一种WC-10Co-0.6Cr3C2硬质合金的制作方法

文档序号:17468737发布日期:2019-04-20 05:40阅读:440来源:国知局

本发明涉及一种硬质合金材料,尤其涉及一种wc-10co-0.6cr3c2硬质合金。



背景技术:

硬质合金是由难熔金属的硬质化合物和粘结金属通过粉末冶金工艺制成的一种合金材料。硬质合金具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能,特别是它的高硬度和耐磨性,即使在500℃的温度下也基本保持不变,在1000℃时仍有很高的硬度。如何有针对性地依用途研究或开发高性能材料是该领域的研究热点。

碳化铬,英文名称:chromiumcarbide,灰色粉末,斜方晶系,a=2.821、b=5.52、c=11.46,相对密度6.68。熔点1890℃。沸点3800℃。微维氏硬度(负荷50g)2700kg/mm2,热膨胀系数10.3×10-6/k。将炭黑按13.5%~64%(质量)的比例(比理论结合碳量11.33%还多)与用电解铬粉碎而成325目的金属铬粉末,用球磨机进行干式混合之后作为原料。添加1%~3%硬脂酸作为成型用润滑剂。用1t/cm2以上压力加压成型。将该加压成型粉末放进石墨盘里或坩埚里,用塔曼炉或感应加热炉,在氢气流(氢气露点在-35℃左右)中,加热至1500~1700℃,并保持1h,使铬进行碳化反应,生成碳化铬,经冷却,制得碳化铬。



技术实现要素:

本发明的目的是为了改善wc-co硬质合金的硬度、耐磨性,设计了一种wc-10co-0.6cr3c2硬质合金。

本发明解决其技术问题所采用的技术方案是:

wc-10co-0.6cr3c2硬质合金的制备原料包括:fsss粒度为0.94μm的wc粉末和fsss粒度为0.94μm的co粉作为原料。

wc-10co-0.6cr3c2硬质合金的制备步骤为:将原始粉末按实验设计方案称重、配料,配好后倒入球磨罐中进行球磨,球磨介质为直径15mm的硬质合金球,球磨机转速为90r/min,球料比为7:1,球磨时间为24h。球磨结束后,将制得的粒料进行真空干燥,干燥时间为50min,干燥温度为40℃,随后加入石蜡作为成形剂进行制粒。将制好的粉末加至液压机中进行压制成形。将制好的压坯采用加压烧结法,放入压力烧结炉中进行烧结,烧结温度为1450℃,保温时间为90min,烧结压力10mpa。

wc-10co-0.6cr3c2硬质合金的检测步骤为:显微组织的陈定采用imager金相显微镜,饱和磁化强度和矫顽磁力用lecosm-8100/ldj-702型磁饱磁化强度和与矫顽磁力联合测定仪测试,质量采用电子天平称量,密度采用排水法测量,硬度采用rb200洛氏硬度计。

所述的wc-10co-0.6cr3c2硬质合金,合金合金内部具有均匀的物相组成,其中,硬质合金内部的两相区具有符合要求的碳区宽度及合适的碳含量。三相区的物相组成虽然较为复杂,但是并没有晶粒异常长大的现象出现,晶粒尺寸也较为均匀,所以能够使制得的硬质合金的力学性能得到大幅提升。

所述的wc-10co-0.6cr3c2硬质合金,碳元素的添加量对硬质合金的力学性能有着较为重要的影响。硬质合金内部开始出现游离碳之前,硬质合金的饱和磁化强度会随着碳含量的增大而增大。而当硬质合金内部出现游离碳后,提高碳含量碳元素的添加量对硬质合金的饱和磁化强度提升不大。

所述的wc-10co-0.6cr3c2硬质合金,适当的碳元素添加量不仅能够提高硬质合金的饱和磁化强度,还能提高硬质合金的硬度、致密度及其矫顽磁力。

本发明的有益效果是:

采用wc粉末和co粉为原料,经过配料、球磨、干燥、制粒、成形、烧结工艺成功制备了具有优异力学性能的wc-10co-0.6cr3c2硬质合金。其中,制得的硬质合金内部具有均匀的物相组成,晶粒尺寸均匀,没有出现晶粒异常长大的情况。适当的碳元素添加量能够提升硬质合金的力学性能。所制得的wc-10co-0.6cr3c2硬质合金,其硬度、致密化程度、饱和磁化强度、矫顽磁力都得到大幅提升。本发明能够为制备高性能的wc-10co-0.6cr3c2硬质合金提供一种新的生产工艺。

