马氏体时效钢的制作方法

文档序号:3289738阅读:98来源:国知局
马氏体时效钢的制作方法
【专利摘要】本发明提供一种马氏体时效钢,其包含:0.10≤C≤0.30质量%,6.0≤Ni≤9.4质量%,11.0≤Co≤20.0质量%,1.0≤Mo≤6.0质量%,2.0≤Cr≤6.0质量%,0.5≤Al≤1.3质量%,和Ti≤0.1质量%,余量为Fe和不可避免的杂质,并满足1.00≤A≤1.08,其中A为0.95+0.35×[C]-0.0092×[Ni]+0.011×[Co]-0.02×[Cr]-0.001×[Mo],其中[C]表示C的含量(质量%),[Ni]表示Ni的含量(质量%),[Co]表示Co的含量(质量%),[Cr]表示Cr的含量(质量%),[Mo]表示Mo的含量(质量%)。所述马氏体时效钢具有2,300MPa以上的拉伸强度并且韧性/延性和疲劳特性也优异。
【专利说明】马氏体时效钢
【技术领域】
[0001]本发明涉及马氏体时效钢。更具体地,本发明涉及强度和韧性/延性优异和用于发动机轴等的马氏体时效钢。
【背景技术】
[0002]马氏体时效钢是通过将包含大量N1、Co、Mo、Ti等的无碳或低碳钢进行固溶热处理和淬火+时效处理获得的钢。
[0003]马氏体时效钢具有以下特性:
[0004](I)由于处于淬火状态的软马氏体的形成,所以机械加工性良好;
[0005](2)由于在时效处理期间在马氏体结构中析出如Ni3Mo、Fe2Mo和Ni3Ti等金属间化合物的,所以强度非常高;
[0006](3)尽管强度高,但韧性/延性高。
[0007]因此,马氏体时效钢被用于例如,航天器/航空器结构材料(例如,发动机轴)、机动车结构材料、高压容器或工具材料中。
[0008]通常,250ksi(I, 724MPa)级 18Ni 马氏体时效钢(Fe-18N1-9Co-5Mo_0.5Τ?-0.1A1)已被用于航空器发动机轴。然而,随着近来期望改进空气污染,如废气规章的严厉,对于航空器也需要提高效率。考虑到发动机设计,对于能够经受高输出、小型化和轻质化的高强度材料的需求是非常大的。
[0009]关于此类高强度材料,迄今提出各种提议。
[0010]例如,专利文献I公开了一种超高拉伸强度和韧性的钢,其包含C:0.05至0.20重量%、S1:2.0重量%以下、Mn:3.0重量%以下、N1:4.1至9.5重量%、Cr:2.1至8.0重量%、Mo:0.1至4.5重量%或用两倍体积的W部分或全部取代的Mo、Al:0.2至2.0重量%和Cu:0.3至3.0重量%,余量为铁和不可避免的杂质。
[0011]在此文献中,记载了通过将Cu和Al组合添加至低碳N1-Co-Mo钢,获得150kg/mm2(1471MPa)以上的强度,而没有太多损害韧性和可焊性。
[0012]此外,专利文献2公开了高强度、耐疲劳性的钢,其包含N1:约10至约18重量%、Co:约8至约16重量%、Mo:约I至约5重量%、Al:约0.5至约1.3重量%、Cr:约I至约3重量%、C:约0.3重量%以下、T1:小于约0.10重量%,余量由Fe和不可避免的杂质组成,其中析出微细的金属间化合物和碳化物两者。
[0013]在同一专利文献的表2中,证明了此材料具有284至327ksi (1,959至2,255MPa)的拉伸强度和7至15%的伸长率。
[0014]马氏体时效钢通常为韧性/延性优异的高强度材料,但已知难以在超过2,OOOMPa的拉伸强度区域中确保韧性/延性和耐疲劳性。因此,其应用保持在将250ksi级18Ni马氏体时效钢用作通用材料的水平。
[0015]另一方面,也已知专利文献2中记载的钢作为高级通用材料。然而,为了满足航空器的效率提高等的要求,需要更加提高强度(2,300MPa以上)而不引起韧性/延性和耐疲劳性的降低。
[0016][专利文献I]JP-A-53-30916 (此处使用的术语〃JP_A〃是指〃未审公布的日文专利申请〃)
[0017][专利文献2] U.S.专利 5,393,488
【发明内容】

[0018]本发明的目的是提供具有2,300MPa以上拉伸强度同时韧性/延性和疲劳特性优异的马氏体时效钢。
[0019]即,本发明提供一种马氏体时效钢,其包含
