热成型部件及其制造方法与流程

文档序号:26004173发布日期:2021-07-23 21:22阅读:247来源:国知局
热成型部件及其制造方法与流程
本发明涉及一种热成型部件及其制造方法。
背景技术
:近年来,由于石油能源的枯竭和对环境的高度关注,对提升汽车的燃油效率的管制日渐严格。在材料方面,作为用于提升汽车的燃油效率的一种方法,可以列举减少用于汽车的钢板的厚度,但是减少厚度时在汽车的安全性方面可能会发生问题,因此必须提高钢板的强度。由于如上所述的理由,对高强度钢板产生持续性的需求,并且已经开发了各种种类的钢板。但是,这些钢板自身具有高强度,因此存在加工性不良的问题。即,钢板的各个等级具有强度与伸长率的乘积总是为恒定值的倾向,因此,当钢板的强度变高时,存在作为加工性指标的伸长率减小的问题。为了解决这种问题,提出了热压成型法。热压成型法是如下的方法:在适于加工的高温下对钢板进行加工后快速冷却至低温,以在钢板内形成马氏体等低温组织,从而提高最终产品的强度。在这种情况下,当制造具有高强度的部件时,具有可以最小化加工性问题的优点。但是,利用所述热压成型法时,由于将钢板加热至高温,钢板表面被氧化,因此存在冲压成型后需要附加去除钢板表面的氧化物的过程的问题。作为用于解决这种问题的方法,提出了美国专利公报第6,296,805号的技术。在所述美国专利公报第6,296,805号中,对经镀铝的钢板利用热压成型或常温成型后进行加热并快速冷却的过程(简称为“后热处理”),并且铝镀层存在于钢板表面,因此加热时钢板不会被氧化。但是,对经镀铝的钢板进行热压成型时,即使热成型时在高温下材料的强度非常低,也发生模具严重磨损的问题。据判断,这是因为在为了热成型而对经镀覆的钢板进行加热的过程中基材铁扩散至铝镀层,从而在钢板的表面形成硬质的fe和al的合金层,所述合金层的硬度通常高于由工具钢形成的模具材料的硬度,因此由于冲压成型而发生模具的严重磨损。因此,对经镀铝的钢板进行热压成型时,只能以短的周期对模具进行打磨或更换模具,因此存在热成型部件的制造成本大幅增加的问题。技术实现要素:要解决的技术问题本发明的目的在于提供一种热成型时热成型模具的磨损少的热成型部件及其制造方法。本发明的技术问题并不限于上述内容。本领域技术人员可以由本发明的说明书全文没有任何困难地理解本发明的附加技术问题。技术方案本发明的一个方面是一种热成型部件,所述热成型部件包括基础钢板和形成在所述基础钢板上的铝合金镀层,所述铝合金镀层包括:合金化层(i),其形成在所述基础钢板上,并且以重量%计,所述合金化层(i)包含al:5-30%;合金化层(ii),其形成在所述合金化层(i)上,并且以重量%计,所述合金化层(ii)包含al:30-60%;合金化层(iii),其形成在所述合金化层(ii)上,并且以重量%计,所述合金化层(iii)包含al:20-50%和si:5-20%;以及合金化层(iv),其连续或不连续地形成在所述合金化层(iii)表面的至少一部分,并且所述合金化层(iv)包含al:30-60%,其中,暴露于所述铝合金镀层的最外表面的合金化层(iii)的比例为10%以上。所述合金化层(iii)中可以形成有多个孔隙(pore),并且所述合金化层(iii)的孔隙率可以为5-50%。以重量%计,所述基础钢板可以包含:c:0.04-0.5%、si:0.01-2%、mn:0.1-5%、p:0.001-0.05%、s:0.0001-0.02%、al:0.001-1%、n:0.001-0.02%、余量的fe和其它杂质。以重量%计,所述基础钢板还可以包含b:0.001-0.01%、cr:0.01-1%、ti:0.001-0.2%中的一种以上。