一种高铁含量Fe-Si-B-P-Cu-Nb非晶纳米晶软磁合金及制备方法与流程

文档序号:18844145发布日期:2019-10-09 08:33阅读:669来源:国知局
一种高铁含量Fe-Si-B-P-Cu-Nb非晶纳米晶软磁合金及制备方法与流程

本发明属于非晶纳米晶合金领域,具体涉及一种高铁含量并具有高饱和磁化强度的fe-si-b-p-cu-nb系非晶纳米晶合金。



背景技术:

非晶合金是指内部结构中原子排列呈长程无序而短程有序特点的合金。在冷却速度足够大的情况下,合金的粘度迅速增加,原子或分子达到内平衡所需的时间呈数量级延迟,晶化过程来不及发生,从而使得无序液态的结构被保存下来,形成非晶合金。20世纪60年代末,随着fe基非晶合金的问世,人们发现其具有很好的铁磁性。目前应用的硅钢片作为变压器铁芯存在着损耗大、生产工序复杂的缺点,无法满足节约能源的需要。而非晶软磁合金虽然具有高电阻率、低矫顽力、低铁损等优异性能,但其饱和磁感应强度较低,因而限制了其应用范围。针对非晶软磁合金的不足,又进一步发展出了纳米晶软磁合金。纳米晶软磁合金为非晶基体上均匀分布着细小纳米颗粒的特殊结构,这种双相结构相比于单一的非晶相提升了饱和磁感应强度、降低了内应力、具有很好的高频软磁性能。目前,非晶和纳米晶软磁合金作为一类重要的节能材料,在电力、电子和信息传输与转换等领域有着广泛的应用。

当前在研究和应用的非晶纳米晶软磁薄带主要分为以下两种:(1)具有高饱和磁化强度的非晶或纳米晶合金。包括fesib系非晶合金和nanomet型(fesibpcu)纳米晶合金。fesib系非晶合金饱和磁感较高,约为1.4~1.65t,典型合金成分为fe78si9b13,其bs只有1.56t,虽然bs不及硅钢(1.8~2.03t),但是其它磁性能如矫顽力,铁损等都明显优于硅钢。目前已在变压器等领域获得应用。近些年新兴的nanomet型纳米晶合金,其因较高fe含量所伴随的高bs(一般在1.8t左右)远高于fesib非晶合金,但是其薄带制备工艺极其复杂,晶化退火工艺也十分苛刻,工业生产现有技术难以达到其要求,以致nanomet合金系至今无法工业化应用。(2)高磁导率的纳米晶合金。目前商用的纳米晶合金主流还是finemet系合金,合金系为fecunbsib,该合金磁导率达到了100000以上,但是其饱和磁化强度低(bs=1.25t),限制了其在电力电子小型器件及电力变压器上的应用。



技术实现要素:

本发明的内容是设计一种高铁含量并具有高饱和磁化强度的fe-b-si-p-cu-nb系非晶纳米晶软磁合金。该合金成本低廉,具有较好的非晶形成能力和高饱和磁化强度,可广泛用于在电力、电子和信息传输与转换等领域。

本发明在合金设计上与前述报道的研究工作和发明申请的不同之处在于:

a.非晶纳米晶合金中的fe含量范围在85.5~86.5%(原子百分比),极高的磁性元素含量保证了纳米晶的高饱和磁化强度。

b.适量的类金属元素si、b、p的添加保证了合金的非晶形成能力,由于fe-b二元系具有最高的非晶形成能力。因此,在fe含量如此高的情况下,仍需保证类金属中的b含量最高,其原子百分比范围为8~9.8%。此外,适量的p和si的添加进一步提升了合金的非晶形成能力。特别指出的是,因c在工业应用中面临成分控制问题和带材脆性问题,故本合金系中不含c元素(中间合金原料中不可避免的c除外)。

c.过渡金属nb元素的添加对于fe基非晶和纳米晶带材的韧性和控制纳米晶粒尺寸起着重要作用,但是过量nb的添加会降低纳米晶的饱和磁化强度,故本合金添加了少量nb元素。