[0020]0.10 ≤ C ≤ 0.30 质量 %,
[0021 ] 6.0 ≤ Ni ≤ 9.4 质量 %,
[0022]11.0S Co < 20.0 质量 %,
[0023]1.0 ≤ Mo ≤ 6.0 质量 %,
[0024]2.0 ≤Cr ≤6.0 质量 %,
[0025]0.5 ≤ Al ≤ 1.3 质量 %,和
[0026]Ti ≤ 0.1 质量 %,
[0027]余量为Fe和不可避免的杂质,
[0028]并满足下式⑴:
[0029]1.00 ≤A ≤1.08 (I)
[0030]其中A=0.95+0.35X [C]-0.0092X [Ni]+0.01lX [Co]-0.02X [Cr]-0.0OlX [Mo],其中[C]表示C的含量(质量%), [Ni]表示Ni的含量(质量%), [Co]表示Co的含量(质量%), [Cr]表示Cr的含量(质量%), [Mo]表示Mo的含量(质量%)。
[0031]当主要元素的成分范围限定在特定范围并且C、N1、Co、Cr和Mo的含量最优化以满足式(I)时,获得具有2,300MPa以上拉伸强度和7%以上的伸长率并且同时疲劳特性优异的马氏体时效钢。
【具体实施方式】
[0032]以下详细描述本发明的一个实施方案。
[0033][1.马氏体时效钢]
[0034][1.1.主要构成元素]
[0035]根据本发明的马氏体时效钢包含以下元素,余量为Fe和不可避免的杂质。添加元素的种类、其成分范围和限定的原因如下。
[0036](I) 0.10 ≤ C ≤ 0.30 质量 %
[0037]C有助于析出含Mo碳化物如Mo2C并提高基础金属(base metal)强度。此外,当适量碳化物残留在基础金属中时,防止Y粒径在固溶热处理期间粗大化。随着旧Y粒径越小,形成越微细的马氏体,获得更高强度和更高韧性/延性。为了获得此效果,C含量需要为0.10质量%以上。C含量优选0.15质量%以上。
[0038]另一方面,如果C含量过大,含Mo碳化物大量析出,因此,用于析出金属间化合物的Mo缺乏。此外,变得需要在更高温度下的固溶热处理以溶解碳化物,而这引起Y粒径的粗大化。结果,用于抑制Y粒径粗大化和溶解碳化物的最佳温度范围变窄,使得操作困难。为此,C含量需要为0.30质量%以下。C含量优选0.25质量%以下。
[0039](2) 6.0 ≤ Ni ≤ 9.4 质量 %
[0040]Ni有助于析出金属间化合物如Ni3Mo和NiAl和提高基础金属强度。为了获得此效果,Ni含量需要为6.0质量%以上。Ni含量优选为7.0质量%以上。
[0041]另一方面,如果Ni含量过量,则Mo被消耗从而析出过多的金属间化合物,含Mo碳化物的析出量降低。为此,Ni含量需要为9.4质量%以下。Ni含量优选为9.0质量%以下。[0042](3)11.0 < Co < 20.0 质量 %
[0043]使得Co溶解于基质相(host phase)中并由此发挥加速金属间化合物如Ni3Mo和NiAl的析出的效果。为了获得此效果,Co含量需要为11.0质量%以上。Co含量优选为
12.0质量%以上、更优选14.0质量%以上。
[0044]另一方面,如果Co含量过量,过量金属间化合物的析出过度加速,含Mo碳化物的析出量降低。为此,Co含量需要为20.0质量%以下。Co含量优选为18.0质量%以下、更优选16.0质量%以下。
[0045](4) 1.0 ≤ Mo ≤6.0 质量 %
[0046]Mo有助于析出金属间化合物如Ni3Mo和含Mo碳化物如Mo2C以及提高基础金属强度。为了获得此效果,Mo含量需要为1.0质量%以上。Mo含量优选为2.0质量%以上。
[0047]另一方面,如果Mo含量过量,需要在更高温度下的热处理以溶解在固化期间析出的碳化物如Mo2C,而这引起Y粒径的粗大化。结果,用于抑制Y粒径粗大化和溶解碳化物的最佳温度范围变窄,使得操作困难。为此,Mo含量需要为6.0质量%以下。Mo含量优选为5.0质量%以下。
[0048](5) 2.0 ≤ Cr ≤ 6.0 质量 %
[0049]Cr有助于改进延性。认为通过添加Cr改进延性的原因是因为Cr溶解于含Mo碳化物中并使得碳化物形状为球状。为了获得此效果,Cr含量需要为2.0质量%以上。Cr含量优选为2.5质量%以上、更优选3.5质量%以上。
