轮流提供给浇铸分配器20。在浇铸分配器20完成向铸模30流入的熔融金属的供给速度调节、向各铸模30的熔融金属分配、熔融金属的储藏、以及熔渣和非金属介在物的分离等。铸模30通常是水冷式铜材,使收容的钢液I次冷却。铸模30是结构上相对的一双面以开口的形态形成收容钢液的中空部。制造板钢胚时,铸模30包含一双长墙和连接长墙的一双短墙。在此,短墙具有比长墙小的面积。铸模30的墙,主要是短墙旋转使短墙相互远离或靠近,并具有一定水准的推拔(Taper)。这种推拔是在铸模30内补偿钢液M凝固引起的收缩而设定。钢液M凝固的程度是根据钢种的含碳量、粉末的种类(强冷型V缓冷型)、铸造速度等而不同。铸模30维持从铸模30中拉出的连铸铸片的形状,并为了防止尚未凝固的熔融金属流出具有形成强凝固壳81 (Solidifying shell,参考图2)的作用。水冷结构有利用铜管的方式、在铜块钻水冷槽的方式、组装具有水冷槽的铜管的方式等。为了防止钢液附着在铸模的墙面,铸模30由振动器振动(oscillation,往复运动)。振动时为了减小铸模30和连铸铸片的摩擦且防止燃烧利用润滑剂。润滑剂有喷漆的油菜油和在铸模30内熔融金属表面添加的粉末(Powder)。粉末添加在铸模30内的熔融金属后变成熔渣,不仅执行铸模30和连铸铸片的润滑功能,还执行防止铸模30内熔融金属的氧化、氮化,并吸收在熔融金属表面浮上的非金属介在物的功能。在铸模30为了投入粉末设置粉末供应器(50)。粉末供应器50的排出粉末的部分指向铸模30的入口。在2次冷却台60及65将I次冷却的钢液再加冷却。I次冷却的钢液由支持轮60不致使变形,由喷射水的喷水器手段65直接冷却。连铸铸片的凝固大部分由所述2次冷却完成。为了不滑的拔出连铸铸片,拔出装置采用使用多组压带轮70的多重驱动方式等。压带轮70以铸造方向拔出钢液的凝固前端部,因此通过铸模30的钢液可以向铸造方向连续地移动。切断机90的形成使得以一定的大小切断连续生产的连铸铸片。切断机90可以采用气焊焊炬或油压剪断机等。图2是以钢液M的流动为中心说明图1连续铸造器的概念图。如图2所示,钢液M收容在盛钢桶10的状态下向浇铸分配器20流动。为了此种流动,在盛钢桶10设置向烧铸分配器伸长的护罩喷嘴15 (Shround nozzle)。护罩喷嘴15伸长沉入浇铸分配器20的钢液内以便防止钢液M露出在空气氧化、氮化。若护罩喷嘴15的破损等钢液M露出在空气的情况称为开放铸造(Open casting).
烧铸分配器20内的钢液M由向铸模30内伸长的浸入式注嘴25 (Submerged EntryNozzle)向铸模30内流动。浸入式注嘴25配置在铸模30的中间,并使从浸入式注嘴25的吐口吐出的钢液M流动成对称。通过浸入式注嘴25的钢液M吐出的开始、吐出速度、及中断是由对应浸入式注嘴25设置在浇铸分配器20的堵塞器21 (stopper)来决定。具体地说,使堵塞器21开关浸入式注嘴25的入口,随着与浸入式注嘴25相同的路线可以垂直移动。通过浸入式注嘴25对钢液M流动的控制,可以利用与堵塞器方式不同的滑门(Slide gate)方式。滑门是板材在浇铸分配器20内以水平方向滑动便控制通过浸入式注嘴25吐出的钢液M流量。铸模30内的钢液M从组成铸模30的墙面相接部位开始凝固。这是由于水冷处理的铸模30钢液M的周边部位比中心部位容易失去热量的原因。由于周边部位先凝固的方式,沿着铸造方向连铸铸片80的后面部分形成未凝固钢液82被由钢液M凝固的凝固壳81围绕的形态。由于压带轮70 (图1)拉引完全凝固的连铸铸片80的前端部83,未凝固的钢液82就和凝固壳81 —起向铸造方向移动。未凝固的钢液82在移动过程中由喷射冷却水的喷水器手段65冷却。这使未凝固的钢液82在连铸铸片80占有的厚度逐渐变小。连铸铸片80达到一地点85时,连铸铸片80的整个厚度由凝固壳81填满。完成凝固的连铸铸片80在切断地点91以一定大小切断分成如板钢胚等的铸片P。图3是从上面看图2的浇铸分配器的斜视图。如图3所示,为了收容从盛钢桶10流出的钢液M,浇铸分配器20具有上部开口的本体22。本体22可以包含配置在外侧的铁皮和配置在所述铁皮内侧的耐火层。本体22的形态可列举如条形等的多种形态,但在本实施例例示‘T’字形的本体22。在本体22的一部分形成钢包23。钢包23是通过盛钢桶10的护罩喷嘴15落下流动钢液M的部分。钢包23可以连通比自己具有更宽面积的出钢部24。
