使用层的连续沉积来制造部件的方法和装置与流程

文档序号:15747187发布日期:2018-10-23 23:29阅读:176来源:国知局

本发明涉及一种使用层的连续沉积来制造部件的增材制造方法和装置。



背景技术:

现有技术特别包括文献FR-A1-2 816 836、EP-A1-0 529 816、US-A1-2004/099983、EP-A1-2 135 698、GB-A-2 508 335和FR-A1-2 998 496。

至少有两种类型的增材制造方法用于获得如下部件:该部件通过连续沉积熔融物质来制造(图1),或者该部件通过连续的粉末床熔合操作来制造。

图1中所示的装置用于通过层或熔融物质的连续沉积来制造部件。通过将层10叠置在基板80上来生产该部件。该装置包括激光头20,该激光头发射使物质(例如,金属合金)熔化的光束22。

这种增材制造技术以多个名称而已知,这些名称大多数是各种装置制造商或研究机构的商业品牌:激光沉积[激光金属沉积(Laser Metal Deposition,LMD)]、直接金属沉积[Direct Metal Deposition,DMD]、直接激光沉积[Direct Laser Deposition,DLD]、激光工程[激光工程净成形(Laser Engineered Net Shaping,LENS)]、激光熔覆[laser cladding]、激光沉积焊接和激光粉末熔焊。

如图所示,激光光束22在基板80上形成熔池,使用例如激光头20将粉末24沉积在该熔池上。粉末熔融,以形成通过熔合粘附到基板上的层10或带(cordon)。然后将多个层或带叠置在第一带的顶部上以形成该部件。激光头20通常由机器人控制。

可以使用各种钛、镍、钴、WC(碳化钨)和钢的合金,其包括Ti-Al6-4V、Inconel-718、Rene-142和Stellite-6。

标准激光源是CO2、Yb光纤和Nd-YAG盘。

例如,该技术在航空中用于制造飞行器涡轮喷气发动机的某些部件。

当使用上述技术进行增材制造部件时,由于残余应力的增加,可能发生实心区域的变形。这种逐带或逐层快速固化有几个缺点:层之间的氧化风险降低部件的冶金健康(机械特性差和层之间的内聚力差),如果应力很大则带变形,导致上部层的偏移等。此外,向制造基板的定向热传递引起晶粒的柱状生长,最终材料是各向异性的。实际上重要的是实现对残余应力的产生和微观结构的各向异性的最佳可能的控制,以便能够产生理想的部件。

本发明针对这些问题提供了一种简单、有效且具有成本效益的方案。



技术实现要素:

因此,本发明提供了一种通过层的连续沉积来制造部件的至少一部分的方法,所述方法包括以下步骤:

a)将第一熔融金属层沉积在基板上,以在所述基板上形成第一金属带,

b)将第二熔融金属层沉积在所述第一带上,以在所述第一带上形成第二金属带,和

c)对于每个待沉积在前一个带的顶部上的新的金属层,重复步骤a)和步骤b),直到形成部件的所述至少一部分,

其特征在于,所述方法包括,在n个沉积步骤之后对所形成的带进行压缩的步骤,其中n大于或等于1,并且该压缩步骤在热状态下执行,即,在所述带完全冷却之前执行。

因此,本发明力图通过在沉积带之后立即对带进行处理、之后被后续的带覆盖来改善带的性质。逐带或逐层压缩处理使得能够改变/去除施加到带上的应力、硬化带的材料、甚至酸洗氧化物,由此使得可以处理变形方面、结构的各向异性和粘接缺陷。通过硬化表面,结构再生以防止外延生长。也可利用喷丸(shot peening)在沉积后续层之前去除氧化物层,以改善粘附性或改变经喷丸的层的微观结构。

为此,本发明结合了两种非常不同的方法,即通过层的连续沉积进行增材制造和例如通过喷丸进行层的压缩。这两种方法可以使用粉末形式或作为颗粒的材料,这些材料可以是相同的,以便不污染正在制造的部件。

根据本发明的方法可以包括以下单独或组合采用的特征中的一个或多个:

-压缩步骤能够在所述带的材料处于高于30℃、优选地高于100℃、更优选地高于200℃并且例如为约300℃的温度时执行。

-压缩步骤通过将气体流、例如压缩的空气流或氮气流喷射到所述带上来执行。

-压缩步骤通过对所述带进行喷丸来执行。

-利用与用于制造所述带的粉末的材料相同的材料的颗粒来执行喷丸,所述颗粒的大小优选地不同于所述粉末的颗粒的大小。这简化了粉末再加工和管理,或防止被其他合金污染,

-利用与用于制造所述带的材料不同的材料的颗粒来执行喷丸。这通过对所选介质和用于增材制造的材料的相对硬度进行作用使得对产生的残余应力(达到的深度和高度)具有更大的灵活性,

-压缩步骤被设置成允许:

i)引入残余压缩应力以抵消熔合产生的残余拉伸应力,以使变形最小化,和/或

ii)对在所述带的表面上形成的任何氧化物层进行酸洗,和/或

iii)通过喷丸改变初始带的微观结构(各向异性或柱状)以获得均匀的微观结构(多方向性或晶体粒度减小),和/或

iv)对沉积的物质进行致密化以减小由增材制造过程引起的孔隙率。

这一系列步骤改善了部件的最终机械性能,从而防止了开裂现象(步骤i),并且还可以用于控制部件内的一个或多个微观结构的发展。这些微观结构在最终部件或局部部件的范围上可以是均匀的,这取决于预期的工业应用(步骤iii)。