[0050]另一方面,如果Cr含量过量,则强度降低。认为这是因为含Mo碳化物通过Cr的过量添加而粗大化。为此,Cr含量需要为6.0质量%以下。Cr含量优选为5.0质量%以下、更优选4.5质量%以下。
[0051](6)0.5 ≤ Al ≤ 1.3 质量 %
[0052]Al有助于析出金属间化合物如NiAl和提高基础金属强度。为了获得此效果,Al含量需要为0.5质量%以上。Al含量优选为0.7质量%以上。
[0053]另一方面,如果Al含量过量,则该元素形成氧化物或氮化物,降低清净度(cleanliness) 0此外,如果在基础金属中Al的溶解量过量,则韧性/延性降低。为此,Al含量需要为1.3质量%以下。Al含量优选为1.2质量%以下。
[0054](7) Ti ≤ 0.1 质量 %
[0055]Ti形成TiC和TiN等,由此降低清净度。为此,Ti含量需要为0.1质量%以下。
[0056][1.2.成分平衡]
[0057]除了组成元素在上述范围内的要求外,根据本发明的马氏体时效钢还需要满足下式⑴:
[0058]1.00 ≤A ≤ 1.08(I)
[0059]其中A=0.95+0.35X [C]-0.0092X [Ni]+0.01lX [Co]-0.02X [Cr]-0.0OlX [Mo],其中[c]表示C的含量(质量%), [Ni]表示Ni的含量(质量%), [Co]表示Co的含量(质量%), [Cr]表示Cr的含量(质量%), [Mo]表示Mo的含量(质量%)。
[0060]式(I)是表示为获得具有高强度和优异韧性/延性所需的各成分的平衡的经验式。
[0061]随着值A越大,越提高拉伸强度。为了获得超过2,300MPa的拉伸强度,值A需要为1.00以上。
[0062]另一方面,如果值A变得过大,则降低伸长率。为了获得7%以上的伸长率,值A需要为1.08以下。
[0063]在这一点上,关于在本发明钢中包含的各兀素,根据实施方案,其最小量可为在表I中汇总的任一实施例的量。根据另外的实施方案,其最大量可为在表1中汇总的任一实施例的量。此外,关于有关本发明钢的式(I)中的A值,根据实施方案,其最小量可为在表1中汇总的任一实施例的值。根据另外的实施方案,其最大量可为在表1中汇总的任一实施例的值。
[0064][2.马氏体时效钢的生产方法]
[0065]生产根据本发明马氏体时效钢的方法包括熔融步骤、再熔融步骤、均质步骤、锻造步骤、固溶热处理步骤、深冷处理步骤和时效处理步骤。
[0066][2.1.熔融步骤]
[0067]熔融步骤是使为得到预定成分范围而共混的原料熔融/铸造(casting)的步骤。使用的原料的历程或熔融/铸造的条件不特别限定,可根据目的选择最佳的历程或条件。为了获得强度和耐疲劳性特别优异的马氏体时效钢,优选提高钢的清净度。为此,原料的熔融优选在真空中进行(例如,真空感应炉熔融法)。
[0068][2.2.再熔融步骤]
[0069]再熔融步骤是将通过熔融步骤获得的锭再次熔融/铸造的步骤。再熔融步骤不是必需的,但通过进行再熔融,更加改进钢的清净度并提高钢的耐疲劳性。为此,再熔融优选在真空中进行(例如,真空电弧再熔融法)并重复多次。
[0070][2.3.均质步骤]
[0071]均质步骤是在预定温度下将在熔融步骤或再熔融步骤中获得的锭加热的步骤。进行均质热处理以消除在铸造期间产生的偏析。均质热处理的条件不特别限定,并且可以是使得没有固化偏析的条件。均质热处理条件通常为:加热温度为1,150至1,350°C,加热时间为10小时以上。均质热处理后的锭通常空气冷却或以仍然赤热的状态输送至下一步骤。
[0072][2.4.锻造步骤]
[0073]锻造步骤是将均质热处理后的锭锻造并将其加工成预定形状的步骤。锻造通常通过热锻造进行。热锻造条件通常为:加热温度为900至1,350°C,加热时间为I小时以上,精制(finish)温度为800°C以上。热锻造后冷却的方法不特别限定。热锻造可仅一次进行,或者可连续进行4至5个步骤。
[0074]锻造后,如果需要,进行退火。退火条件通常为:加热温度为550至950°C,加热时间为I至36小时,冷却方法为空气冷却。
[0075][2.5.固溶热处理步骤]