本发明的另一个方面是一种制造热成型部件的方法,所述方法包括以下步骤:对基础钢板的表面进行镀铝并进行收卷以获得镀铝钢板;对镀铝钢板进行退火以获得铝-铁合金镀覆钢板;以及对所述铝-铁合金镀覆钢板进行热压成型,其中,以钢板的一面为基准,所述镀铝量为30-200g/m2,镀铝后至250℃的冷却速度设为20℃/秒以下,收卷时的收卷张力设为0.5-5kg/mm2,所述退火在罩式退火炉中在550-750℃的加热温度范围内进行30分钟至50小时,所述退火时,从常温加热至所述加热温度时,平均升温速度设为10-100℃/小时,其中400-500℃区间的平均升温速度设为1-15℃/小时,所述罩式退火炉内的气氛温度与钢板温度之差设为5-80℃,热压成型时在ac3至950℃的温度范围内进行热处理,其中以3-18℃的升温速度从200℃加热至ac3至950℃的温度范围,并且以1-15分钟的总加热时间进行热处理,然后进行热压成型。通过所述制造热成型部件的方法生产热成型部件500次时,热成型模具的10个点的平均磨损深度可以为15μm以下。有益效果根据本发明,在制造热成型部件时,由于镀层的表面硬度低于热成型模具的硬度,模具的磨损减少,从而可以延长热成型模具的打磨或更换周期,因此具有可以降低热成型部件的制造成本并提高生产效率的效果。本发明的多个有益的优点和效果并不限于上述内容,在对本发明的具体的实施方案进行说明的过程中可以更容易地理解。附图说明图1是观察根据发明例1制造的热成型部件的镀层的截面的扫描电子显微镜照片。图2是观察根据比较例1制造的热成型部件的镀层的截面的扫描电子显微镜照片。最佳实施方式以下,对本发明的一个方面的热成型部件进行详细说明。需要注意的是,除非另有定义,否则本发明中各元素的含量表示重量%。此外,除非另有说明,否则晶体或组织的比例以面积为基准。[热成型部件]首先,本发明的一个方面的热成型部件包括基础钢板和形成在所述基础钢板上的铝合金镀层,所述铝合金镀层包括:合金化层(i),其形成在所述基础钢板上,并且以重量%计,所述合金化层(i)包含al:5-30%;合金化层(ii),其形成在所述合金化层(i)上,并且以重量%计,所述合金化层(ii)包含al:30-60%;合金化层(iii),其形成在所述合金化层(ii)上,并且以重量%计,所述合金化层(iii)包含al:20-50%和si:5-20%;以及合金化层(iv),其连续或不连续地形成在所述合金化层(iii)表面的至少一部分,并且所述合金化层(iv)包含al:30-60%。优选地,所述各合金层可以具有如下的成分范围。以重量%计,所述合金化层(i)可以包含al:5-30%、si:0-10%、余量的fe和其它由于合金化引起的不可避免的杂质,以重量%计,所述合金化层(ii)可以包含al:30-60%、si:0-5%、余量的fe和其它由于合金化引起的不可避免的杂质,以重量%计,所述合金化层(iii)可以包含al:20-50%、si:5-20%、余量的fe和其它由于合金化引起的不可避免的杂质,并且以重量%计,所述合金化层(iv)可以包含al:30-60%、si:0-5%、余量的fe和其它由于合金化引起的不可避免的杂质。对基础钢板进行镀铝后进行热处理时,基础钢板的fe扩散至al含量高的铝镀层中。在本发明的热成型部件中,通过用于合金化的退火处理和热压成型时的热处理,在镀层中实现al和fe之间的合金化,并且根据fe的合金化程度,形成由合金化层(i)至合金化层(iv)组成的层结构。所述合金化层(iv)可以连续或不连续地形成在合金化层(iii)表面的至少一部分。即,所述合金化层(iv)可以形成在合金化层(iii)的一部分表面,而不是形成在合金化层(iii)的整个表面。此外,所述合金化层(iv)形成在合金化层(iii)的表面的至少一部分,因此所述合金化层(iii)的一部分表面可以暴露于所述铝合金镀层的最外表面。其中,最外表面是指基础钢板相反侧的所述铝合金镀层的最外表面。当所述铝合金镀层的表面形成有氧化物层时,所述最外表面是指除所述氧化物层之外的其余层中的最上层表面。