具体实施方式

实施案例1:

wc-10co-0.6cr3c2硬质合金的制备原料包括:fsss粒度为0.94μm的wc粉末和fsss粒度为0.94μm的co粉作为原料。wc-10co-0.6cr3c2硬质合金的制备步骤为:将原始粉末按实验设计方案称重、配料,配好后倒入球磨罐中进行球磨,球磨介质为直径15mm的硬质合金球,球磨机转速为90r/min,球料比为7:1,球磨时间为24h。球磨结束后,将制得的粒料进行真空干燥,干燥时间为50min,干燥温度为40℃,随后加入石蜡作为成形剂进行制粒。将制好的粉末加至液压机中进行压制成形。将制好的压坯采用加压烧结法,放入压力烧结炉中进行烧结,烧结温度为1450℃,保温时间为90min,烧结压力10mpa。wc-10co-0.6cr3c2硬质合金的检测步骤为:显微组织的陈定采用imager金相显微镜,饱和磁化强度和矫顽磁力用lecosm-8100/ldj-702型磁饱磁化强度和与矫顽磁力联合测定仪测试,质量采用电子天平称量,密度采用排水法测量,硬度采用rb200洛氏硬度计。

实施案例2:

对于wc-10co-0.6cr3c2合金,当碳含量为6.8%时,合金组织为三相组织,出现了脱碳相;当碳含量为7.15%时,合金组织仍为三相组织,但是出现渗碳相;当碳含量在6.8%与7.15%之间时,合金组织为正常的两相结构。合金碳含量两相区宽度为0.35%,相对应的碳含量范围为6.8%~7.15%。在两相区范围内,w在γ相的固溶度与合金的碳含量有关,当合金碳含量处于两相区的低碳侧时,γ相的含钨量最高;当合金碳含量处于两相区的高碳侧时,γ相中的钨含量最低。另外,合金烧结的冷却速度也影响w在γ相中的固溶度,冷却速度较慢时w的固溶度较低,冷却速度较快时w的固溶度较高。

实施案例3:

合金的饱和磁化强度随碳含量升高而增大。随碳含量降低,合金中非磁性相增加,失去磁性的钴增加;在两相区内,随碳含量增加,钴相中的w溶解量减少。当碳含量大于7.15%时,合金中开始出现游离碳。

实施案例4:

碳含量大于7.15%时,游离碳的存在导致硬质合金烧结液相点降低,相当于在烧结温度下增加了液相量并延长液相保持时间。根据wc晶粒长大的溶解–析出机理,wc晶粒长大是由小颗粒wc在液相中溶解,然后在大颗粒wc上析出而引起的。因此液相量越多以及液相保持时间越长,则wc的溶解析出量越多,wc晶粒越容易长大。合金晶粒长大使钴相平均自由程增大,矫顽磁力随之降低;反之,碳含量较低时,液相量减少并缩短了液相保持的时间,相当于缩短了液相烧结的时间,从而使晶粒变细,导致矫顽磁力增大。

实施案例5:

随碳含量增加,洛氏硬度整体呈下降的趋势,碳含量为5.73%时洛氏硬度最小,在碳含量为5.33%时合金硬度达到最大值。在钴含量一定的情况下,随碳含量增加,合金的晶粒度增大,钴相平均自由程随之增大,从而导致合金硬度降低。碳含量为5.33%时,由于合金中存在硬质相,导致合金硬度提高。

实施案例6:

随合金碳含量增加,合金密度逐渐降低。在碳含量为最低值5.33%时,密度最大,为21.75g/cm3。当碳含量小于6.8%时,合金组织为三相结构,随碳含量减少,η相数量增加,γ相中w含量增加,因而密度增大;当碳含量大于7.15%时,合金组织仍为三相结构,随碳含量增加,游离碳增多,所以密度减小;当碳含量位于6.8%与7.15%之间时,合金组织处在正常的两相区内,随碳含量减少,其密度增大。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1