[0076]固溶热处理步骤为将加工成预定形状的钢在预定温度下加热的步骤。进行固溶热处理步骤以使得基础金属变为Y单相,同时,熔解析出物如Mo碳化物。关于固溶热处理条件,根据钢的组成选择最佳条件。固溶热处理条件通常为:加热温度为900至1,200°C,加热时间为I至10小时,冷却方法为空气冷却(AC)、鼓风冷却(BC)、水冷却(WC)或油冷却(OC)。
[0077][2.6.深冷处理]
[0078]深冷处理是固溶热处理后将钢冷却至不高于室温的温度下的步骤。进行深冷处理以将剩余的Y相转化为马氏体相。马氏体时效钢的Ms点低,因此使得在冷却至室温时残留大量Y相。即使在大量Y相仍残留的状态下进行时效处理,也不能预期获得强度的大的提高。因此,应当在固溶热处理后将残留的Y相通过进行深冷处理而转化为马氏体相。深冷处理条件通常为:冷却温度为-197至-73°C,冷却时间为I至10小时。
[0079][2.7.时效处理]
[0080]时效处理为将其中已产生马氏体相的钢在预定温度下加热的步骤。进行时效处理以析出金属间化合物如Ni3Mo和NiAl和碳化物如Mo2C。关于时效处理条件,根据钢的组成选择最佳条件。时效处理条件通常为:时效处理温度为400至600°C,时效处理时间为0.5至24小时,冷却方法为空气冷却。
[0081][3.马氏体时效钢的作用]
[0082]当将主要元素的成分范围限定为特定范围并且将C、N1、Co、Cr和Mo的含量最优化以满足式(I)时,获得具有2,300MPa以上拉伸强度和7%以上伸长率同时疲劳特性优异的马氏体时效钢。认为这是因为通过优化构成元素,金属间化合物和碳化物两者以平衡的方式析出,并且碳化物形成微细球状的形状,同时使得旧Y粒径变细。
[0083]实施例
[0084](实施例1至30和比较例I至17)
[0085][1.样品的生产]
[0086]将具有示于表1和2中的组成的合金在真空感应炉中熔融以获得150kg锭。将获得的锭在真空电弧熔炼炉中进一步再熔融。将制锭后的锭在1,250°C X24小时的条件下进行均质热处理并空气冷却,然后锻造为具有24mm直径的条(bar)材料。锻造条件为
1,2500C X3小时,精制温度在800°C和空气冷却。锻造后,在650°C X8小时和空气冷却的条件下进行退火,然后将条粗机械加工成用于各试验的试样。
[0087]随后,在1,OOO0C X I小时和水淬火条件下进行粗机械加工试样的固溶热处理,然后在-197°C Xl小时的条件下进行粗机械加工试样的深冷处理。此外,在500°C X5小时的条件下进行粗机械加工试样的时效处理并空气冷却。其后,将各试样精细机械加工,然后进行拉伸试验、却贝冲击试验和低循环疲劳试验。
[0088]表1
[0089]
【权利要求】
1.一种马氏体时效钢,其包括: 0.10 ^ C ^ 0.30 质量 %,
6.0 ^ Ni ^ 9.4 质量 %,
I1.0 ^ Co ^ 20.0 质量 %, 1.0<Mo<6.0质量%,
2.0 ^ Cr ^ 6.0 质量 %, 0.5 ^ Al ^ 1.3 质量 %,和 Ti ^ 0.1 质量 %, 余量为Fe和不可避免的杂质, 并且满足下式(I): 1.00<A<1.08(I) 其中 A=0.95+0.35X [C]-0.0092X [Ni]+0.01lX [Co]-0.02X [Cr]-0.0OlX [Mo],其中[C]表示C的含量(质量%), [Ni]表示Ni的含量(质量%), [Co]表示Co的含量(质量%),[Cr]表示Cr的含量(质量%), [Mo]表示Mo的含量(质量%)。
2.根据权利要求1所述的马氏体时效钢,其中:2.5 ^ Cr ^ 6.0质量%。
【文档编号】C22C38/52GK103484787SQ201310223961
【公开日】2014年1月1日 申请日期:2013年6月6日 优先权日:2012年6月6日
【发明者】植田茂纪, 高林宏之, 木村永, 田中勇太, 高桥聪, 中野渡功, 佐佐木厚太, 山根功士郎, 游佐觉 申请人:大同特殊钢株式会社, 株式会社Ihi
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1