此时,暴露于所述铝合金镀层的最外表面的合金化层(iii)的比例优选为10%以上。其中,所述暴露于最外表面的合金化层(iii)的比例可以定义为观察合金镀层的截面时的相对于最外表面部的总长度的合金化层(iii)被暴露的区域的长度的比例,根据情况,还可以定义为相对于所述铝合金镀层的最外表面的表面积的暴露于所述最外表面的合金化层(iii)的表面积的面积比例。在所述合金化层中,合金化层(ii)和合金化层(iv)的硬度为约900hv的水平,硬度非常高,另一方面,合金化层(i)和合金化层(iii)的硬度为约300-700hv的水平,相对低于合金化层(ii)和合金化层(iv)。因此,热压成型时与模具接触的铝合金镀层的最外表面上的硬度相对低的合金化层(iii)的暴露面积增加时,使最外表面的平均硬度整体上降低,从而减少模具的磨损。当暴露于最外表面的合金化层(iii)的比例小于10%时,最外表面的平均硬度与模具硬度的差异变小,因此不能有效地抑制模具的磨损。在抑制模具的磨损方面,铝合金镀层的最外表面的硬度越低越优选,因此无需单独限制所述比例的上限。优选地,所述比例可以为15%以上,并且根据情况可以为20%以上。另外,合金化层(iii)中可以形成有多个孔隙(pore)。在罩式退火炉中以预定的条件对镀铝钢板进行合金化热处理以制造铝合金镀覆钢板时,所述铝合金镀覆钢板上形成多个合金层,由于成分彼此不同的合金层之间的fe、al、si等的相互扩散系数的差异,上部合金层中形成多个孔隙。此时,越靠近合金层的上部,越形成有多个孔隙,因此孔隙率高,对所述铝合金镀覆钢板进行加热后进行热压成型时,具有高密度的孔隙的最上部合金层由于冲压成型而破碎形成小颗粒,这种小颗粒滚动时产生的滚动摩擦(rollingfriction)小于钢板与模具之间的滑动摩擦(slidingfriction),因此模具与钢板之间的润滑性增加。其中,所述孔隙率可以定义为观察合金层(或合金化层)的截面时的相对于各合金层(或合金化层)的面积的孔隙面积的比例。如图1所示,热压成型时合金化层(iv)的大部分区域由于冲压成型而破碎,从而在热成型部件中难以测量合金化层(iv)的孔隙率,因此通过合金化层(iii)的孔隙率来表现出本发明的特性,所述合金化层(iii)的孔隙率受冲压成型的影响小,并且与冲压成型前的合金化层(iv)的孔隙率显示出密切的相关性。因此,本发明的一个方面的热成型部件的所述合金化层(iii)的孔隙率可以为5-50%。当所述孔隙率小于5%时,难以期待热压成型时由滚动摩擦效果带来的润滑效果。另一方面,当孔隙率超过50%时,热成型部件的合金化层(iii)的结构非常脆弱,因此在连续的热成型时可能会发生由于模具内从镀层脱落的颗粒而导致模具污染变得严重的问题。因此,本发明中所述孔隙率优选为5-50%,并且根据情况可以为7-50%。另外,本发明的基础钢板是热压成型用钢板,只要用于热压成型,则对基础钢板的组成不作特别限制。但是,根据本发明的一个方面,以重量%计,所述基础钢板包含:c:0.04-0.5%、si:0.01-2%、mn:0.1-5%、p:0.001-0.05%、s:0.0001-0.02%、al:0.001-1%、n:0.001-0.02%、余量的fe和其它杂质。以下,对各成分体系进行详细说明。c:0.04-0.5%所述c是用于提高热处理部件的强度所必需的元素,可以添加适量的所述c。即,为了充分确保热处理部件的强度,可以添加0.04%以上的所述c。优选地,所述c含量的下限可以为0.1%以上。但是,当c含量过高时,在生产冷轧材料的情况下,对热轧材料进行冷轧时热轧材料的强度过高,使得冷轧性大幅变差,而且使点焊性大幅降低,因此,为了确保充分的冷轧性和点焊性,可以添加0.5%以下的c。此外,所述c含量可以为0.45%以下,更优选地,还可以将c含量限制为0.4%以下。