一种高fe含量fe-si-b-p-cu-nb非晶纳米晶合金,其特征在于该合金具有饱和磁化强度。合金的化学成分表达式为feasibbcpdcuenbf,式中a,b,c,d,e,f分别表示各对应组分fe、si、b、p、cu、nb的原子百分比,并满足下列条件:85.5≤a≤86.5,1≤b≤2,8≤c≤9.8,2.6≤d≤4,0≤e≤1,0≤f≤0.55,a+b+c+d+e+f=100。

进一步地,当f=0时,其化学成分表达式为feasibbcpdcue,其成分特征为:a=86,1≤b≤2,8≤c≤9.8,2.6≤d≤4,0.3≤e≤1,a+b+c+d+e=100,该合金薄带成形性能优异,淬态即为纳米晶薄带,其淬态饱和磁化强度达到1.82t。

进一步地,当e=0时,其化学成分表达式为feasibbcpdnbf,其成分特征为:85.75≤a≤86.5,1.05≤b≤1.8,c=8.9,d=3,f=0.55,a+b+c+d+f=100,该合金非晶形成能力优异,其淬态非晶薄带经纳米晶化后的饱和磁化强度达到1.84t。

进一步地,合金的化学成分表达式为feasibbcpdcuenbf,式中各组分原子百分比满足下列条件85.5≤a≤85.75,b=1.8,c=8.9,d=3,e=0.3,0.25≤f≤0.5,a+b+c+d+e+f=100,该合金非晶形成能力优异,其淬态非晶带材经纳米晶化后的饱和磁化强度达到1.69t。

一种如上所述非晶纳米晶合金的制备方法,其特征在于包括以下步骤:

1)配料:采用纯度为99.98wt%的fe、纯度为99.5wt%的si、b含量为18.38wt%的工业feb合金(杂质含量低于0.8wt%)、p含量为27.1wt%的工业fep合金(杂质含量低于1.6wt%)、纯度为99.5wt%的cu和纯度为99.7wt%的nb,按照原子百分比含量进行配料;

2)母合金熔炼:将配好的原料置于非自耗真空电弧炉中,抽真空至5×10-3pa,再在纯度为99.99%的氩气气氛下熔炼合金,每个合金锭至少反复熔炼5次以上;

3)带材的制备:将单辊旋淬炉抽真空至2×10-2pa,于氩气保护下将母合金锭重熔,喷射在高速旋转的铜辊上;铜辊线速度30~40m/s,喷带压力为20~30kpa;制备的薄带厚度为23~30μm,宽度为1~1.5mm;

4)薄带热处理:将退火炉升温至所需晶化温度,然后将封装有薄带的石英玻璃管放入炉中,保温一定时长后取出水淬。

本发明的有益效果在于:提供了一种高饱和磁化强度的纳米晶合金及制备方法,

所发明的软磁合金具有以下特点:

(1)纳米晶软磁合金具有高饱和磁化强度。化学成分表达式为fe86si1.3b8.9p3.5cu0.3和fe86si1.8b8.9p3cu0.3的淬态纳米晶薄带的饱和磁化强度达到1.79t和1.82t。化学成分表达式为fe86.25si1.3b8.9p3nb0.55的非晶薄带470℃退火6min后的饱和磁化强度达到了1.84t。化学成分表达式为fe85.75si1.8b8.9p3cu0.3nb0.25的非晶薄带430℃退火10min后的饱和磁化强度达到了1.69t。

(2)nb最大含量为0.55%(原子百分比),cu最大含量为1%(原子百分比),不含成分比较难控制的c元素。这降低了合金的成本,并保证了合金熔炼的可行性及成分的准确性。

(3)适当添加nb可提高合金的非晶形成能力,这为进一步工业化创造了条件。化学成分表达式为fe86.5si1.05b8.9p3nb0.55以及fe85.75si1.8b8.9p3cu0.3nb0.25的合金xrd显示两者都为非晶态。

