一种激光冲击强化与喷丸强化优化组合的强化方法与流程

文档序号:19116712发布日期:2019-11-13 01:14阅读:984来源:国知局
一种激光冲击强化与喷丸强化优化组合的强化方法与流程

本发明涉及制造设备技术领域,具体为一种激光冲击强化与喷丸强化优化组合的强化方法。



背景技术:

钛合金具有较高的比强度、较好的耐腐蚀性、热稳定性,被广泛运用于航空航天领域。钛合金材料在服役期间,疲劳是主要的失效原因之一,疲劳裂纹往往在表面萌生,因此其表面状态对疲劳寿命有着重要的影响。对钛合金零件进行表层改性,能有效提高它的高周疲劳强度,延长它的疲劳寿命。

激光冲击强化(lasershockpeening简称lsp)和喷丸强化(shotpeening简称sp)是两种广泛运用的表层改性技术,二者各有其优势。激光冲击强化基本原理是利用短脉宽(ns量级)、高功率(>1gw/cm2)激光诱导等离子体冲击波(>1gpa)的力学效应,引起金属材料超高应变率(>106/s)塑性变形,形成残余压应力和微观组织变化,从而提高材料疲劳性能。喷丸强化技术其原理是利用高速喷射的细小弹丸撞击金属零件的表面使材料产生一定的弹、塑性变形,从而在材料表面产生残余压应力层和细小微观组织结构,从而提高金属零件的抗疲劳性能。

钛合金构件经过强化后,残余压应力的大小,残余应力场深度,表面粗糙度等因素都会对其高周疲劳性能产生较大影响。激光冲击强化的产生的残余应力场深度大,可达到0.9mm以上,而喷丸强化产生的残余应力场深度较小,一般不超过0.3mm,因此喷丸强化后的钛合金构件在高应力高周循环载荷下的应力松弛更明显,对疲劳寿命的提升程度不如激光冲击强化。但是激光冲击强化产生的最大残余压应力(绝对值)相对较小,只有-500mpa左右,喷丸产生的最大残余压应力可达-700mpa,在低应力水平下,喷丸强化残余应力松弛程度更小,对疲劳寿命提升更明显。同时激光冲击强化对构件的粗糙度影响较小,平均粗糙度在0.6μm左右,对疲劳极限影响较小,而喷丸强化产生的平均粗糙度在2μm,这在一定程度上降低了疲劳极限。



技术实现要素:

针对上述背景技术的不足,本发明提供了一种激光冲击强化与喷丸强化优化组合的强化方法,兼顾二者优点的优点,解决了背景技术提出的问题。

本发明提供如下技术方案:一种激光冲击强化与喷丸强化优化组合的强化方法,所述方法包括步骤:

s1:设计设计高周疲劳钛合金试验件;

s2:对钛合金试验件进行激光冲击强化;

s3:对钛合金试验件进行喷丸强化;

s4:对钛合金表面进行完整性测试;

s5:对钛合金进行高周疲劳测试;

s6:进行参数优化。

优选的,在所述步骤s1中钛合金试验件符合gb/t3075-2008,且其表面粗糙度控制在0.4微米以下。

优选的,在所述步骤s2中,强化过程采用固定激光束,连续移动加持试件方法,冲击方式为同时双面冲击,水为约束层,黑胶带为吸收保护层。

优选的,在所述步骤s3中,强化过程将试件加持固定,冲击角度为90,垂直冲击,冲击时先冲击一边,然后冲击另一面,强化结束后用干净的毛刷清除表面。

优选的,在所述步骤s4中包括表面粗糙度测试和残余应力场测试,在所述表面粗糙度测试中,只用单一种表面强化技术进行强化的结果进行对比。

优选的,在所述残余应力场测试中,测量过程采用θ-θ对称扫描法测量,靶材为cu靶,在进行深度上的应力测试时,先逐层去除表面材料,最后将得到的残余应力场与单一种表面强化技术进行强化的结果进行对比。

优选的,在所述步骤s5中包括高周疲劳极限测试和高周疲劳寿命测试,其加载方式为轴向应力加载,最后用成组法得到高周s-n曲线。

本发明具备以下有益效果:

1.创新性好,综合了激光冲击强化与喷丸强化两种表面技术的优势,使强化后的钛合金构件有着最大残余压应力提高到-800mpa,增加残余应力场深度,同时将表面粗糙度控制在0.8μm以下。

2.工艺简单,激光冲击强化技术和喷丸强化技术都是成熟技术,通过合理控制强化参数,对钛合金构件进行强化即可,操作简单,可行性高。

3.强化效果好。通过高周疲劳测试,结果显示组合强化可以显著提高钛合金构件的高周疲劳寿命和疲劳极限。

4.应用前景好,钛合金构件在航空航天领域工程中广泛应用,但较差的抗疲劳性能限制了其进一步应用发展。本专利提供了一种激光冲击强化与喷丸强化优化组合的强化工艺方法,不需要辅助装置,工程推广前景大。

附图说明

图1为不同强化方式表面粗糙度对比图;

图2不同强化方式残余应力场分布图;

图3高周疲劳s-n曲。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

请参阅图1-3,一种激光冲击强化与喷丸强化优化组合的强化方法,具体包括以下步骤:

s1:根据国标(gb/t3075-2008)设计钛合金标准疲劳试验件,试件经过线切割,打磨,抛光,将表面粗糙度控制在0.3μm以下。

s2:钛合金激光冲击强化在yd60-m165成套设备进行,强化过程采用固定激光束,连续移动加持试件方法。冲击方式为同时双面冲击,水为约束层,黑胶带为吸收保护层,强化参数如下:

①波长:1064nm②激光能量:4j③光斑直径:2mm④脉宽:10ns⑤搭接率:50%

s3:钛合金喷丸强化在mp15000成套设备进行,丸粒选择为直径0.4mm的铸钢丸,强化过程将试件加持固定,冲击角度为90。垂直冲击,冲击时先冲击一边,然后冲击另一面,强化结束后用干净的毛刷清除表面。强化参数如下:

①工作压力:1.5kg/cm2②弹丸流量:10千克/分钟③喷射距离:170mm

④喷丸强度;0.3nmn⑤覆盖率150%

s4:使用zygo表面轮廓仪测得的强化处理后的钛合金的表面形貌及粗糙度,并与只用单一种表面强化技术进行强化的结果进行对比,如图1所示。

s5:强化后的残余应力场测试采用加拿大proto公司的lxrd型残余应力测试仪,测量过程采用θ-θ对称扫描法测量,靶材为cu靶,衍射角2θ为139。-142。,衍射波长1.542nm。进行深度上的应力测试时,用proto公司的polisher8818v-3型电解抛光逐层去除表面材料,抛光液成分为10%hclo4+90%ch3oh,并将得到的残余应力场与单一种表面强化技术进行强化的结果进行对比,结果如图2所示。

s6:高周疲劳试验采用qbg-100疲劳试验机,环境温度20℃,加载方式为轴向应力加载,应力比为0.1。取107次循环为无限寿命,用成组法得到高周s-n曲线,如图3所示。

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1