si:0.01-2%所述si在炼钢中应作为脱氧剂添加,而且起到抑制对热压成型部件的强度影响最大的碳化物的生成的作用。在本发明中,为了在热压成型中生成马氏体后使碳富集在马氏体板条(lath)晶界上以确保残余奥氏体,可以以0.01%以上的含量添加si。此外,对轧制后的钢板进行镀铝时,为了确保充分的镀覆性,所述si含量的上限可以设为2%。优选地,还可以将所述si含量限制为1.5%以下。mn:0.1-5%所述mn可以确保固溶强化效果,而且在热压成型部件中,为了降低用于确保马氏体的临界冷却速度,可以以0.1%以上的含量添加mn。此外,在通过适当地保持钢板的强度来确保热压成型工艺的操作性、降低制造成本并提高点焊性的方面,可以将所述mn含量限制为5%以下。p:0.001-0.05%所述p在钢中以杂质存在,p的含量尽可能越少越有利。因此,本发明中可以将p的含量限制为0.05%以下,优选地,还可以限制为0.03%以下。p是越少越有利的杂质元素,因此无需特别设定p含量的下限。但是,为了过度降低p含量,制造成本可能会上升,因此,考虑到这种情况时,p含量的下限可以设为0.001%。s:0.0001-0.02%所述s是钢中的杂质,并且所述s是损害部件的延展性、冲击特性和焊接性的元素,因此将s的最大含量限制为0.02%,优选可以限制为0.01%以下。此外,当s的最小含量小于0.0001%时,制造成本可能会上升,因此s含量的下限可以设为0.0001%。al:0.001-1%所述al与si一起在炼钢中起到脱氧的作用,因此可以提高钢的洁净度,为了获得上述效果,可以以0.001%以上的含量添加al。此外,为了使ac3温度不会变得过高,以在适当的温度范围内进行热压成型时所需的加热,可以将所述al的含量限制为1%以下。n:0.001-0.02%所述n是在钢中以杂质包含的元素,为了在板坯的连续铸造时减少对产生裂纹的敏感度并确保冲击特性,n含量越低越有利,因此可以包含0.02%以下的n。虽然无需特别设定n含量的下限,但是考虑到制造成本的上升等,还可以将n含量设为0.001%以上。本发明的一个方面的铝-铁合金镀覆钢板中,除了包含上述合金组成之外,还可以进一步包含b:0.001-0.01%、cr:0.01-1%、ti:0.001-0.2%中的一种以上。b:0.001-0.01%所述b是即使添加少量也可以提高淬透性的元素,而且是偏析在原奥氏体晶界上并可以抑制由p和/或s的晶界偏析所引起的热压成型部件的脆性的元素。因此,可以添加0.0001%以上的b。但是,当b的含量超过0.01%时,不仅其效果饱和,而且在热轧时导致脆性,因此b含量的上限可以设为0.01%,优选地,所述b含量可以设为0.005%以下。cr:0.01-1%与mn相似地,所述cr是为了提高固溶强化效果和热成型时的淬透性而添加的元素,为了获得上述效果,可以添加0.01%以上的cr。但是,为了确保部件的焊接性,可以将cr含量限制为1%以下,并且当cr含量超过1%时,与添加量相比,提高淬透性的效果弱,因此在成本方面也不利。ti:0.001-0.2%所述ti具有通过形成微细析出物来提高热处理部件的强度以及通过晶粒微细化来提高部件的碰撞特性的效果,而且添加b时,ti先与n反应,从而具有使b的添加效果极大化的效果。为了获得上述效果,可以添加0.001%以上的ti。但是,随着ti含量的增加而引起的粗大的tin的形成可能会使部件的碰撞特性变差,因此可以将ti含量限制为0.2%以下。除了上述成分之外,余量可以列举铁(fe)和不可避免的杂质,并且只要是可以包含在热压成型用钢板中的成分,则对进一步的添加不作特别限制。在制造具有上述合金组成和层结构的热成型部件时,热压成型时铝合金镀覆钢板的表面上的硬度低的合金化层(iii)的比例变高,使得表面的平均硬度降低,因此可以有效地减少由硬度差异导致的模具的磨损。特别地,即使生产热成型部件500次以上,热成型模具的10个点的平均磨损深度也可以为15μm以下。