出钢部24是将钢包23收容的钢液M向铸模30导引的部分。出钢部24可以开口复数个出钢口 24a。各出钢口 24a连接浸入式注嘴25,此浸入式注嘴25导引浇铸分配器20的钢液M向铸模30流动。图4是根据本发明实施例的浇铸分配器内钢液污染的预测过程流程图,结合

污染预测过程。首先,掉换盛钢桶10时,在第I盛钢桶11的铸造末期和第2盛钢桶12的铸造初期钢液被污染很多。如图5所示,在第I盛钢桶11的铸造末期,盛钢桶的熔渣通过浇铸分配器20向铸模供给,在盛钢桶的末期增加铸片的品质不良率。而且,如图6所示,在第2盛钢桶12的铸造初期,第2盛钢桶12的填充剂混入钢液,或是浇铸分配器20的钢液高度暂时低于护罩喷嘴15而在浇铸分配器20发生钢液裸露使钢液再氧化或发生浇铸分配器20的熔渣向铸模混入的状况。由于如此的问题增加铸片的不良率。因此,掉换盛钢桶时,需要污染范围的定量评价和钢液污染度的预测。如此的钢液污染度以水模(water model)实验的结果,获得如图7所示的结果。即,可以看出钢液污染度具有在第I盛钢桶11的铸造末期或第2盛钢桶12的铸造初期随着时间经过(铸造量)以直线增加达到最大污染度后以指数型减小的趋势。即,掉换盛钢桶时污染源的浓度从铸造量是Qplug开始到Qpeak为止线性增加至“ I ”,然后指数性减小接近“O”。如此图7是在浇铸分配器20通过浸入式注嘴25向铸模30注入的铸模流入口,在各种条件下测试钢液污染度后以线性装置的。接着,分别说明求得在如图5的状况下产生的第I盛钢桶11结束时的钢液污染度和在如图6的状况下产生的第2盛钢桶12开始时的钢液污染度的程序。首先,观看求得第I盛钢桶11结束时的钢液污染度的程序。如图4所示,在污染预测系统(未图示)的作业变数,第I盛钢桶11结束以后通过浇铸分配器20向铸模流出的钢液量,即铸造量Q,和第2盛钢桶12开始时如图6所示留在浇铸分配器20的残余钢液量Qrm分别由使用者设定(S11)。所述残余钢液量Qrm可从第2盛钢桶12开始时的浇铸分配器20和钢液的总重量减去浇铸分配器20的固有重量而求得。所述污染预测系统虽然没有图示,可由包含输入各种变数和参数的输入手段、根据储存在内存的演算法和各种变数及参数计算污染度的控制部、以及计算的污染度由控制部以文字或图形显示的显示部的电脑构成。接着,污染预测系统利用后盛钢桶第2盛钢桶12开始时的浇铸分配器的残余钢液量Qrm和设定的I次比例系数,根据下列关系式I分别计算第I盛钢桶11结束起污染浓度达到设定的第I基准值时的铸造量Qplug和达到设定的第2基准值时的铸造量Qpeak (S12, S13)。关系式IQplug=gXQrmQpeak=hXQrm在此,Qrm是后盛钢桶第2盛钢桶开始时的浇铸分配器的残余钢液量(ton),Qplug是第I盛钢桶结束起污染浓度达到0.01时的铸造量(ton),Qpeak是污染源浓度为“I”时的铸造量,g是第I比例系数,h是第2比例系数。例如,在图7最小污染度是“0”,最大污染度是“I”。第I盛钢桶11结束起污染浓度达到0.01时的铸造量定义为Qplug。Qplug是指从盛钢桶流入的盛钢桶熔渣在浇铸分配器20内经过最短路径向铸模注入所需的铸造量,与流入时机的浇铸分配器的残余钢液量Qrm成比例关系。第I比例系数g表示在浇铸分配器20内钢液流动具有多少塞流(plugflow)特性的尺度,根据浇铸分配器20的形象,即塞流的特性可以具有O至0.2之间的值。而且,Qpeak定义成污染源浓度为“I”时的铸造量。Qpeak值是根据浇铸分配器20内流动特性来决定的值,与流入时机的浇铸分配器的残余钢液量Qrm成比例关系,第2比例系数h可以具有0.1至0.3之间的值。如此分别计算Qplug和Qpeak后,以计算的Qplug, Qpeak和设定值为基础分别计算根据直线函数和指数函数的污染度。直线函数和指数函数如下列的关系式2及3(S14)。关系式权利要求