附图说明

图1为本发明原子百分比fe86si1.3b8.9p3.5cu0.3、fe86si1.3b9.2p3.2cu0.3、fe86si1.3b9.5p2.9cu0.3、fe86si1.3b9.8p2.6cu0.3、fe86si1.8b8.9p3cu0.3的纳米晶薄带的xrd曲线;

图2为本发明原子百分比fe85.75si1.8b8.9p3nb0.55、fe86.25si1.3b8.9p3nb0.55、fe86.5si1.05b8.9p3nb0.55的非晶薄带的xrd曲线;

图3为本发明原子百分比fe85.75si1.8b8.9p3cu0.3nb0.25的非晶薄带的xrd曲线;

图4为本发明原子百分比fe85.75si1.8b8.9p3cu0.3nb0.25、fe85.5si1.8b8.9p3cu0.3nb0.5的非晶薄带的dsc曲线;

图5为本发明原子百分比fe86si1.3b8.9p3.5cu0.3、fe86si1.3b9.2p3.2cu0.3、fe86si1.3b9.5p2.9cu0.3、fe86si1.3b9.8p2.6cu0.3、fe86si1.8b8.9p3cu0.3的纳米晶薄带的vsm曲线;

图6为本发明原子百分比fe85.75si1.8b8.9p3nb0.55、fe86.25si1.3b8.9p3nb0.55、fe86.5si1.05b8.9p3nb0.55的非晶薄带470℃退火6min后的vsm曲线;

图7为本发明原子百分比fe85.75si1.8b8.9p3cu0.3nb0.25的非晶薄带430℃退火10min的vsm曲线。

具体实施方式

表1为本发明合金的部分实施例,下面具体介绍表1实施例合金的制备、表征和性能。

(1)配料:表1的14种合金均采用纯度为99.98wt%的fe、纯度为99.5wt%的si、b含量为18.38wt%的工业feb合金(杂质含量低于0.8wt%)、p含量为27.1wt%的工业fep合金(杂质含量低于1.6wt%)、纯度为99.5wt%的cu和纯度为99.7wt%的nb,使用高精度电子分析天平按照上述原子百分比含量进行配料。

(2)母合金熔炼:将配好的原料放入非自耗真空电弧炉的铜坩埚中,放置时将易飞溅或挥发的feb合金和fep合金放置在铜坩埚底部,再将块状的fe铺盖在其上方。关闭炉门,用机械泵和分子泵抽真空至5×10-3pa以下,充入适量纯度为99.99%的氩气。熔炼合金前,先熔炼ti锭以吸收炉内残余的氧气,再对合金原料进行熔炼。为保证母合金锭成分均匀,每次熔炼后用翻料铲将合金锭翻转再次熔炼,每个合金锭至少反复熔炼5次以上。

(3)带材的制备:将单辊旋淬炉抽真空至2×10-2pa,再在氩气保护下将母合金锭重熔,喷射在高速旋转的铜辊上,制成非晶态带材。制备14种合金薄带的工艺条件为:铜辊线速度设定为30~40m/s,喷带压力为20~30kpa,制备的薄带厚度为23~30μm,宽度为1~1.5mm。

(4)薄带热处理:将退火炉升温至所需晶化温度,然后将封装有薄带的石英玻璃管放入炉中,保温一定时长后取出水淬。

(5)利用x射线衍射仪检测样品的结构,得到上述薄带的xrd曲线。利用差示扫描量热仪(netzschsta型)以20k/min的升温速率测定薄带的晶化温度tx、相变和熔点,得到上述薄带的dsc曲线。利用ppms设备(美国quantumdesign公司生产)测得薄带的vsm曲线,分析得到薄带的饱和磁化强度。

表1高铁含量铁基非晶纳米晶薄带基本参数和磁性能

表中,a代表非晶体,nc代表纳米晶。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1