此外,在热压成型时,作为铝合金镀层的上部层的合金化层(iii)和合金化层(iv)中形成有多个孔隙,由于所述孔隙,在冲压成型时合金化层(iv)破碎,从而可以获得由滚动摩擦带来的润滑效果,因此可以获得可进一步抑制模具的损坏的效果。以下,对本发明的另一个方面的制造热成型部件的方法进行详细说明。但是,需要注意的是,以下的制造热成型部件的方法仅仅是一个例示,本发明的热成型部件并非必须通过该制造方法来制造,只要是满足本发明的权利要求的方法,任一种制造方法均可以实现本发明的各个具体实施方案。[制造热成型部件的方法]本发明的热成型部件可以通过以下方法获得:准备经热轧或冷轧的基础钢板,对所述基础钢板的表面进行镀铝并在罩式退火炉中进行合金化热处理以获得铝合金镀覆钢板,然后以预定的条件进行热压成型。首先,进行以下过程:准备具有上述合金组成的基础钢板,并以适当的条件对所述基础钢板的表面进行镀铝并进行收卷,以获得镀铝钢板(卷材)。首先,以单面为基准,对经轧制的钢板的表面可以以30-200g/m2的镀覆量进行镀铝处理。镀铝通常可以使用被称为i型(typei)的alsi镀覆(包含80%以上的al和5-20%的si,根据需要也可以包含附加元素),或者可以使用被称为ii型(typeii)的包含90%以上的al且根据需要包含附加元素的镀覆。为了形成镀层,可以进行热浸镀铝,并且可以在镀覆前对钢板进行退火处理。在镀覆时,以一面为基准,适当的镀覆量为30-200g/m2。当镀覆量过多时,合金化至表面可能需要过多的时间,另一方面,当镀覆量过少时,难以获得充分的耐蚀性。然后,镀铝后至250℃的冷却速度可以设为20℃/秒以下来进行冷却。镀铝后的冷却速度影响镀层和基材铁之间的扩散抑制层的形成,当镀铝后的冷却速度过快时,不能均匀地形成扩散抑制层,因此之后进行的退火处理时卷材的合金化行为可能会变得不均匀。因此,镀铝后至250℃的冷却速度可以设为20℃/秒以下。在镀覆后,对钢板进行收卷以获得卷材时,卷材的收卷张力可以调节为0.5-5kg/mm2。根据卷材的收卷张力的调节,之后进行的退火处理时卷材的合金化行为和表面质量会不同。之后,对镀铝的钢板可以以如下条件进行退火处理以获得铝-铁合金镀覆钢板。在罩式退火炉(batchannealingfurnace,baf)中对镀铝钢板(卷材)进行加热。在对钢板进行加热时,以钢板温度为基准,热处理目标温度和保持时间优选在550-750℃的范围内(本发明中将在该温度范围内材料所达到的最高温度称为加热温度)保持30分钟至50小时。其中,保持时间是指卷材温度达到目标温度后至开始冷却的时间。未实现充分的合金化的情况下,辊式矫直时镀层可能会剥离,因此,为了充分的合金化,加热温度可以设为550℃以上。此外,为了防止表层上形成过多的氧化物并确保点焊性,所述加热温度可以设为750℃以下。此外,为了充分确保镀层并防止生产性的降低,所述保持时间可以设为30分钟至50小时。根据情况,钢板的温度还可以具有直到达到加热温度为止温度持续上升而没有冷却过程的形式的加热模式,并且还可以应用在目标温度以下的温度下保持一定时间后升温的形式的加热模式。以上述加热温度对钢板进行加热时,为了确保充分的生产性并在整个钢板(卷材)中使镀层均匀地合金化,以钢板(卷材)温度为基准,对整个温度区间(从常温至加热温度的区间)的平均升温速度可以设为10-100℃/小时。整体的平均升温速度可以控制在如上所述的数值范围,但是本发明的一个具体实施方案中,为了防止在轧制时混入的轧制油被汽化的所述温度区间残留轧制油而导致表面污渍等,并为了确保充分的生产性,升温时在400-500℃区间的平均升温速度可以设为1-15℃/小时来进行加热。此外,罩式退火炉内的气氛温度与钢板温度之差可以设为5-80℃。通常的罩式退火炉中的加热采用的是通过退火炉内的气氛温度的上升来加热钢板(卷材)的方式,而不是直接加热钢板(卷材)的方式。