本发明还涉及一种用于实施上述方法的装置,其特征在于,该装置包括:

-激光头,所述激光头被配置为熔融填料金属以形成带,和

-用于压缩所述带的喷嘴。

有利地,激光头和喷嘴由共用的机械臂支撑。

附图说明

通过参考附图阅读作为示例提供的并且不限于此的以下描述,本发明将得到更好地理解,并且本发明的其他细节、特征和优点将变得更加清楚,在附图中:

-图1是根据现有技术的利用增材制造方法制造部件的装置的示意性透视图;

-图2是本发明一般原理的高度示意性的视图;

-图3是根据本发明的装置的一个实施例的高度示意性的视图,以及

-图4是根据本发明的装置的另一个实施例版本的高度示意性的视图。

具体实施方式

与模制部件、注射成型部件或由钢坯加工而成的部件相比,增材制造具有许多优点,包括减少制造时间、降低成本和减少经费。

然而,通过增材制造产生的部件具有一些缺点:在固化期间,每个新层产生残余拉伸应力,并且可能导致开裂。

本发明力图利用如图2所示的制造装置来克服这些缺点,该装置包括:

-第一喷嘴100,该第一喷嘴用于将粉末102沉积在基板80上,

-头104,该头发射激光束106,和

-第二喷嘴108,该第二喷嘴用于在带110被形成之后并且在带被后续的带覆盖之前对带110进行压缩。

如图1所示,喷嘴100的功能可以整合在激光头104中。在这种情况下,该装置将具有被配置成将粉末102沉积在基板80上的激光头104,以及喷嘴108。

根据本发明的方法包括在形成层或带的每个步骤之后,对带110进行压缩的步骤。

优选地,在激光束106在层上通过之后,通过对带进行喷丸或气体冷却来实现带110的压缩,以提供逐层或逐带处理、和施加压缩应力或获得所需的微观结构。喷丸或冷却具有不同的效果,这取决于基板的温度、发射激光束106的头104的定位等。例如,可以通过鉴定每个带110的表面等温线来控制该温度。

在带处于环境温度时对带进行压缩的特定情况下,层和头104之间的工作距离L可以是大约150mm。该头104可以具有6mm的直径,并且可以通过在0.2MPa-0.8MPa的压力下沉积直径为约100μm的颗粒来执行喷丸。

在带处于高温(例如约300℃)时进行压缩的特定情况下,可以在0.6MPa的压力下用1.0mm的弹丸进行喷丸。在这些喷丸操作之后可以进行微喷丸类型的处理,该微喷丸类型的处理用0.1mm的弹丸在0.6MPa的压力下执行。

本发明在具有高硬度(600HV-1000HV)的钢带上的应用实现了约-350MPa至-500MPa的表面应力、约-400MPa至-2000MPa的最大压缩应力、约5μm至20μm的最大应力深度、和从50μm至100μm范围内的压缩深度。

对于喷丸操作,可以使用引导式微喷丸喷嘴,该引导式微喷丸喷嘴使用粒度为10μm至100μm的细粉末。冲击表面可以是几平方毫米,被作用的深度可以在50μm到150μm之间的范围内。

这符合直接激光沉积方法。利用直接激光沉积方法,熔合层具有约200μm至500μm的厚度。熔合的粉末具有相同的晶粒尺寸;可以考虑使用相同的粉末以避免污染部件。喷丸与上述增材制造方法以相同的量级进行工作。

对于与应力相关的方面,可以调节在深度上的应力变化。还可以使用载气的冷却效果来改变应力值并限制氧化。

如上所述,还可以借助于载气引入压缩,而不使用诸如微喷丸的介质,以便硬化(trempe)物质的带并使残余应力引入其中。排出的气体可以是中性气体或反应气体。优选地,与通过支撑件进行传导相比,该流足以更快地加速带的冷却。

微喷丸或气体流喷射喷嘴108必须跟随头104以稍微延迟冲击硬化的带,该延迟例如基于喷嘴和头之间的距离d确定,d是带的冷却温度和适合于压缩带的温度的因素。实际上,喷丸喷嘴的定向的引导优选地与喷射喷嘴的引导不同。

发射头104和第二喷嘴108、以及甚至第一喷嘴100优选地由共用的机械臂支撑。

图3至图4分别示出了根据本发明的装置的两个实施例。在图3中,臂120绕轴线122(例如竖直轴线)可旋转地移动。头104以轴线122为中心,并且微喷丸喷嘴的输出位于以轴线122为中心的圆周上。臂沿着包括轴线122的平面(例如图的平面)移动,并且相对于臂的行进方向位于激光束106下游的喷嘴108用于压缩激光束。

如图4所示,臂120支撑喷丸喷嘴108和激光束发射头104,喷丸喷嘴和激光束发射头之间的距离可通过相对于臂平移移动喷嘴而改变。臂以围绕头104的轴线122平移和旋转的方式纵向移动和旋转移动。

如果喷丸颗粒具有与粉末颗粒相同的性质,则存在粉末损失更大的风险。一种解决方案在于使用具有较粗粒度的粉末,使得可以通过筛分或使用可以通过磁分离回收的不同材质(例如陶瓷)的粉末来回收颗粒。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1