1.一种掉换盛钢桶时钢液污染范围的预测方法,其特征是包含: 分别指定第I盛钢桶结束后的铸造量Q和第2盛钢桶开始时浇铸分配器的残余钢液量Qrm的第I步骤; 利用所述残余钢液量Qrm和设定的I次比例系数或2次比例系数,从第I盛钢桶的结束起分别计算污染浓度达到设定的第I基准值时候的铸造量Qplug和设定的第2基准值时候的铸造量Qpeak的第2步骤; 所述获得的铸造量Q,Qplug, Qpeak及残余钢液量Qrm分别代入设定的直线函数和指数函数求得关于特定铸造量的污染度的第3步骤;以及 相互比较由所述直线函数和指数函数求得的污染度,两者中决定较小的值作为关于特定铸造量的污染度的第4步骤。
2.根据权利要求1所述的掉换盛钢桶时钢液污染范围的预测方法,其特征是所述第2步骤中第I基准值是0.01,第2基准值是污染浓度最大时候的值。
3.根据权利要求1所述的掉换盛钢桶时钢液污染范围的预测方法,其特征是所述Qplug是浇铸分配器的残余钢液量Qrm和第I比例系数g相乘而求得,所述Qpeak是浇铸分配器的残余钢液量Qrm和第2比例系数h相乘而求得。
4.根据权利要求3所述的掉换盛钢桶时钢液污染范围的预测方法,其特征是所述第I比例系数g决定在O到0.3之间,所述第2比例系数h决定在0.1到0.4之间。
5.根据权利要求3所述的掉换盛钢桶时钢液污染范围的预测方法,其特征是所述第I比例系数g,在所述I次比例系数O至0.2之间决定,在所述2次比例系数0.1至0.3之间决定, 所述第2比例系数h,在所述I次比例系数0.1至0.3之间决定,在所述2次比例系数0.2至0.4之间决定。
6.根据权利要求1所述的掉换盛钢桶时钢液污染范围的预测方法,其特征是所述第3步骤中,对特定铸造量的污染度C是根据下述关系式I的直线函数和下述关系式2的指数函数分别计算: 关系式I
7.根据权利要求6所述的掉换盛钢桶时钢液污染范围的预测方法,其特征是所述第3比例系数f在3至8之间决定。
8.根据权利要求1所述的掉换盛钢桶时钢液污染范围的预测方法,其特征是分别合算适用所述I次比例系数求得的第4步骤的污染度和适用所述2次比例系数求得的第4步骤的污染度而计算综合钢液污染度TC。
9.根据权利要求8所述的掉换盛钢桶时钢液污染范围的预测方法,其特征是所述综合钢液污染度Tc根据下述关系式3计算: 关系式3Tc = AXCl+(1-A) XC2 在此,Cl是适用第I盛钢桶结束时的I次比例系数求得的污染度,C2是适用第2盛钢桶开始时的2次比例系数求得的污染度,A是权重值。
10.根据权利要求9所述的掉换盛钢桶时钢液污染范围的预测方法,其特征是所述权重值A是0.25至0.35之间的值。
11.根据权利要求1所述的掉换盛钢桶时钢液污染范围的预测方法,其特征是还包含所述第4步骤中决定的污染度和“O”相互比较,两者中选择较大的值决定作为最终污染度的步骤。
全文摘要
本发明涉及掉换盛钢桶时钢液污染范围的预测方法,其提供分别指定第1盛钢桶结束后的铸造量Q和第2盛钢桶开始时浇铸分配器的残余钢液量Qrm的步骤;利用所述残余钢液量Qrm和设定的1次比例系数或2次比例系数,从第1盛钢桶的结束起分别计算污染浓度达到设定的第1基准值时候的铸造量Qplug和设定的第2基准值时候的铸造量Qpeak的步骤;所述获得的铸造量Q,Qplug,Qpeak及残余钢液量Qrm分别代入设定的直线函数和指数函数求得关于特定铸造量的污染度的步骤;以及相互比较由所述直线函数和指数函数求得的污染度,两者中决定较小的值作为关于特定铸造量的污染度的步骤。
文档编号B22D11/16GK103209783SQ201180041952
公开日2013年7月17日 申请日期2011年8月30日 优先权日2010年8月30日
发明者安宰焕, 金景秀, 文洪佶 申请人:现代制铁株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1