在这种情况下,无法避免气氛温度与卷材温度之间的差异,但是为了最小化钢板内不同位置的材质和镀覆质量的偏差,以达到热处理目标温度的时间点为基准,气氛温度与钢板温度之差可以设为80℃以下。理想的情况是使温度差尽可能小,但是这会使升温速度变慢,可能难以满足整体平均升温速度条件,因此考虑到这种情况,气氛温度与钢板温度之差可以设为5℃以上。其中,钢板的温度是指对装入的钢板(卷材)底部(指卷材中最低的部分)进行测量的温度,气氛温度是指在加热炉的内部空间的中心测量的温度。通过上述制造方法制造铝合金镀覆钢板后,可以对所述铝合金镀覆钢板进行热压成型以制造热成型部件。此时,热压成型可以利用本
技术领域
中通常利用的方法,作为一个非限制性的具体实施方案,在ac3至950℃的温度范围内进行热处理,其中以3-18℃/秒的升温速度从200℃加热至ac3至950℃的温度范围,并且以1-15分钟的总加热时间进行热处理,然后可以进行热压成型。其中,总加热时间可以定义为包括升温温度区间的加热时间和ac3至950℃的温度范围内的加热时间的加热时间。具体实施方式以下,通过实施例对本发明进行更具体的说明。但是,需要注意的是,下述实施例仅仅是用于例示本发明以进行具体的说明,并不是用于限制本发明的权利范围。这是因为本发明的权利范围是由权利要求书中记载的内容和由此合理推导的内容所决定。(实施例)首先,准备具有下表1的组成的热压成型用冷轧钢板作为基础钢板,并用具有al-9%、si-1.5%、fe的组成的i型(typei)镀浴,对钢板的表面进行镀覆。镀覆时的镀覆量调节为每一面为75g/m2,镀铝后以10℃/秒的冷却速度冷却至250℃,然后将收卷张力调节为3kg/mm2进行收卷,从而获得镀铝钢板。[表1]元素csimnalpsncrtibac3含量(%)0.230.21.250.030.010.0020.0050.210.0340.0022822℃之后,根据下表2的条件,在罩式退火炉中对镀覆的钢板进行合金化热处理,然后分别进行热压成型500次,从而获得热成型部件。其中,在比较例1中,没有对上述镀铝钢板进行合金化热处理,并根据下表2的条件进行热压成型,从而获得热成型部件。[表2]之后,对于各发明例和比较例中使用的模具,生产500次后测量随机的10个点的磨损深度,并将所测量的磨损深度的平均值示于下表3中。另外,从每个实施例的500个产品中随机抽取10个样品,并通过用扫描电子显微镜观察样品的截面来确认合金化层(iii)在最表层中的占有率,然后将该占有率的平均值一同示于下表3中。此外,测量合金化层(iii)的孔隙率(porosity),并将其结果示于下表3中。可以确认相同的实施例(发明例或比较例)中合金化层(iii)在最表层中的占有率和孔隙率的偏差不大。[表3]如所述表3所示,可以确认暴露于最外表面的合金化层(iii)的面积比例为10%以上且孔隙率为5%以上的发明例1至发明例3的情况下,即使生产发明例1至发明例3的热成型部件500次,模具的平均磨损深度也为15μm以下,因此可以确认有效地抑制了热成型模具的磨损。另一方面,比较例1是对常规的al-si镀覆钢板进行热压成型的情况,可以确认暴露于最外表面的合金化层(iii)的面积比例小于10%,并且孔隙率低,因此与发明例相比,模具的磨损显著增加。此外,在比较例2的情况下,虽然进行了铝镀层的合金化热处理,但合金化热处理温度低,因此未实现充分的合金化。因此,可以确认暴露于最外表面的合金化层(iii)的面积比例小于10%,并且孔隙率低,因此与比较例1一样,模具的磨损大幅增加。通过参考以上实施例进行了说明,但本领域技术人员可以理解在不脱离权利要求书中记载的本发明的思想和领域的范围内可以对本发明进行各种修改和改变。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1